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Sequence-Dependent Motions of DNA: A Normal Mode Analysis at the
Base-Pair Level
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ABSTRACT Computer simulation of the dynamic structure of DNA can be carried out at various levels of resolution. Detailed
high resolution information about the motions of DNA is typically collected for the atoms in a few turns of double helix. At low
resolution, by contrast, the sequence-dependence features of DNA are usually neglected and molecules with thousands of
base pairs are treated as ideal elastic rods. The present normal mode analysis of DNA in terms of six base-pair “step”
parameters per chain residue addresses the dynamic structure of the double helix at intermediate resolution, i.e., the
mesoscopic level of a few hundred base pairs. Sequence-dependent effects are incorporated into the calculations by taking
advantage of “knowledge-based” harmonic energy functions deduced from the mean values and dispersion of the base-pair
“step” parameters in high-resolution DNA crystal structures. Spatial arrangements sampled along the dominant low frequency
modes have end-to-end distances comparable to those of exact polymer models which incorporate all possible chain
configurations. The normal mode analysis accounts for the overall bending, i.e., persistence length, of the double helix and
shows how known discrepancies in the measured twisting constants of long DNA molecules could originate in the
deformability of neighboring base-pair steps. The calculations also reveal how the natural coupling of local conformational
variables affects the global motions of DNA. Successful correspondence of the computed stretching modulus with experi-
mental data requires that the DNA base pairs be inclined with respect to the direction of stretching, with chain extension
effected by low energy transverse motions that preserve the strong van der Waals’ attractions of neighboring base-pair
planes. The calculations further show how one can “engineer” the macroscopic properties of DNA in terms of dimer
deformability so that polymers which are intrinsically straight in the equilibrium state exhibit the mesoscopic bending

anisotropy essential to DNA curvature and loop formation.

INTRODUCTION

The large-scale fluctuations of DNA are key to understand-
ing kinetically complicated events, such as the ease of the
long, threadlike molecule snaking though the pores of a gel
or closing into a loop between separately bound regulatory
proteins. DNA loop formation is implicated, in turn, in a
number of important biological processes, including the
regulation of transcription (Bellomy et al., 1988; Schleif,
1992) and the organization of chromatin (Dillon et al., 1997,
Bazett-Jones et al., 1999; Ringrose et al., 1999).

The motions of polymeric DNA are generally modeled in
terms of a spatially homogeneous, naturally straight, elastic
rod which ignores realistic features of chemical structure
(reviewed in Olson, 1996). The fluctuations and correlations
of structural parameters in crystals of pure DNA and of
DNA-protein complexes, however, show that the equilib-
rium rest states and elastic constants of neighboring base
pairs are dependent on sequence and further reveal the
presence of strong couplings between modes of deforma-
tion—e.g., between bending, twisting, and stretching—that
are the direct result of the chiral nature of DNA chemical
structure (Olson et al., 1998). These local features become
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important as the deformations of sequential base-pair steps
accumulate with the increase of chain length, introducing
notable structural variability at the mesoscopic level, i.e., in
chains of a few hundred base pairs.

Electron micrographs and other low resolution images of
mesoscopic DNA fragments reveal broad distributions of
molecular shapes and end-to-end distances (Muzard et al.,
1990; Thresher and Griffith, 1992; Bednar et al., 1995;
Lyubchenko et al., 1995; Hansma et al., 1996; Bustamante
et a., 1997). The sequential features responsible for these
gpatial arrangements are often deduced by comparison of
the experimentally observed images of a given DNA with
the distribution of configurations generated by Metropolis-
Monte Carlo sampling of the likely structural fluctuations of
the constituent dimers (Hagerman, 1985; L evene and Croth-
ers, 1986; Kahn and Crothers, 1998). Limitations on com-
puter resources make routine comparison of simulations and
experiment impractical, because hundreds of thousands of
coordinate sets must be generated to characterize an indi-
vidual polymer molecule. The study of the large-scale,
collective motions of long DNA is consequently impeded.

The norma modes of DNA provide an aternative, com-
putationally less demanding way to study the equilibrium
properties of DNA. The normal modes are coupled vibra-
tions found by assuming that the molecular potential energy
can be approximated by a harmonic function of the config-
urational variables and by then solving a generalized eig-
envector problem to give a closed analytical description of
the motion. The eigenvalues give the vibrational time scales
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(frequencies) and the eigenvectors the details of the corre-
sponding motion. The motion can be described and visual-
ized at each frequency or as a superposition of independent
modes. Time-averaged equilibrium and kinetic properties can
be calculated accurately and efficiently as weighted sums, e.g.,
thermodynamic functions can be determined from the normal
mode frequencies. The price paid for these benefits is the
limited accuracy of the harmonic energy approximation. The
method, nevertheless, provides a useful first impression of the
flexibility of a molecule and shows how the motions may
change when the chemical structure is modified or the chain is
perturbed by the binding of proteins and other ligands.

Normal mode or vibrational analysisisawell established
and much used technique for the study of both small mol-
ecules and proteins. the technique is successful in reproduc-
ing the vibrational spectra of small molecules (Wilson et dl.,
1955) and in analyzing the collective motions involved in
the folding of protein fragments and in the binding and
release of substrates and products to and from enzymes
(Levy and Karplus, 1979; Brooks and Karplus, 1983; Kitao
and G0, 1999; Berendsen and Hayward, 2000). Analyses of
DNA normal modes to date have focused on the collective
motions of very short chain fragments ranging from small
oligomers (Tidor et al., 1983; Irikura et a., 1985; Garcia
and Soumpasis, 1989; Kottalam and Case, 1990; Ha Duong
and Zakrzewska, 1997a,b, 1998; Lin et a., 1997) to a few
turns of double helix (Matsumoto and Go, 1999). The size
of the latter systems is limited by the kinds of parameters
which have been used to describe three-dimensional struc-
ture—typically the Cartesian coordinates of the constituent
atoms or the dihedral angles of a nucleic acid fragment with
rigid chemical bonds and valence angles. The small, almost
imperceptible motions of short DNA oligonucleotides de-
scribed at this high level of resolution are closely tied to the
detailed sequence-dependent fine structure of the double
helix and the association of water, drugs, proteins, and other
molecules with individual nucleotide residues. The confor-
mational effects which are collectively responsible for the
large-scale, sequence-dependent properties of polymeric
DNA chains are difficult to discern in such studies. The
normal modes of infinitely long DNA, however, have been
examined by Prohofsky and associates (Hua and Prohofsky,
1988; Chen and Prohofsky, 1995) by repeating a short
fragment of DNA and taking advantage of helical symmetry
to reduce the number of independent coordinates. The com-
plexity of chains that can be studied from this perspective is
again limited by the length of the repeating unit.

In the present investigation, we examine the motions of
long fragments of DNA by taking advantage of “knowl-
edge-based” harmonic energy functions deduced from
known high-resolution crystal structures of DNA (Olson et
al., 1998). The deformations of individual dimers are de-
scribed by six independent “step” parameters which specify
the spatial arrangements of neighboring base pairs. three
angular variables called Tilt, Roll, and Twist and three
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variables called Shift, Slide, and Rise with dimensions of
distance (Dickerson et a., 1989). This rigid-body represen-
tation of base pairs significantly reduces the number of
independent variables per chain molecul e, thereby making it
possible to study the norma modes of much longer DNA
fragments than could heretofore be treated in either Carte-
sian or dihedral angle space. In addition, the elastic energy
incorporates the sequence-dependent anisotropy of DNA
bending as well as the known correlations of base-pair step
parameters. The only missing structural information is the
detailed conformation of the sugar-phosphate backbone,
including the charged phosphate groups. The latter atoms
and the surrounding aqueous solvent, such as the water
molecules and counterions in the first or second solvation
layer around the DNA, are implicitly treated in the energy
terms so that their omission introduces no serious errors
when duplex deformations are limited to energies of the
order of kgT (where kg is the Boltzmann constant and T the
temperature in Kelvin). It should be noted, however, that the
surrounding solvent does not have a viscosity and that we
do not consider the damping effect of solvent on large-scale
polymeric properties in this study. This low-resolution
model, nevertheless, provides a straightforward way to de-
duce the effects of sequence on global folding, something
that is said (Berendsen and Hayward, 2000) still to elude
analyses of the slow conformational changes of proteins. In
principle, there is no limit on the length of DNA that can be
described in this manner so long as the constituent dimers
obey the harmonic energy model, i.e., there are no excur-
sions of the molecule from the classical B-form double
helical structure. Longer chains are characterized by a
greater number of normal modes, which when appropriately
weighted and superimposed, give rise to a broader distribu-
tion of global molecular configurations. In practice, chain
length is restricted by the form of the kinetic energy, which
assumes that changes in atomic coordinates brought about
by the fluctuations of individual “step” parameters are
small. These upper limits preclude the need to treat the
long-range electrostatic self-repulsion that influences the
folding of long supercoiled DNA molecules (Fenley et al.,
1994; Vologodskii and Cozzarelli, 1995; Westcott et al.,
1997).

We focus attention here on the normal modes of regularly
repeating, linear polymers free of bound ligands to establish
a point of reference for studies to be reported elsewhere of
arbitrary DNA sequences and of chains with ends held in
place by specific anchoring conditions, such as the looped
configurations imposed by protein binding. We compare
our simplified energy model with previous all-atom treat-
ments of short oligomers and with ideal elastic rod repre-
sentations of polymeric DNA. We identify the local base-
pair fluctuations responsible for the dominant (lowest
frequency) normal modes. The derived polymeric properties
account satisfactorily for the overall bending, i.e., persis-
tence length, of the double helix and revea the critical role
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of sequence in globa twisting. The computations further
suggest that the constants impeding the large-scale stretch-
ing of single DNA molecules are related to the concerted
bending, twisting, and lateral displacements of neighboring
base-pair planes as well as to their axial separation. We
identify particular sequence contexts under which ideal
elastic behavior breaks down, concentrating on conditions
that induce the mesoscopic bending anisotropy which un-
derlies DNA loop formation. Finally, by comparing the
end-to-end dimensions of the simulated double helices with
exact values obtained from standard matrix formulations of
polymer configurational statistics (Flory, 1969; Maroun and
Olson, 1988; Marky and Olson, 1994), we investigate the
chain lengths at which the normal mode analysis of DNA
modeled in terms of base-pair steps is valid.

METHODS
Base-pair representation

The atoms of each base pair lie in the plane of a locdl,
orthogonal coordinate frame (X, y, z), which is defined in
accordance with recently established guidelines (Olson et
a., 2001). (Note: The x and y axes lie in the plane of the
base pair, with x pointing in the direction of the major
groove along the pseudodyad axis of the base pair and y
running along the long axis of the base pair in the direction
of the leading (sequence) strand, parallel to the C1' - - - C1'
vector, and displaced so as to pass through the intersection
of x with the vector connecting the pyrimidine Y (C6) and
purine R(C8) atoms. The z axis is perpendicular to the
base-pair plane, pointing in the 5'-3 direction of the leading
strand.) The coordinate system of the kth base pair is further
characterized by the position of its origin o, and the rotation
matrix R,, which relates the local base-pair frame to a fixed,
orthonormal global reference frame. The rotation matrix is
givenby [v,v,v,], wherethe v (v = X, y, 2) are unit vectors,
expressed in columns, along the positive coordinate axes of
the base-pair frame.

Therelative position and orientation of the (k + 1)th base
pair with respect to its predecessor k are given respectively
by the difference between coordinate origins, Vi, =
(041 — 0 and the product of the rotation matrix R, ; and
the inverse of R, i.e, the dimer transformation matrix
Trkr1 = Res1(RY ™ The components of the projection of
Vi k+1 0N the coordinate axes of base pair k, (7, 7, 7,), are
used as tranglational parameters in the present calculation.

The matrix T can aso be expressed in terms of the
rotation of magnitude ¢ around the axis u which brings the
coordinate frames on successive base pairsinto coincidence,
where the components of the unit vector u are (uy, U, U,)
and the angle ¢ equals (¢ + ¢> + ¢2)"? (Chasles, 1830).
The elements of T, so expressed, are given by (Jeffreys and
Jeffreys, 1946):
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t,, = (1 — cose)u,u, — sing >, €,,,U, + cose §,,, (1)
K

where §,,, isthe Kronecker delta, i.e, §,, = 1whenv = pu,
8,, = O0whenv # pu,and e, = *1whenv, yu, kisan
even or an odd permutation of 1, 2, 3, respectively, and
vanishes otherwise. The rotational components (¢y, ¢y, ¢,)
are equated to (Tilt, Roll, Twist) after the definition of
Babcock et al. (1994).

Thetrandational parameters between base-pair planes are
generally expressed in terms of a “middle” frame so that
numerical values are independent of the direction from
which a DNA structure is analyzed (Lu and Olson, 1998),
i.e., either the sequence or the complementary strand. The
translational parameters defined in this work in terms of the
kth coordinate frame are related to Shift, Slide, Rise values
intheliterature, e.g., (Olson et al., 1998), through the matrix
TY2 that effects the halfway rotation (¢/2) between neigh-
boring base-pair planes:

Tx
Ty
TZ

The dependence of the 7,(v = X, y, 2) on Tilt, Roll, Twist
(through their incorporation in T) as well as on Shift, Slide,
Rise precludes description of the local conformational en-
ergy in terms of a quadratic expression in the six base-pair
step parameters. To overcome this limitation, we express
the rotation matrix in Eg. 2 in terms of the equilibrium
“rest” values of Tilt, Roll, and Twist, i.e, TV? ~ T V2 The
latter approximation is valid so long as the dimer structure
does not depart significantly from this minimum energy
state.

Shift
Slide
Rise

=T . 2)

Normal mode analysis

Our treatment of the normal modes of DNA at the level of
“step” parameters builds upon general formulations (Noguti
and GO, 1983; Braun et a., 1984; Higo et al., 1985; Levitt
et al., 1985) previously developed to describe the collective
motions of proteins in terms of internal chemical coordi-
nates, i.e., dihedral angles. The conformational potential
energy V of a double helix of N base pairs is thus approx-
imated by the multi-dimensional parabola,

1
V=35 2 f;A0,A6, (©)

where A6, is the instantaneous fluctuation of the ith “ step”
parameter from its equilibrium value and f;; is an element of
a6(N — 1) X 6(N — 1) matrix of elastic force constants, F,
i.e., the terms describing the potential deformability of the
six parameters in each of the N — 1 base-pair steps.

The kinetic energy K is similarly expressed in quadratic
form in terms of 6, the first derivative of 6, with respect to
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time, and the weighted “mass’ coefficients h;; of the 6(N — 1)
X 6(N — 1) matrix H (defined below):

1 o
K=3 2 h;AB,A6;. (4)

If the A6, and Aéi are collected respectively in the vectors ©®
and 0, the equations of motion simplify to:

HAO + FA® = 0, (5)

with a periodic solution of the form:

6(N—1)

AG, = Zl A, coS(wit + 8,). (6)

Here w, is the frequency, §,, the phase angle, «,, the ampli-
tude of the nth normal mode, and A;, the fractional contri-
bution to the ith “step” parameter from the nth normal
mode. (In practice the components of A® and the frequen-
cies w, are obtained by introducing the vector of normal
coordinates Q defined by A® = AQ, where the elements of
Q are o, cos(w,t + 6,) and A isa6(N — 1) X 6(N — 1)
transformation matrix. Eq. 5 can then be rewritten as the
eigenvalue expression, HAA = FA, with ATHA equated to
the identity matrix of order 6(N — 1) and the norma mode
frequencies and directions found from the diagonalization
of F,i.e, A = ATFA, where AT denotes the transpose of A
and A is a diagona matrix with elements A, = »?. The
phase angles, however, cannot be determined with this
procedure.) The fluctuations of each “step” parameter A6
at timet are thereby expressed as a linear combination of
harmonic oscillators, the energies of which are propor-
tional to w2. The contribution of each mode to the vari-
ation of individual “step” parameters decreases rapidly
with increase in w,,, so that relatively few (low frequency)
modes are responsible for the large-scale deformations of
the molecule.

Kinetic energy

The kinetic energy coefficients in Eq. 4 incorporate the
mass m, and the Cartesian coordinates r, of individua
atoms in the DNA through the relationship:

arg\/or,

el @
To evaluate the hy;, we take advantage of analytical expres-
sions for the (9r/06;) developed to treat the normal mode
dynamics of a system of two molecules, each of which
moves in dihedral angle space (Braun et al., 1984; Higo et
a., 1985). The set of rigid body parameters used here to
relate neighboring base-pair planes is identical in form to
the variables previously used to describe the relative global
positions and orientations of different molecules. The
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internal atomic motions of DNA are effectively separated
from the overall rotations and translations of the molecule
by expressing the atomic displacements in terms of an
embedded coordinate frame, chosen according to the so-
caled Eckart condition (Eckart, 1935) to minimize the
mass-weighted sguare atomic displacement of DNA
(McLachlan, 1979) in its equilibrium rest state and in a state
where one of the “step” parameters is atered from its
minimum energy value (Noguti and Go, 1983).

Because the atomic motions Ar , brought about by “step”
parameter change A6; are assumed to be small in this
common frame (Eckart, 1935), the kinetic energy term
(Eq. 4) effectively restricts the length of DNA which can be
studied by norma mode analysis. This limitation does not
apply to the mesoscopic chains lengths considered below,
where typical room temperature fluctuations of individual
base-pair steps, such asthe +5° perturbations of Roll which
raise the potential energy by ~KkgT/2, limit atomic move-
ment to 0.02-0.07 persistence lengths. The persistence
length of mixed sequence DNA under ambient agueous salt
conditions, by comparison, is the same magnitude as the
contour length of a 150 to 200-bp chain (Hagerman, 1988;
Smith et a., 1992, 1996; Bustamante et al., 1994; Bednar et
al., 1995; Baumann et a., 1997). The limitation on chain
length is further discussed below in the analysis of DNA
end-to-end dimensions.

Both backbone and base atoms must be included in the
evaluation of the h;;. The sugar-phosphate backbone is in-
corporated in the present calculations by the superposition
of acanonical B-form 5’-nucleotide helical fragment (Chan-
drasekaran and Arnott, 1989) in the reference frame of each
base. Because complementary base-pair parameters are
fixed at ideal planar values, each complementary nucleotide
pair is thereby treated as a rigid body and the small varia-
tions in backbone conformation that accompany fluctua-
tions in the geometry of neighboring base pairs are ignored.

Force field

The potential energy coefficients in Eq. 3 are taken from
knowledge-based elastic functions extracted from the three-
dimensional arrangements of DNA base-pair steps in pro-
tein-DNA crysta structures (Olson et al., 1998):

1 6 6
Vyy = 2 E 1 0;AdAd,. (8

i=1j=

The g;; in this expression are the force constants impeding
deformations of the XpY dimer, and the A¢,; correspond to
the instantaneous fluctuations of each of the six “step”
parameters of that dimer from the B-DNA rest state, i.e.,
A, = ATiltyy, Ad, = ARO0llyy, Ap; = ATwistyy, Ad, =
AShiftyy, Ads = ASlideyy, Apg = ARisey (full details of
the potential function are available in Table S-1 in the
Supplementary Material). If these elements are collected
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respectively in the 6 X 6 force constant matrix Gy, and the
6 X 1 vector Ady., the dimer deformation energy Vi
reduces to (1/2)A®y., "Gy, Ady.. The choice of transa-
tional parameters and the aforementioned approximation of
T in Eg. 2 by the constant matrix T introduce a linear
relationship between the A®,., and the corresponding ele-
ments of the longer 6(N — 1) vector A® used in Eq. 5. That
is, A®y. = CyyAOyy, Where the molecular deformation
vector A® (Eg. 5) is built up from the (N — 1) sets of
constituent A®,, dimer fluctuations and Cyy isa6 X 6
constant matrix characteristic of the mean orientation of the
XY dimer in B-form DNA. The potential energy of the
DNA as a whole can be expressed in the form of Eq. 3 by
constructing the 6(N — 1) pseudodiagonal matrix of force
constants F from the Fyy, = Cyy ' GyyCyxy corresponding
to the DNA base-pair sequence. For example, the f; of the
self-complementary (CGTACG), hexamer duplex would be
collected in the 30 X 30 array,

: 9

OOOO(;H
o}
OOOG-)HO
=
OO;TIOO
O):nOOO
e}
[oNeoNeNe)

FCG

where the boldface 0 valuesin this expression are 6 X 6 null
matrices.

Because the lowest energy conformation of a given DNA
sequence is self-evident from the knowledge-based force
field, i.e., the minimum energy three-dimensional structure
is defined by the set of average “step” parameters, the
time-consuming energy minimization step normally carried
out before normal mode analysis does not need to be per-
formed in the present calculations.

The potential functionsintroduced below arefirst approx-
imations of the sequence-dependent structure of DNA based
on the observed conformations of selected dimers in high
resolution protein-bound and B-DNA crystal structures. Al-
though mean (equilibrium) sequence-dependent parameters
have not significantly changed since first reports (Gorin et
a., 1995; Olson et al., 1998), the local force constants are
expected to change as new structural data accumulate.
Moreover, there are not yet sufficient crystallographic data
to address DNA deformability beyond the dimer level de-
spite suggestions (Nadeau and Crothers, 1989) of longer-
range organization of DNA structure.

End-to-end dimensions

The unperturbed, mean-square end-to-end distance of DNA,
(r?)o, is obtained by three independent approaches. First,
exact values of (r?), are computed using standard matrix
methods for the mean extension of a DNA of N base pairs,
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with (r?), equated to the average scalar product of the
end-to-end vector, (r - r),, and r defined as

r=v, + T12V2 + T12T23V3 +

“ Tnoan-1VN-1- (10)

Here T, ., isthe transformation matrix that relates coordinate
frames in successive base-pair planes (Eq. 1) and v, is the
virtual bond vector that connects base-pair centers (Eg. 2).
Boltzmann averages of the T and v at each base-pair step are
incorporated in dimeric generator matrices, the serial product
of whichyieldsall possible configurations of the selected chain
sequence. The reader is referred elsewhere for the precise
formulation of these expressions (Flory, 1969; Maroun and
Olson, 1988; Marky and Olson, 1994). The zero subscript on
(r?, and other (unperturbed) averages denotes the omission of
chain salf-intersection and solvent-polymer interactionsin their
caculation (Flory, 1969). The DNAS studied below are suffi-
ciently short and stiff so that excluded volume effects are
automatically avoided.

Second, we express (r?), in terms of the fluctuations Ar
of the end-to-end vector with respect to the position r° of
terminal base pairs in the (minimum energy) rest state,

(o =(r-r)
((r°+ Ar) - (r°+ Ar)),
ro-r°+ 2r°- (Ar), + (Ar - Ar),. (11)

+ Tl

Here the superscript © denotes (constant) rest state values.
The value of Ar, which is determined by the fluctuations of
“step” parameters, iswritten asa Taylor series expansion in
the Ag;,

6N-1) [ oy 16N 1) 6(N—1) 2
AI’Z P (80) E J:EJ_ (aBIHGJ)AO'AGJ

+o (12)

If the series is approximated by the first term, the average
displacement vector (Ar ), is zero because (A6;) = 0 and the
mean-square end-to-end distance is greater than the separa-
tion of chain endsin the rest state (because the self product,
(Ar - Ar)q, in Eq. 11 must be positive). Because such aresult
is inconsistent with the end-to-end displacement of a natu-
rally straight, inextensible DNA, we consider up to second-
order terms of the Taylor series (Eq. 12) in the calculation
with the result,

1 6(N=1) 6(N— 1)( o

2 E 00,00,

=1

(Ar)y = )(AGAO)

(Ar - Ar)o = NEI)(S]NE;)(M) (;;)(A&Aej). (13)

The first and second derivatives in these expressions are
evaluated numerically. The values of (A6,A6) are taken
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directly from the experimental data used to derive the
knowledge-based force field (Olson et al., 1998). Such
averages would have to be determined numerically over all
normal modesif an all-atom force field were used. It should
also be noted that the first derivatives that appear in Eq. 13,
(ar/06;), differ from similar terms employed in Eq. 7 to
compute the kinetic energy. As explained above, the latter
derivatives are computed in a carefully chosen coordinate
frame that essentialy eliminates rotational and translation
motions of the molecule. The variation of chain ends re-
quired to evaluate Eqg. 13, by contrast, is performed in a
common global coordinate frame embedded in the plane of
the first base pair.

Finaly, we compute the root-mean-square end-to-end
distance of DNA molecules which are confined to the set of
spatia configurations associated with one or more normal
modes. That is, we use the set of “step” parameters associ-
ated with mode n at timet (Eg. 6) to generate the end-to-end
vector r(n, t) and the Boltzmann factor o(n, t) of each of the
polymeric states that comprise certain global motions and
then evaluate (r?), as an energy weighted sum over repre-
sentative configurations:

Et r(n, t)-r(n, tyo(n, t)

(r)o = S e 0 : (14)

nt

In practice, we set an upper limit of 7.5 kgT on the
potential energy, V(A6;(n, t)) (Eg. 3), thereby excluding
configurations where o(n, t) = exp[—V/kgT] = exp[—7.5].

RESULTS AND DISCUSSION
Elastic features of DNA repeating polymers

We start by determining the normal modes of four simple
repeating polymers—the poly dA - poly dT and poly dG -
poly dC homopolymers with a monomeric repeating unit
(the AA - TT or GG - CC dimer) and the poly d(AT) and
poly d(GC) alternating copolymers made up of sequential
purine-pyrimidine (AT - AT or GC - GC) and pyrimidine-
purine (TA - TA or CG - CG) base-pair steps. We classify
the motions, after Matsumoto and G0 (1999), on the basis of
the globa structural changes revealed through computer
visualization of the eigenvectors associated with each mode
(i.e., Eq. 6). The color-coded spectrum of lowest frequency
bending, twisting, and stretching modes of @200 bp chainis
presented in Fig. 1 for each of the four polymers and
schematic illustrations of some of these motions are givenin
Fig. 2. Numerical values of the frequencies are tabulated in
the Supplementary Material (Table S-2). We focus on the
lowest frequency modes because the amplitudes of the
normal modes and their consequent importance to the over-
al motions of DNA diminish at higher frequency.
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FIGURE 1 Color-coded spectrum of lowest frequency bending (blue),
twisting (green), and stretching (red) modes of 200-bp segments of the
poly dA - poly dT and poly dG - poly dC homopolymers and the poly d(AT)
and poly d(GC) aternating copolymers. As the frequency increases, the
amplitude of each normal mode and its consequent importance to the
overall mations of the DNA becomes lower.

It should be noted that these low frequency modes would
not be observed in a rea system due to viscous effects,
which we do not consider here. While our method does not
necessarily describe the time-development of DNA chains
inareal system, we show below that these low normal mode
frequencies are closely related to the global dynamic prop-
erties of DNA, such as the bending rigidity, twisting rigid-
ity, and stretching rigidity. Thus, the low norma mode
frequencies presented here are useful indicators of the dy-
namic properties of DNA.

Each of the pure (planar) bending modes (blue lines at the
left of Fig. 1) is doubly degenerate, describing mutually
perpendicular motions with equivalent (bending) energy.
The superposition of these modes leads to the global iso-
tropic bending characteristic of an ideal elastic rod. In
contrast to the bending motions, the twisting modes (green
lines) are higher in frequency, more widely spaced, and
more sensitive to polymer composition. Specificaly, the
frequencies of the twisting modes of the simulated alternat-

bending modes
Bix
m D —w
T T
™ § D =4
Y

twisting modes  stretching modes

Higher frequency mode

o T
£ ¥ » @72y ===

FIGURE 2 Schematic illustration of representative low frequency nor-
mal modes of an elastic rod. The arrows point in the directions of bending,
twisting, and stretching motions in each mode.
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FIGURE 3 Superposition of the computed dependence of representative
low frequency bending, twisting, stretching modes of poly dA - poly dT
(scatter points) on chain length and the predicted variation (thin solid lines
for the lowest frequencies, dashed lines for the second lowest frequencies,
and thick solid lines for the third lowest frequencies) for an elastic rod with
the same contour length. Frequencies are normalized with respect to the
lowest frequency of each type of motion in a 200 bp-chain.

ing copolymers and the poly dG - poly dC homopolymer are
lower in value than those of the poly dA - poly dT model.
The stretching modes (red lines), which are also sensitive to
base-pair sequence, tend to be even more widely spaced and
to occur at still higher frequencies than the twisting modes.

The rod-like behavior of poly dA - poly dT is further
illustrated in Fig. 3 where the chain length dependence of
the computed low frequency modes is superimposed on the
predicted variation (Strutt, 1894) of the bending, twisting,
and stretching frequencies of a homogeneous elastic rod.
(The frequency of the nth bending mode of an elastic rod of
length L with uniform circular cross-section is given by 12
= C,pZ, where C, is amaterial constant and p,, satisfies the
condition p,L = (4.730, 7.853, 10.9965, - - -) for (n = 1, 2,
3,...) (Strutt, 1894). The twisting and stretching frequen-
cies follow a similar form, varying directly with n and
inversely with L, i.e., v}, = (n/2L)C, and v} = (n/2L)C,.) The
frequencies of the poly dA - poly dT motions (scatter points)
are normalized with respect to the lowest frequency bend-
ing, twisting, and stretching modes of a 200-bp chain. The
normal mode frequencies of the elastic rod (smooth curves)
are similarly expressed as multiples of the lowest frequency
motions of an ideal rod with the same contour length (199
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base-pair steps X 3.27 A per step = 650 A). The agreement
between computed and theoretical values is remarkably
close, with only minor discrepancies in the relative bending
frequencies at short chain lengths where the theory is known
to break down. Similar agreement between the base-pair
level representation of DNA motions and elastic rod behav-
ior is obtained for the low frequencies modes of poly dG -
poly dC and the two aternating copolymers (data not
shown).

The mechanical constants associated with the overall
elastic behavior of the four repeating polymers are collected
in Table 1. These values are obtained by substituting the
computed normal mode frequencies in the classical expres-
sions for the normal modes of an ideal elastic rod (Strutt,
1894). Specifically, the bending constant A, the twisting
constant C, and the stretching constant Y are given by

(2mVE)2M (2Lvp)Ay, (2v3)>ML
el ST YT
(15)

where the v, are the computed frequencies of the nth bend-
ing (b), twisting (t), or stretching (s) mode, M is the tota
mass of the molecule, L is the length of the DNA helical
axis (see Kosikov et al., 1999, and Matsumoto and Go, 1999
for computationa details) and 1,, is the moment of inertia
per unit length around the twisting axis. As evident from the
table, the computed values of the bending constant A and the
persistence length a derived from A on the basis of elastic
rod theory (a = AlkgT with T = 298 K) are approximately
independent of sequence and in excellent agreement with
values extracted from experimental studies of mixed se-
guence DNA (Hagerman, 1988; Smith et al., 1992, 1996;
Bustamante et al., 1994; Bednar et al., 1995; Baumann et
a., 1997). The elastic constants, however, may change as
the local force constants are refined.

The sensitivity of the calculated twisting constants to
base-pair sequence may account in part for the wide range
of experimentally derived values of C (Barkley and Zimm,
1979; Thomas et al., 1980; Hurley et a., 1982; Millar et al.,
1982; Horowitz and Wang, 1984). The differences in mea-

TABLE 1 Mechanical constants describing the simulated elastic properties of four regularly repeating DNA polymers
A (107*° erg-cm) a(A) C (107*° erg-cm) Y (10° pN)
Molecule Bending Persistence length* Twisting Stretching
poly dA - poly dT 2.3 547 29 25
poly d(AT) 2.2 536 18 3.0
poly dG - poly dC 2.7 647 1.7 20
poly d(GC) 2.2 531 18 22
DNAT 2.0 500 154 1.0-14

*Persistence length of an ideal elastic rod (a = A/kgT with T = 298 K).

TExperimental values for mixed sequence DNA obtained from the following sources: bending constant (Barkley and Zimm, 1979; Millar et al., 1982);
persistence length (Hagerman, 1988); twisting constant (Barkley and Zimm, 1979; Thomas et a., 1980; Hurley et a., 1982; Millar et al., 1982; Horowitz
and Wang, 1984; Hagerman, 1988); stretching constant (Smith et al., 1996; Baumann et a., 1997; Wang et al., 1997; Bouchiat and Mezard, 1998).
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sured twisting constants, usualy attributed to experimental
effects, such as the bending strain that accompanies loop
closure (Heath et al., 1996), may also reflect the intrinsic
deformability of the constituent base pairs. The greater
overall twisting stiffness of poly dA - poly dT compared to
the other polymers in Table 1 stems in part from the sub-
stantially higher cost of distorting AA dimers compared to
other base-pair steps in the knowledge-based potential (see
Table S-1 in the Supplementary Material and discussion
below).

The stretching constants Y extracted here, however, are
two- to threefold greater than values deduced from recent
single-molecule manipulations of DNA (Smith et a., 1996;
Baumann et a., 1997; Wang et a., 1997; Bouchiat and
Mezard, 1998). As discussed below, the relative ease of
global stretching reflects a number of local factors, in ad-
dition to the force constants that govern the axid, i.e., van
der Waals', separation of neighboring base-pair planes. In
other words, the global stretching of DNA is not simply a
function of Rise.

Matsumoto and G0 (1999) previously derived DNA elas-
tic constants on the basis of a normal mode analysis in the
dihedral angle space of short (24—-36 bp) double helical
molecules, with poorer correspondence between computa-
tion and experiment than the present work, i.e., the previ-
ously computed bending and twisting constants are respec-
tively three to ten times greater than the corresponding
values in Table 1. The improved agreement found here
seemingly reflects our use of knowledge-based potential
energies rather than an atomic force field. Optimization of
DNA conformation on the basis of the detailed interactions
of al atoms typically yields a large number of closely
spaced minimum energy substates of similar structural char-
acter (Poncin et al., 1992). The normal mode analysis of
DNA in dihedra angle (and Cartesian) space is performed
with respect to one of these minimum energy states and the
transitions between closely related, competing minima are
not considered. The statistical approach used to generate our
elagtic force field, by contrast, reflects a large number of
known crystal structures, each of which is analogous to one
of the minimum energy substates found through all-atom
energy minimization. Therefore, any fluctuation on our elastic
energy surface is comparable to a transition between different
minimum energy points derived with an atomic force field.
The correspondence between the mechanical constantsin Ta
ble 1 and values extracted from experiment suggests that
trangitions between conformational substates have a significant
influence on the globa properties of DNA.

A similar argument is made by Song and Schurr (1990) in
accounting for the unusually large values of DNA persis-
tence length (~2100 A) deduced from measurements of
transient electric dichroism. They offer three possible rea-
sons for the large discrepancy between their results and the
persistence lengths for mixed sequence DNA (~500 A)
obtained with other experimental approaches. One explana-
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FIGURE 4 Deformations of local angular “step” parameters, which are
collectively responsible for the lowest frequency in-plane bending motions
of a 120-bp poly dA - poly dT duplex: (top, middie) degenerate modes of
lowest frequency, n, = n,’ = 1; (bottom) one of the two second lowest
frequency modes, n, = 2. Plotsiillustrate the sequential fluctuations of Tilt
(thin solid line), Roll (dashed line), and Twist (thick solid line) at the
moment when the potential energy of the molecule is raised by kgT/2;
fluctuations are reversed a haf cycle later of the mode.

tion, which they favor, is that the potential energy of DNA
bending is not a smooth quadratic function and that the
energy exhibits several discrete minima separated by barri-
ers. In the short-time scale of their experiment the DNA is
trapped in one of the minima and the persistence length
thereby becomes larger.

It should be noted that there is an open controversy over the
ionic strength dependence of the persistence length and the
lower limit of the persistence length of mixed sequence DNA
a ambient salt conditions. We cite a DNA persistence length
of 500 A in Table 1 consistent with a variety of independent
measurements. As noted above, larger values of the persistence
length are deduced in some work, eg., (Song and Schurr,
1990). There is similar disagreement among elastic constants
obtained for specific DNA sequences (see Table S-3 in the
Supplementary Material) which may be related in part to the
discussion above, i.e., chains may sample only a small part of
the energy surface in some experiments but may explore vast
areas of conformation space in others.

Sequence effects on global motion

Figs. 4—6 illustrate the deformations of local “step” param-
eters, which are collectively responsible for selected low
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FIGURE 5 Fluctuations of local angular “step” parameters, which are
collectively responsible for the lowest frequency global twisting modes
(n, = 1) of 120-bp fragments of poly dA - poly dT, poly d(AT), poly dG -
poly dC, and poly d(GC). See legend to Fig. 4.

frequency norma modes of the aforementioned repeating
polymers. These plots, for DNA chains of 120 bp, capture
the sequential fluctuations of each conformational variable
at the moment when the potential energy of the molecule is
raised by kgT/2; the fluctuations of all parameters are re-
versed a half cycle later of the mode. As detailed below, the
mechanisms used to effect overall chain motions reflect the
conformational properties of the constituent dimer units.

Bending

The in-plane bending of poly dA - poly dT, detailed in Fig. 4,
takes advantage of the local bending anisotropy of the
double helix, i.e., the tendency of DNA to deform through
rolling rather than tilting motions and an intrinsic feature of
the knowledge-based AA - TT potential. The same patterns
of angular distortions are found in the corresponding modes
of the other three polymers and thus are not reported here.
The regular patterns of Roll deformations in the illustrated
examples (dashed lines) resemble early “mini-kinked” mod-
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FIGURE 6 Fluctuations of local transational “step” parameters associ-
ated with the lowest frequency globa stretching (ng = 1) of 120-bp
fragments of poly dA - poly dT, poly d(AT), poly dG - poly dC, and
poly d(GC). Plots illustrate the sequential fluctuations of Shift (thin solid
line), Slide (dashed line), and Rise (thick solid line) at the moment when
the potential energy of the molecule is raised by kgT/2. See legend to Fig.
4.

els of global DNA bending (Olson, 1979; Y athindra, 1979;
Zhurkin et a., 1979) with marked angular distortions of
opposite sense at ~5 bp intervals, corresponding to sites on
the surface of the double helix where the cumulative effects
of local structural change combine constructively. The
lesser, out-of-phase variations of Tilt (thin solid lines) con-
tribute in the same fashion to global bending, much like the
sequentialy shifted sinusoidal changes in Roll and Tilt
characteristic of classicdl models of “smooth” bending
(Namoradze et a., 1977; Levitt, 1978; Sussman and Tri-
fonov, 1978). In contrast to the uniformity of the ideal
models, the local bending deformations revealed by the
normal mode analysis are variable with Roll and Tilt angles
of greater or lesser magnitude in different parts of the
polymeric fragment, e.g., the distortions responsible for the
lowest frequency bending mode are concentrated around the
midpoint of the chain. The small accompanying fluctuations



Sequence-Dependent Motions of DNA

of Twist in the present study (thick solid lines) reflect the
well known correlation between Roll and Twist built into
the energy model.

The global bending isotropy brought about by degenerate
bending modes arises at the local level from a simple 2- to
3-bp phase shift of conformational distortions (compare
Figs. 4a, b). A comparable shift of “step” parameters also
underlies the two normal modes that dominate the global
bending of short RNA duplexes (Zacharias and Sklenar,
2000). These subtle changes follow from the ideas behind
DNA “mini-kinking,” where the sites of largest Roll (and
concomitantly zero Tilt) deformation determine the direc-
tion of overal curvature (Olson, 1979; Yathindra, 1979,
Zhurkin et a., 1979). A 90° change in the direction of
global bending comes about by shifting the pattern of local
structural perturbations so that Roll is null and Tilt becomes
alocal maximum or minimum at corresponding sites in the
degenerate mode.

The DNA makes use of the same conformational mech-
anism to change the direction of global bending in the
second lowest frequency bending mode. The point of in-
flection in the variation of “step” parameters versus
poly dA - poly dT base-pair positionin Fig. 4 c givesrise to
a 180° shift of bending directions in the two halves of the
molecule (see schematic in Fig. 2). The change in direction
stems from the asymmetric pattern of Roll variation in the
120-bp chain, e.g., the distortions are local maxima near
base pairs 10, 20, 30, 40, 50 in the first half of the molecule
and local minima near base pairs 70, 80, 90, 100, 110 in the
second half. Similar representations of the higher frequency
bending modes (data not shown) contain additional points
of inflection where all three angular variables are undis-
torted. If the inflection points become too closely spaced,
the ~10 bp pattern of conformational fluctuations in phase
with the helical repeating unit disappears.

The critical frequency at which the distance between
adjacent points of inflection dropsto 10 bp can be estimated
as follows. Roughly speaking, there are (2n + 1)/4 standing
waves in the nth bending mode (Fig. 2). The wavelength of
the mode is thus given by A = 4L/(2n + 1), where L isthe
contour length of the DNA. The upper limit on the number
of bending modes n is then obtained by setting the half
wavelength corresponding to the distance between two ad-
jacent points of inflection to 10 bp, i.e., A/2 = 10 bp. The
maximum n for a 120-bp stretch of poly dA - poly dT isthus
12, corresponding to a bending frequency of ~1.4cm™*in
an elastic rod with equivalent material properties and con-
tour length. In the case of the poly dA - poly dT 120-mer, we
find a pair of bending modes with close frequencies below
the theoretical frequency limit at 1.07 and 1.08 cm™* and
with 11 points of inflection, separated by ~10 bp, in each of
these modes. As anticipated from elastic theory, there are no
other such pairs of degenerate bending modes at higher
frequency.
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The coupling of local “step” parametersin the DNA force
field gives rise to changes in neighboring base-pair dis-
placement as the chain bends globally (see Fig. S-1 in the
Supplementary Material for plots of the local trandlational
fluctuations associated with the bending of individual poly-
mers). The deformations in Roll which dominate the overall
molecular motion are accompanied by changes in Slide,
whereas the lesser changes in Tilt introduce concomitant
fluctuations of Shift. The extremes of deformability found
in pyrimidine-purine (YR) versus purine-pyrimidine (RY)
steps, i.e., the enhanced flexibility of YR steps versus the
natural stiffness of RY steps (Olson et a., 1998), introduces
a zig-zag pattern in the variation of “step” parameters in
poly d(AT) and poly d(GC) models compared to the smooth
parametric responses of the simulated homopolymers in
Fig. 4 (see plots of translational parameters for the alternat-
ing copolymersin Fig. S-1 in the Supplementary Material).
For example, the increments in Roll that lead to global
bending are consistently greater at the YR steps of alternat-
ing copolymers (data not shown), and the coupled sequence-
dependent variation of base-pair displacement in these
chains is even more pronounced, with distortions in Slide
restricted almost entirely to the YR steps.

Twisting

Asevident from Fig. 5, the lowest frequency global twisting
motions of regular DNA polymers are dominated by fluc-
tuations in local Twist (thick solid lines). The dimer defor-
mations build up from the ends of the molecule with the
largest deformations of neighboring base-pair steps found in
the center of the chain. The alternating copolymers show the
zZig-zag pattern of local conformational change noted above
with greater distortions occurring at Y R steps. The degree of
local Twist deformation of poly dA - poly dT issmaller than
that in the other chains as expected from its higher global
twisting constant (Table 1). The increase in Twist anglesin
Fig. 5 is accompanied by a concomitant decrease in Roll
values (dashed lines), the decrease in local bending depend-
ing on the strength of the energy coupling term, e.g., small
for GG compared to AA and YR steps. The tranglationa
parameters show similar sequence-dependent, coupled vari-
ations that reflect the knowledge-based energy function. For
example, fluctuations of Shift are negligible in the alternat-
ing copolymers where the Twist-Shift energy coefficient is
by definition zero. (The directional dependence of Shift
(Dickerson et a., 1989) leads naturally to null force con-
stants at self-complementary dimer steps. Indeed, the coef-
ficients of al mixed energy terms involving Shift or Tilt
(Eq. 8), except for the Tilt-Shift contribution, are zero at
such steps.) Similarly, Slide variesin opposing directions at
YR versus RY steps in poly d(GC) in accordance with the
positive Twist-Slide coefficient at CG steps and the nega-
tive value at GC steps. Graphs of the sequential variation of
trandlational parameters in the lowest frequency twisting
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modes of all four polymers are available in Fig. S-2 in the
Supplementary Material.

Stretching

The global stretching of DNA homopolymers and alternat-
ing copolymers stems primarily from changes in Rise that
grow to a maximum in the middle of the chain (thick solid
lines in Fig. 6). The computed, sequence-dependent varia-
tionin Risein the lowest frequency stretching mode reflects
the local force constants, with CG steps much more easily
deformed than any other dimer. The changes in Rise are
coupled, via the elastic energy potential, to fluctuations in
Shift in the homopolymers (thin solid linesin Fig. 6) and to
Slide in the copolymers (dashed lines in the figure). Indeed,
the variation of Shift is comparable to that of Rise at GG
steps as is the change in Slide relative to that of Riseat TA
steps. Poly d(GC) is unusual in stretching with an alterna-
tion in the direction of Slide a& YR and RY steps. As
discussed below, the coupling of Rise to Shift or Slide
contributes to the overall stretching force constants. Con-
certed movements of base pairs which mimic the confor-
mational behavior of stretched DNA fibers (Chandrasekaran
and Arnott, 1989), e.g., same sign variation of Shift and
Rise, enhance the global stretching motion. Notably, defor-
mations of angular parameters in the lowest frequency
global stretching mode (shown in Fig. S-3 in the Supple-
mentary Material) are an order of magnitude smaller than
the changes in Tilt, Roll, and Twist which effect global
bending and twisting.

Influence of conformational coupling on
large-scale motions

DNA polymers with the “redlistic” conformational features
of the knowledge-based potential show very different pat-
terns of deformation from idea elastic rod models. As
outlined above, the sequence-dependent fluctuations of
base-pair step parameters in the present calculations stem
from built-in conformational correlations, which are ex-
pressed by the g;; cross terms in the knowledge-based
force field (Eg. 8). To make this point clear, we repeated
the preceding normal mode analyses of DNA homopoly-
mers and alternating copolymers with all cross terms of
the energy function set to zero. The results confirm
expectations.

Coupling effects in regular DNA polymers

First of al, the sequence-dependent fluctuations of second-
ary “step” parameters involved in global bending, eg.,
Twist (Fig. 4), become smaller when the cross terms are set
to zero. That is, the fluctuations of “step” parameters other
than Tilt and Roll become negligible in all four repeating
polymers when subjected to these computational conditions.
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Similarly, the fluctuations of base-pair step parameters
other than those of Twist become small and irregular in the
global twisting modes (Fig. 5) if cross terms are omitted.
Sequence-dependent effects on global twisting are thereby
diminished.

In the case of stretching, the situation is slightly different.
The neglect of cross terms has only alimited effect on local
conformational fluctuationsin the lowest frequency stretch-
ing modes of the four repeating polymers. The variation of
“step” parameters in the “modified” polymers without cross
terms roughly resembles the plots reported for the intact
force field in Fig. 6. For example, sizable fluctuations of
Shift persist in the homopolymer chains in the absence of
conformational coupling and Slide assumes nonzero values
in the alternating copolymers under the same conditions.

To gain further insight into this behavior, we performed
the normal mode analysis of an even more primitive DNA
polymer, using the knowledge-based force constants but
setting all cross terms (g;;) in the potentia function to zero
and choosing an ideal, naturally straight B-DNA equilib-
rium rest state with Tilt, = Roll, = 0°, Twist, = 36°,
Shift, = Slide, = 0 A, Rise, = 3.4 A. In this case, the
fluctuations of all parameters other than Rise are very small,
suggesting that the variation of “step” parameters which
gives rise to the overal stretching of DNA may be influ-
enced by intrinsic molecular conformation (see analysis and
additional discussion below).

Coupling effects in ideal mixed sequence DNA

We have aso considered the influence of cross terms on the
normal modes of a simplified computational model intro-
duced some years ago to account at the base-pair level for
the observed persistence length of mixed sequence DNA
(Olson et al., 1993). In this scheme, there is no coupling of
“step” parameters, i.e,, g; = 0, and the elastic force con-
stants of individual conformational variables are chosen so
that the potential energy increases by kgT/2 if any one
variable deviates from its equilibrium rest state by the
root-mean-square fluctuation (standard deviation), i.e., g;; =
kg T/(A6?). We used this model in combination with the
crystallographically observed mean parameters and disper-
sion of ageneric DNA base-pair step (Olson et al., 1998) as
the basis for the series of normal mode analyses described
below, i.e, (Tilty = 0 = 3.6°, (Roll) = 2.7 = 5.2°, (Twis) =
34.2 + 55°, (Shifty = 0 + 0.64 A, (Slide) = —0.1 = 0.69 A,
(Rise) = 3.4 = 0.25 A. Elastic constants derived from the
normal mode analysis of this generic homopolymer (A =
2.3 X 107 ¥ erg-cm, C = 1.5 X 107 ¥ erg-cm, Y = 1.9 X
10° pN) are comparable to experimental observations (see
data for mixed sequence DNA in Table 1). This correspon-
dence between computation and experiment is the basis for
the choice of temperature in al other normal mode calcu-
lations in this paper.
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TABLE 2 Effect of local conformational coupling on
the lowest normal mode frequencies of global bending,
twisting, and stretching of a random sequence 120-bp
DNA homopolymer*

Coupled variables (A6;A6) Bending Twisting Stretching
— — 0.02030 0.13582 0.33929
Tilt-Roll -9.36 0.02030 0.13582 0.33788
Tilt-Twist 9.90 0.02030 0.13572 0.33923
Tilt-Shift 1.15 0.02030 0.13583 0.33935
Tilt-Slide —1.24 0.02030 0.13582 0.34084
Tilt-Rise 0.45 0.02030 0.13582 0.33255
Roll-Twist —14.30 0.01975 0.14085 0.34109
Roll-Shift —1.66 0.02029 0.13582 0.33935
Roll-Slide -1.79 0.02029 0.13583 0.33218
Roll-Rise —0.65 0.02030 0.13581 0.31055
Twist-Shift 1.76 0.02030 0.13575 0.33930
Twist-Slide 1.90 0.02030 0.13547 0.34113
Twist-Rise 0.69 0.02030 0.13300 0.39067
Shift-Slide -0.22 0.02030 0.13582 0.33928
Shift-Rise —0.08 0.02030 0.13582 0.33891
Slide-Rise —0.09 0.02030 0.13582 0.38148

*Frequencies reported in cm . Force field derived from covariance matrix
with diagonal elements given by the root-mean square fluctuation (A6?) of
“step” parameters and off-diagonal elements (A,A6) = (AGA6,) with
magnitude (/2)(A67XA67))"> and sign consistent with crystallographi-
cally observed correlations. Mean values and root-mean-square fluctua-
tions of dimers based on equal weighting of the “step” parametersin the 16
common dimers from protein-bound DNA crystal structures (Olson et al.,
1998): (Tilty = 0 = 3.6°, (Roll) = 2.7 = 5.2°, (Twist) = 34.2 = 55°,
(Shifty = 0 = 0.64 A, (Slide) = —0.1 = 0.69 A, (Rise) = 3.4 = 0.25 A.

To test of the influence of conformational coupling on
DNA polymeric properties, we examined the effects of
nonzero mixed potential energy terms, taken one at a time,
on the normal modes of the generic homopolymer. We
estimate the magnitude of the covariance (A6;,A6,) of an
arbitrary pair of “step” parameters from the observed dis-
persion, i.e., (ABAG) = (U2)(A62(A67))"?, and base the
sign of the correlation on the trends in DNA crystal data.
We find the g;; of Eq. 8 by inversion of the covariance
matrix which contains these two off-diagonal elements, i.e.,
(AeiZAej> = (AG;A6,) # 0, and diagonal terms related to be
(AG7).

Values of the lowest frequency bending, twisting, and
stretching motions derived from the normal mode analysis
of a 120-bp generic homopolymer with all possible sets of
local conformational coupling are reported in Table 2, along
with the corresponding frequencies of the ideal, mixed-
sequence chain. According to these data, the normal mode
frequencies of the ideal DNA are relatively unperturbed by
the coupling of “step” parameters. However, even a small
change in normal mode frequency reveals dimeric features
important to overal polymer motion. For example, the
frequency of in-plane bending changes if Roll is coupled to
other “step” parameters. Thus, Roll is important to global
bending. Likewise, Twist is critical to large-scale twisting.
The situation with stretching is more complicated. Param-
eters other than Rise are critical to overall chain extension
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and compression, notably Roll and Slide, which respec-
tively determine the global inclination and displacement of
base pairs (Saenger, 1984; Kosikov et a., 1999) (see addi-
tional discussion below).

The grestest change of norma mode frequenciesin Table 2
occurs when Twist and Rise are correlated. Theintroduction
of this local conformational interaction lowers the overall
twisting frequency and raises the global stretching fre-
quency with paralel changes in the magnitudes of the
associated elastic constants. That is, it is easier to twist the
homopolymer if Rise varies in concert with Twist but more
difficult to stretch the molecule as a whole under the same
conditions. As noted above, fluctuations of base-pair Twist
dominate the overall twisting of regular DNA polymers and
deformations of Rise influence global stretching. It is there-
fore reasonable that coupled changes in Twist and Rise
introduce correlations between molecular twisting and
stretching as well as ater the frequencies and elastic con-
stants of these global motions. Such local features may
underlie the apparent coupling of globa stretching and
twisting deduced from single molecule elasticity experi-
ments (Kamien et al., 1997; Marko, 1997).

The data in Table 2 similarly show that the coupling of
Tilt, Roll, Shift, or Slide with Rise alters the stretching
frequency of the generic homopolymer, with more sig-
nificant changes associated with Roll and Slide. Recent
atomic-level models of DNA extension-compression find
comparable concerted changes in Twist, Roll, and Slide
along simulated low energy stretching pathways (Ko-
sikov et al., 1999). As discussed in the following section,
these locally coupled distortions facilitate overall DNA
stretching.

Although the introduction of cross-terms has relatively
limited effects on the magnitudes of norma mode freguen-
cies (Table 2), the local pathways that bring about these
global changes are sensitive to the assigned conformational
correlations. In the absence of cross-terms in the potential
function, the bending motions of the generic homopolymer
arise exclusively from fluctuations in Tilt and Roll. Other
step parameters contribute to global bending only if they are
coupled to these two primary variables. For example, the
correlation between Twist and Roll characteristic of most
base-pair steps induces changes in Twist during global
bending of the generic homopolymer with some regions of
the molecule under-twisted and other parts concomitantly
over-twisted. Analogous conformational effects accompany
the global twisting and stretching motions.

Implications for single molecule stretching

The sensitivity of the global stretching frequencies to the
local dimeric potential provides new insights into the con-
formational response of DNA to direct micromanipulation.
Global stretching of DNA exclusively through changes in
Riseisonly possiblein an ideal, naturally straight molecule
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FIGURE 7 Variation of the mechanical stretching constant as a function
of the equilibrium Roll angle for an ideal, naturally straight DNA chain
with the force constants of different polymer sequences: poly dA - poly dT
(thin solid line), poly dG - poly dC (thick solid line), poly d(AT) (thin
dashed line), poly d(GC) (thick dashed line). The remaining equilibrium “ step”
parameters are held fixed at the following values in all cases: Tilt, = 0°,
Twist, = 36°, Shift, = Slide, = 0 A, Rise, = 34 A.

where the base-pair planes remain perpendicular to the
global helical axis. Inasmuch as Rise is the energeticaly
stiffest “step” parameter, other lower energy dimer defor-
mations will come into play in the extension and compres-
sion of a real DNA molecule, even in the absence of
cross-terms in the potential energy function. The stretching
constant is expected to be greatest for an ideal, naturally
straight DNA and to become smaller as the equilibrium
structure deviates from this reference.

To confirm this expectation, we carried out normal mode
analyses on a series of 120-bp DNA chains with perturbed
equilibrium rest states. Starting from the ideal homopoly-
mer with Tilt, = Roll, = 0°, Twist, = 36°, Shift, =
Slide, = 0 A, Rise, = 3.4 A at al base-pair steps, we
introduced identical nonzero equilibrium Roll angles in
every dimer and computed the stretching constant Y from
the normal modes of that DNA (Eg. 15). Four different
kinds of polymers were considered with “step” parameters
assigned the force constants of poly dA - poly dT, poly dG -
poly dC, poly d(AT), and poly d(GC) sequences. Because
the choice of Roll, altershelical contour length aswell as
normal mode frequencies, the changes of mechanical
constants in Fig. 7 reflect the slight compression of the
double helical axis brought about by the assumed non-
zero equilibrium Roll, e.g., ~4% reduction in contour
length for Roll, = *=10°, as well as the natura global
stretching motions (see Kosikov et al., 1999 for analytica
expressions that relate regular DNA helical structure to the
constituent “step” geometry). The major contributions to Y
in Fig. 7, however, arise from the change in norma mode
frequencies.

It is worth noting that the base pairs of DNA structures
with nonzero equilibrium Roll are inclined with respect to
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FIGURE 8 Comparative plots of the sequential fluctuations of local
“step” parameters associated with the lowest frequency global stretching
modes (ng = 1) of a naturaly straight 120-bp “poly dA - poly dT” chain
with Rall, = 0° or 15°. Other chain parameters are identical to those listed
in the legend to Fig. 7. Shift (thin solid line); Slide (dashed line); Rise
(thick solid line).

the helical axis. The displacement of neighboring base pairs
in the direction of inclination, i.e., variation of Slide, adds
naturally to the global stretching. Because Slide is a much
“softer” conformational variable than Rise, global stretch-
ing is energetically enhanced with increase (or decrease) of
Roall,. The mechanical stretching constant in turn decreases,
attaining values comparable to those extracted from exper-
iment for Roll, = =10-15° (Fig. 7). In other words, when
the base-pair planes are perpendicular to the helical axis,
aong which the stretching motion takes place, energetically
costly deformations via Rise result in a large elastic con-
stant. When the equilibrium Roll angle deviates from zero,
stretching takes place by lower energy conformational
routes with a concomitant decrease in the mechanical con-
stant. For example, the change in Roll, from 0° to 15° in a
polymer with poly dA - poly dT force constants allows both
Slide and Roll to contribute to overall chain extension and
compression (Fig. 8). A similar enhancement of global
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poly d(AmTm)

Relative frequencies

m

FIGURE 9 The first (n, = 1) and second (n,’ = 1) lowest global
bending frequencies (solid and dashed lines, respectively) of a series of
intrinsically straight poly d(A.T,,) chains of 120-bp plotted as a function
of m. Frequencies are normalized with respect to the lowest bending
frequency of the poly d(AT) aternating copolymer (m = 1).

stretching and a comparable local conformational response
are obtained if the equilibrium Slide is assigned nonequi-
librium values in a corresponding series of norma mode
analyses (data not shown).

We rationalize the lower stretching constants of DNA
extracted from recent experiments (Smith et al., 1996; Bau-
mann et al., 1997; Wang et al., 1997; Bouchiat and Mezard,
1998) compared to values obtained from normal mode
analysis (Table 1) along the same lines. The regular poly-
mers studied here are very similar to a homopolymer with
Roall, = 0°. On the other hand, the base pairs of the mixed
sequence DNA used in single-molecule stretching experi-
ments may not lie perpendicular to the direction of stretch-
ing, or may reorient upon forced extension (via concerted
changes in Roll, Twist, and Slide) as shown in model
systems (Kosikov et a., 1999). It therefore seems natura
that the experiments yield smaller stretching constants than
the present computations.

Mesoscopic anisotropy

The interplay between local and large-scale conformational
motions revealed in the preceding sections suggests new
ways in which one might “engineer” the macroscopic prop-
erties of DNA in terms of dimer deformability. Such se-
guence-dependent modeling differs from conventional static
representations of the folding of specific DNA segquences at
0 K (see Olson and Zhurkin, 1996 for an overview on DNA
bending). For example, one can take advantage of the en-
hanced deformability of pyrimidine-purine steps (Olson et
al., 1998) in combination with the periodic fluctuations of
Roll angles which underlie the low frequency bending
modes of DNA to design regular polymers which are in-
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FIGURE 10 Fluctuations of local angular “step” parameters which un-
derlie the global bending anisotropy of the poly d(AsTs) block copolymer.
(Top) lowest frequency mode (n, = 1); (bottom) second lowest mode
(n,’ = 1). See legend to Fig. 4.

trinsically straight in the equilibrium state (at 0 K) yet which
bend in a preferred direction at ambient temperatures.

We illustrate this mesoscopic anisotropy in Fig. 9 with
the two lowest frequency bending modes of a series of
intrinsically straight poly d(A,,T,,) sequences where m is
half the length of the repeating unit, i.e., m = 1 corresponds
to the alternating copolymer discussed above with two base
pairs per repeating unit and m = 5 to the poly d(AsTs) block
copolymer with a 10 base-pair sequentia repeat. To empha-
size the influence of sequence-dependent deformability on
global properties, we assign an ideal B-DNA rest state to all
dimers, i.e., Tilt, = Roll, = 0°, Twist, = 36°, Shift, =
Slide, = 0A, Rise, = 3.4 A, in place of the crystallographi-
cally based AA, AT, and TA averages (which generate a
very dlightly curved equilibrium structure). We consider
chain fragments of 120 bp and sequences where m = 1-20.
Because m is not necessarily an even multiple of the as-
sumed chain length, most of the chains in the analysis
contain a nonintegral number of sequential repeats.

As evident from the figure, the degeneracy of bending
frequencies that is characteristic of large-scale isotropic
bending breaks down for particular sequential repeats,
namely at m = 5, 7, 8, 10—20 where the frequencies are no
longer equivalent. The DNA in these cases bends more
easily in the direction of the lower frequency mode than in
the roughly perpendicular direction of the higher frequency
mode. The effects are expected to be even more pronounced
if the DNA isintrinsically bent at O K or if it is modified by
the regular binding of drugs or other ligands. The apparent
isotropic rod behavior of sequences other than the alternat-
ing copolymer, i.e.,, chains with m = 2-4, 6, and 9, may
also be affected by such factors.

The conformational mechanism which underlies the
bending anisotropy of poly d(AsTs), the sequencein Fig. 9
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FIGURE 11 Computed variation of the unperturbed root-mean-square
end-to-end distance of poly dA - poly dT, V/{r?),, with chain length N.
Values obtained with the Taylor series approximation of Egs. 11-13 (thin
solid line) are compared against exact averages obtained with direct matrix
generator approaches (Flory, 1969; Maroun and Olson, 1988; Marky and
Olson, 1994) (thick solid line) and the contour length L of the rigid-rod
equilibrium state (dashed line). The values obtained by Eg. 14, in which
two pairs of the degenerate bending modes are considered, are also plotted
by open circles.

with greatest propensity for directional bending, isrevedled in
Fig. 10, where the local angular distortions associated with a
total energy increase of kgT/2 are reported along the chain
contour for the two lowest frequency (energy) bending modes.
The lower energy mode takes advantage of the repetition of the
highly deformable TA dimer in phase with the 10-fold double
helical repeat. The cost of global bending via large (positive)
changes in Roall is reduced compared to that in the higher
energy mode where the corresponding extremes of Roll occur
a TT steps. The dightly higher cost of concomitantly bending
AT versus AA steps (via negative Rall) into the minor groove
is not sufficient to compensate for the energetic advantage of
TA over TT bending in the two modes.

End-to-end dimensions

The norma mode analysis of global DNA motionsin terms of
elagtic “step” parameters is comparable, athough not equiva-
lent, to the approximation of DNA configuration by a Taylor
series expansion of the displacement of the end-to-end vector
about the (minimum energy) rest state with terms up to second
order in Ag; considered (Eg. 12). The extent to which this
representation of molecular shape matches the exact dimen-
sions computed by enumeration of al possible chain configu-
rations (Flory, 1969; Maroun and Olson, 1988; Marky and
Olson, 1994) provides insght into the range of chain lengths
over which the present norma mode approximation is valid.
The end-to-end distances of poly dA - poly dT computed by
these two gpproaches match closely in chains of 20—200 bp
(Fig. 11), the discrepancy at the upper limit of chain length
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being lessthan 7%. This very close agreement suggeststhat the
norma mode analysis of DNA at the level of base-pair “ step”
parameters is valid in chains of this length.

Surprisingly, the DNA is more extended, with values
closer to the contour length of a rigid rod, if all chain
configurations are enumerated in the evaluation of (r?),. For
example, the root-mean-square end-to-end separation of a
100-bp chain determined with the exact matrix generator
approach is 298 A versus a value of 291 A obtained with
Egs. 11-13 and an equilibrium contour length of 324 A.
Interestingly, if the motions of the polymer are limited to the
degenerate in-plane globa bending modes of lowest fre-
quency (n, = 1), V/(r?),is306 A, and if additional pairs of
low frequency bending modes are considered in Eq. 14, the
computed value drops to 302 A (n, = 1, 2) and 300 A
(n, = 1-3). The close correspondence of the latter values
with the average extension of al possible chain configura-
tions (i.e., ~1% overestimation of the root-mean-square
end-to-end distance compared to the exact value) illustrates
the dominance of the low frequency bending modes in
determining the overall shape of DNA. These modes pro-
duce thelargest overall motions at the lowest cost in energy.

The incorporation of global twisting or stretching in the
enumeration of (r?), adds only slightly to polymeric exten-
sion with the end-to-end distance of the 100 bp poly dA -
poly dT chain increasing to 301 A (from 300 A) when the
molecule samples, in addition to the first three pairs of
globa bending modes, the lowest frequency twisting (n, = 1)
and dtretching (ng = 1) modes. As anticipated from the ap-
proximation of the kinetic energy at the level of “step” param-
eters (Eq. 7), the correspondence between norma mode esti-
mates of V/{r?), and exactly enumerated values improves at
shorter chain lengths and grows worse in longer chains. The
estimated end-to-end distances of 80 and 120 bp poly dA - poly
dT chains which sample the two lowest frequency in-plane
bending modes (n, = 1, 2) overestimate the exact averages of
242 and 351 A by 0.8% and 2.0%, respectively.

Finally, direct enumeration of the persistence length of
poly dA - poly dT with matrix generating methods yields a
limiting persistence length of 554 A (170 bp), in excellent
agreement with the persistence length of 547 A extracted
with the classical elastic expression (a = A/kgT with T =
298 K) from the independently computed global bending
constant of the same polymer (Table 1). The correspon-
dence between these values lends further support to the
representation of DNA equilibrium properties through a
base-pair level normal mode analysis.

CONCLUSIONS

Polymer motions from a base-pair
level perspective

Although norma mode analysis has been used to study
DNA dynamics for a number of years, it is only now
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possible, with the base-pair level perspective introduced in
thiswork, to examine the vibrations of mesoscopic pieces of
DNA. The simplification of double helical structure to six
base-pair “step” parameters per chain residue reduces the
number of independent variables compared to the number
considered in traditional, higher resolution norma mode
studies (Tidor et al., 1983; Irikura et a., 1985; Garcia and
Soumpasis, 1989; Kottalam and Case, 1990; Ha Duong and
Zakrzewska, 1997ab, 1998; Lin et d., 1997; Matsumoto and
G0, 1999). The use of an eastic energy function further sm-
plifies the calculations by diminating the costly energy mini-
mization step that usualy precedes normal mode analysis. The
treatment of DNA chains of ~100 bp can consequently be
performed in a fraction of the time that it takes to analyze the
normal modes of 2—3 turns of double helix in dihedral angle (or
Cartesian coordinate) space. Although many fine structural
details are logt in the present smulations, such as the corre-
spondence of calculated vaues with experimentally observed
Raman frequencies of bond stretching and bending, the present
computations reproduce conformational features observed in
earlier sudies a the level of neighboring base pairs. For
example, the globa bending isotropy of regular DNA poly-
mers arises a the local level from the same 2 to 3-bp phase
shift of Rall distortions (Fig. 4) found in simulations of short
duplexes in a combined helicoidal and dihedral angle space
(Zacharias and Sklenar, 2000).

Notably, the current low resolution description of DNA
motions shows better correspondence with measured global
properties of DNA than previous normal mode studies at
higher resolution, e.g., (Matsumoto and GO, 1999). The
norma mode analysis of DNA in dihedral angle (or Carte-
sian coordinate) space is performed with respect to one of a
large number of closely spaced minimum energy substates
of similar structural character (Poncin et al., 1992) and the
transitions between closely related, competing minima are
not considered. As aresult, the elastic force constants based
on earlier calculations are several times higher than those
reported in this work. The knowledge-based, elastic force
field used here (Eq. 8) reflects a large number of base-pair
steps in known crystal structures, each of which is analo-
gous to one of the minimum energy substates used as the
equilibrium reference point in higher resolution normal
mode analyses. The fluctuations on the dimer energy sur-
face are thus comparable to transitions between different
minimum energy states on an atomic-scale map. The suc-
cessful correspondence between the bending and twisting
constants computed at the base-pair level with values ob-
tained from experiment (Table 1) reveals the significant
influence of transitions between conformational substates
on the global properties of DNA.

Sequence-dependent insights

At the polymeric level, the local conformational featuresin
the dimeric DNA model bring structural insights not possi-
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ble with conventional elastic treatments. The calculations
reported here show how well known discrepancies in the
measured twisting constants of long DNA molecules could
originate in the deformability of neighboring base-pair
steps. The present set of force constants restricts the twisting
of AA - TT steps much more so than any other dimer,
resulting in a substantially higher twisting modulus for
poly dA - poly dT compared to other regularly repeating
polymers. The computed ratio A/C of the ease of global
bending versus twisting is a composite of the conforma-
tional variability of successive dimers. Computational esti-
mates of these molecular constants are expected to improve
as the database of high resolution DNA structures grows
and the knowledge-based force field of dimer distortions
becomes stabilized, i.e., independent of the information in
new structural examples.

The present study further illustrates how the natural cou-
pling of local conformational variables affects the global
motions of DNA. The synchronous variation of Roll and/or
Slide with Rise lowers the global stretching constant sub-
stantialy, thereby providing a new structural perspective on
the micromanipulation of individual molecules. Successful
correspondence of the computed stretching modulus with
experimental data requires that the DNA base pairs be
inclined with respect to the direction of stretching or reori-
ented upon forced extension. Chain extension is thereby
effected by low energy transverse motions which vary the
overlap but preserve the strong van der Waals' stacking of
neighboring base-pair planes. The computed stretching con-
stant significantly exceeds observed values if the DNA is
pulled in adirection perpendicular to the base-pair planes. It
should be noted that the end-to-end distance of DNA is far
smaller than its contour length at the beginning of a single-
mol ecul e stretching experiments, and that thetensileforceis
simply an entropic effect (Smith et a., 1992, 1996). Clearly,
the base-pair planes are not perpendicular to the stretching
direction at low imposed extension, and this is not the state
with which we make comparison. Instead we consider more
extended chains where the end-to-end distance is compara-
ble to the contour length, the entropic effect is less impor-
tant, and the influence of local structural change become
dominant. The overall structure of DNA may be nearly
straight in this state, but the base-pair planes may not be
perfectly perpendicular to the stretching direction.

The calculations also reveal how appropriate phasing of
base-pair deformability with the double helical repeat in-
duces a mesoscopic bending anisotropy conducive to DNA
loop formation. Even a naturally straight chain, such as the
poly d(AsTs) model in Fig. 9, will bend in a preferred
direction if intrinsically flexible and stiff dimer steps are
spaced at half-turn increments, i.e., ~5 bp apart, on opposite
sides of the double helix. Chains with such features are
more likely to associate with strategically placed, upstream
or downstream proteins in a hairpin loop structure, and are
expected to experience more difficulty in snaking through
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the pores of a gel. This picture of intrinsic global mobility
differs from conventional “static” interpretations of the
anomalously slow gel mohilities of certain DNA sequences
on the basis of the intrinsic equilibrium structure of the
constituent dimer or trimer steps. Moreover, basic confor-
mational principles, which are sometimes broken to account
for experimental observation from the latter perspective,
remain intact when the intrinsic, sequence-dependent flex-
ibility of DNA is aso considered. For example, there is no
need to introduce a trimer or tetramer model of DNA
deformation (Brukner et al., 1995; Dlakic and Harrington,
1996), or to adjust the equilibrium structure of individual
dimers from their crystallographically observed mean val-
ues, as recently reported in Liu and Beveridge (2001), to
account for the anomalous retardation of multimers of
d(GA,T,C) on polyacrylamide gels and the more normal
behavior of d(GT,A,C) chains under the same conditions
(Hagerman, 1986). Theintrinsic stiffness of the AT stepsin
the former sequence combines with the deformability of CG
dimers ahalf helical turn away so that the polymer bends as
awhole, in spite of itsrelatively straight “static” equilibrium
structure (0.2°/bp), preferentially in asingle plane, i.e., with
non-degenerate in-plane bending frequencies. The alterna-
tion of flexible CG and TA dimers on either side of the
double helix, however, compensates for the natural static
curvature (~1°/bp) of d(GT,A,C) polymers, resulting in
less directed globa bending (with roughly equivalent in-
plane bending frequencies) that facilitates passage of the
long chain through a gel. The same overal pictureisseenin
detailed molecular dynamics (Sprous et a., 1999) and
Monte Carlo (Zhurkin et a., 1991; Olson and Zhurkin,
2000) simulations: the bending in short A,T,-containing
duplexes occurs in an unchanging direction over time,
wheresas the direction of bending for short T,A ,-containing
duplexes is highly variable.

Future directions

The correspondence between the root-mean-square end-to-
end distances of DNA chains restricted to configurations
along the lowest frequency bending modes with exact val-
ues obtained by averaging over all possible polymer con-
figurations confirms the validity of the sequence-dependent
harmonic treatment of long, relatively stiff double helical
molecules and points to the potential utility of the method to
characterize the distribution of spatial configurations. The
configurations sampled along the dominant norma modes
provide a more rapid way to estimate cyclization and loop
formation probabilities than distributions of three-dimen-
sional structures enumerated by conventional Metropolis-
Monte Carlo procedures.

We are grateful to Dr. Xiang-Jun Lu for providing force field data and to
Dr. A. R. Srinivasan for assistance with the matrix generator calculations

Biophysical Journal 83(1) 22-41

Matsumoto and Olson

of chain dimensions. Support of this work through U.SP.H.S. grant
GM34809 and the New Jersey Commission on Science and Technology
(Center for Biomolecular Applications of Nanoscale Structures) is grate-
fully acknowledged. Computations were carried out at the Rutgers Uni-
versity Center for Computational Chemistry.

GLOSSARY
A bending constant of an ideal elastic rod
A 6(N—1)X6(N—1) eigenvector matrix

with components A, that describe the
fractional contribution of the ith “step”
parameter to the nth normal mode

A component of A (see preceding entry)

a persistence length

C twisting constant of an ideal elastic rod

Gy material constant used in the evaluation
of the bending of an elastic rod

C. material constant used in the evaluation
of the stretching of an elastic rod

C material constant used in the evaluation
of the twisting of an elastic rod

Cxv 6X6 constant matrix characteristic of the
intrinsic orientation of the XY dimer in
B-form DNA

F 6(N—1)X6(N—1) matrix of elastic force
constants

Fyv 6X6 matrix of force constants which

incorporate the intrinsic orientation of the
XY dimer; Cyy 'GyyCxy

element of F describing the potential
deformability of the ith and jth “step”
parameters

Gxv 6X6 matrix of force constants associated
with the XpY dimer

Gij element of Gy, describing the
deformation of the XpY dimer

H 6(N—1)X6(N—1) kinetic energy matrix

h; weighted “mass” coefficient element of
H

I moment of inertia per unit length around
the twisting axis of an elastic rod

0] “step” parameter indices

K Kinetic energy

k base-pair index

[ Boltzmann constant

L contour length of DNA measured by the
displacement along the helical axis

M total mass of a molecule

m repeat length index of poly d(A,,T.)
sequences

m, mass of atom a

N number of base pairs

n norma mode index

Ny, N, Ng bending, twisting, and stretching mode
indices
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(Uy, Uy, Uy)
Vik+1

Yy, 2
Y
A

[ve vy 74

index of degenerate bending mode
Cartesian coordinates of the origin of the
kth base pair

parameter describing the frequency of the
nth normal mode of an ideda elastic rod
6(N—1) vector of normal coordinates
equal to A"A@

rotation matrix which relates the kth
base-pair frame to the global reference
frame

end-to-end vector

end-to-end vector of the equilibrium
(minimum energy) configuration
unperturbed mean-square end-to-end
distance

Cartesian coordinates of atom a
transpose of a matrix

temperature in Kelvin (always
premultiplied by kg to denote the thermal
energy)

constant transformation matrix obtained
by evaluating T at the (Tilt, Roll, Twist)
equilibrium rest state

dimer transformation matrix which
relates the kth and (k+1)th base-pair
frames

components of T

time

total conformational potential energy
conformational potential energy of the
XpY dimer

axis of the single rotation which brings
different coordinate frames into
coincidence

components of u

displacement (virtual bond) vector
between the coordinate origins of base
pairs k and k+1

base-pair coordinate axes

stretching constant of an ideal elastic rod
amplitude of the nth norma mode

unit vector components of the rotation
matrix R

phase angle of the nth norma mode
Kronecker delta

permutation symbol

collective vector of deformations of all
6(N—1) “step” parameters

One of 6(N—1) “step” parametersin a
DNA with N base pairs

time derivative of 6,

instantaneous fluctuation of the ith “step”
parameter from its equilibrium value
6(N—1) diagonal matrix with nonzero
elements equal to w,?
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A wavelength of a bending mode

Aom element of A

P frequency of the nth bending mode of an
ideal elastic rod

vy frequency of the nth stretching mode of
an ideal elastic rod

i frequency of the nth twisting mode of an
ideal elastic rod

ao(n, t) statistical weight of the global

configuration of DNA in normal mode n
a timet

(T Ty ) components of the kk+1 “step”
displacement (Shift, Slide, Rise)
projected on the coordinate axes of base-
pair k

Ady, collective vector of the deformations of
the six XpY “step” parameters

o one of the six “step” parameters of the
XpY dimer

@ magnitude of the single rotation which
brings different coordinate frames into
coincidence

(0% @y @) components of ¢ equated respectively to
the (Tilt, Roll, Twist) angular “step”
parameters

p, frequency of the nth norma mode
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