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H-1117 Budapest, Hungary; ‡Equipe Structure et Dynamique du Cytosquelette, UMR 6026, Université de Rennes 1,
F-35042 Rennes, France; and §Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark

ABSTRACT Microtubules polymerize from GTP-liganded tubulin dimers, but are essentially made of GDP-liganded tubulin.
We investigate the tug-of-war resulting from the fact that GDP-liganded tubulin favors a curved configuration, but is forced
to remain in a straight one when part of a microtubule. We point out that near the end of a microtubule, the proximity of the
end shifts the balance in this tug-of-war, with some protofilament bending as result. This somewhat relaxes the microtubule
lattice near its end, resulting in a structural cap. This structural cap thus is a simple mechanical consequence of two
well-established facts: protofilaments made of GDP-liganded tubulin have intrinsic curvature, and microtubules are elastic,
made from material that can yield to forces, in casu its own intrinsic forces. We explore possible properties of this structural
cap, and demonstrate 1) how it allows both polymerization from GTP-liganded tubulin and rapid depolymerization in its
absence; 2) how rescue can occur; 3) how a third, meta-stable intermediate state is possible and can explain some
experimental results; and 4) how the tapered tips observed at polymerizing microtubule ends are stabilized during growth,
though unable to accommodate a lateral cap. This scenario thus supports the widely accepted GTP-cap model by suggesting
a stabilizing mechanism that explains the many aspects of dynamic instability.

INTRODUCTION

Microtubules (MTs) are self-assembling tubular polymers
made of the protein tubulin. They are found in all eukaryotic
cells, where they provide rigidity where needed in nature’s
designs. During mitosis they form a highly dynamic spindle,
where individual MTs persistently grow or shrink by poly-
merization and depolymerization. The stochastic intercon-
version between the assembling and disassembling states is
called dynamic instability (Mitchison and Kirschner, 1984;
Walker et al., 1988), with the transition to depolymerization
referred to as catastrophe and the transition back to poly-
merization referred to as rescue.

In vitro and in vivo, MTs polymerize from tubulin
dimers liganded with two units of GTP (tubulin-t), but
are essentially made of tubulin liganded with one unit of
GTP and one unit of GDP (tubulin-d) (Desai and Mitchi-
son, 1997). The difference is due to hydrolysis of one
GTP to GDP shortly after incorporation of tubulin-t into
the MT lattice (Caplow, 1992; Erickson and O’Brien,
1992). This hydrolysis supposedly causes a straight-to-
curved configurational change of the dimer; this is indi-
cated by polymerization studies in the presence of slowly
hydrolyzable GTP analogs GMPPNP and GMPCPP
(Kirschner, 1978; Mejillano et al., 1990; Hyman et al.,
1995; Müller-Reichert et al., 1998). Bound as it is to its
neighbor dimers in a closed MT, the curved configuration
cannot be realized. Instead, the energy released by GTP

hydrolysis is stored as stress in the MT’s wall, and the
hidden intrinsic curvature of its protofilaments poise the
MT toward depolymerization (Caplow et al., 1994; Tran
et al., 1997a). It is believed that a very short, so far
unobserved (see, however, Drechsel and Kirschner,
1994) cap of freshly added tubulin-t at polymerizing MT
ends is responsible for the stability of the tubule (Mitchi-
son and Kirschner, 1984; Caplow and Shanks, 1996;
Vandecandelacre et al., 1999). Alternatively, a lateral
cap of GDP-Pi-liganded tubulin was proposed quite re-
cently (Panda et al., 2002). GTP or GDP-Pi, whatever its
difference to tubulin-t, loss of this cap is believed to
trigger catastrophe. The protofilaments curling off the
depolymerizing end of MTs amply display the intrinsic
curvature that was hidden in the straight wall of the intact
tube (Kirschner, 1978; Mandelkow and Mandelkow,
1985; Mandelkow et al., 1991; Tran et al., 1997a; Müller-
Reichert et al., 1998).

In the present article we point out that near the end of an
MT, the proximity of the end allows some relief of the built-in
stress through slight protofilament bending. This idea stems
from energy considerations for the relatively long protofila-
ment sheets that sometimes terminate the plus end of growing
MTs (Chrétien et al., 1995, 1999; Arnal et al., 2000). Such
outwardly curved sheets are in a more relaxed state than the
tube they decorate, so one may speculate whether they con-
tribute to its stability (Jánosi et al., 1998; Chrétien et al., 1999).
If they do, they cannot be crucial for stability because many
MTs have blunt ends (Horio and Hotani, 1986; Walker et al.,
1988).

In the present article we show that stress release does not
require a complicated end structure. Blunt MT ends also
lower their elastic energy by adopting a relaxed configura-
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tion, plus- and minus-ends alike. This local relaxation
amounts to a structural cap, and does not depend on the
presence of tubulin-t. It is a simple mechanical consequence
of two well-established facts: 1) protofilaments made of
tubulin-d have intrinsic curvature, and 2) MTs are elastic,
made from material that yields to forces, including its own
built-in stresses.

We explore properties of this structural cap, and demon-
strate how it allows polymerization from tubulin-t and rapid
depolymerization in the absence of tubulin-t. We describe a
third, meta-stable intermediate state and explain some ex-
perimental results with it. We propose a mechanism for
rescue, the least understood aspect of dynamic instability.
We suggest how the tapered tips observed at polymerizing
MT ends are stabilized during growth despite their inability
to accommodate a lateral cap.

While tubulin-d is known to form protofilaments with
built-in curvature, it is only a hypothesis that tubulin-t forms
straight protofilaments. We explore the consequences of
this hypothesis here. Those of our results that depend on
properties of tubulin-t at all, depend only on the weaker
hypothesis that tubulin-t forms protofilaments that prefer to
be more straight than those formed from tubulin-d, so where
we write “straight” below, one may substitute “straighter”
and arrive at the same conclusions.

MATERIALS AND METHODS

Computer simulations

The main points of this paper do not rely on a detailed description of
tubulin’s structure, not even on a description of MTs in terms of proto-
filaments. We consider an MT a tube made from a sheet of elastic material
that will stretch and bend, but resists doing this with a characteristic
stiffness for each mode of deformation. The sheet has built-in curvatures:
laterally, its intrinsic curvature is that of the tube itself; longitudinally, its
intrinsic curvature is that observed in protofilaments peeling off depoly-
merizing MTs. The longitudinal intrinsic curvature of the sheet will bend
it away from the symmetry axis of the tube if allowed to do so. Based on
these general assumptions, we can formulate a simple sheet model that is
universally valid for any tubular structure made from elastic material and
having competing intrinsic curvatures. This model is described in details in
Jánosi et al. (1998).

The preferred shape of an elastic sheet minimizes its total energy, which
is a sum of contributions from stretching and bending terms. Although
analytical calculations are possible for simple configurations (Jánosi et al.,
1998), in general, numerical relaxation is needed to find energy-minimiz-
ing shapes, such as those shown in Fig. 1. Elastic parameters can be
estimated by comparing simulated and measured curvatures for sheets, as
well as computed and measured values for the flexural rigidity (Jánosi and
Flyvbjerg, submitted for publication).

Microtubule images

The cryoelectron microscope images used here, Fig. 6 below, were taken
from Chrétien et al. (1995). Details concerning the preparation of samples
and imaging conditions can be found in this reference.

FIGURE 1 Homogeneous sheet of elastic material with built-in competing curvatures forming a tube with a blunt end. The material was computer-simulated
as a triangulated surface and the energies stored locally in the surface are shown with color coding on a logarithmic scale. (A) Total energy density. (B) Longitudinal
bending energy. (C) Transverse stretching energy. The zig-zag shape of the blunt end is an irrelevant artifact of the triangulation used.
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Mathematical analysis: The filament model

Assuming the sheet material is uniform in its intrinsic properties, a blunt-
ended MT is rotationally symmetric about its central axis—either fully so,
or with respect to rotations that are integer multipla of 2�/13, depending on
whether we think of the MT wall as made from a continuous sheet, or from
13 laterally bound protofilaments running parallel with the MT axis. Both
symmetries allow a simple characterization of the MT’s shape. We shall
find that this shape is not just a simple cylinder.

We consider a semi-infinite MT with coordinate z, 0 � z � �, denoting
positions along its length; see Figs. 1 and 2. The elastic energy stored in a
small part of the wall located at z depends on the tube’s diameter r(z) and
its longitudinal curvature c(z) at z. In our analytical calculations we ignore
longitudinal stretching and lateral bending in comparison with lateral
stretching and longitudinal bending, because our computer simulations
show that their role is negligible. This allows a simple one-dimensional
analytical description of a thin stripe, or “filament,” of the wall material.

Uniform tube

The local longitudinal curvature c(z) of a segment at distance z from the
MT end is

c�z� �
d2r

dz2 . (1)

The associated bending energy density is assumed quadratic in the differ-
ence to the intrinsic curvature c0,

Ec�z� � 1
2

a�c�z� � c0�
2, (2)

where a is a material parameter, the material’s stiffness (bending rigidity
per unit length) toward changes in longitudinal curvature c away from the
material’s intrinsic longitudinal curvature c0.

Non-zero local curvature is possible only if the distance r of the wall
from the central MT axis varies with z, in which case the lateral “bonds”
store a stretching energy per unit length equal to

Es�z� � 1
2

k�r�z� � r0�
2. (3)

Here, r0 is the equilibrium radius of the cylinder, and k is the stretching
coefficient. As already mentioned, and expanded on below, computer
simulations show that the two other energy terms, for longitudinal stretch-
ing and lateral bending, are extremely small in the relevant parameter
range. We consequently neglect them in the present analysis.

Ignoring longitudinal stretching and lateral bending, the total energy of
the tube is the sum of only two contributions, but from all segments along
the z-axis, of course:

E�r���
0

�

dz�1

2
a�d2r�z�

dz2 � c0�2

�
1

2
k�r�z� � r0�

2� , (4)

For the sake of simplicity we have placed one end of the tube at infinity,
because the solution for a long, finite tube with a clamped end at z � L, and
L much larger than the tube’s diameter, is the same, essentially. In equi-
librium, the functional derivative of the energy �E/�r(z) must vanish,
which results in the following fourth-order ordinary differential equation
for the shape r(z) (Lanczos, 1949):

a
d4r�z�

dz4 � k�r�z� � r0� � 0. (5)

Introducing �r(z) � r(z) 	 r0 results in:

�� d

dz�
4

�
k

a��r�z� � 0. (6)

This equation is known as the “static beam equation” (Landau and Lifshitz,
1986). It describes the equilibrium shape of a thin rod under a distributed
load. In our case, the load on a filament is due to its prestressed state,
caused by competing intrinsic curvatures, and it can be expressed simply
with the deviations from equilibrium distances and curvatures.

A unique solution to Eq. 6 is specified by four boundary conditions. Far
from the blunt end, the equilibrium configuration is a straight cylinder,
�r(�) � 0 (equilibrium radius) and �r
(�) � 0 (the tube is straight). The
boundary conditions at z � 0 are free, hence must be found by energy

FIGURE 2 Fit of r(z) � r0 � �r(z) as given in Eq. 7 (solid line) to the
blunt end configuration shown in Fig. 1 (circles). The lengths are chosen
to be typical for microtubules. For the sake of visualization, the figure is
compressed vertically, as indicated by the mesh (1 � 1 nm). The fit yielded
z1/z0 � 	0.92, not so different from the value obtained by minimizing the
energy of the purely analytical model, z1/z0 � 	�/4 � 	0.79 in Eq. 11.
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minimization. The general solution to Eq. 6 that satisfies the boundary
conditions at z � � has the form

�r�z� � A cos�z � z1

z0
�ez/z0 (7)

with

z0 � �4a

k �1/4

. (8)

Here, the amplitude A and phase z1 are the two parameters to be determined
by energy minimization. It is straightforward to substitute Ansatz 7 into Eq.
4 by noticing that r
 � �r
:

E�A, z1� �
A2kz0

4
�

Ac0a

z0
�cos�z1

z0
� � sin�z1

z0
�� � E0. (9)

Here E0 � 1⁄2 ac0
2 �0

� dz is the elastic energy stored in the wall of a straight
semi-infinite tube made from wall material with intrinsic curvature c0.
Energy minimization with respect to A and z1 is achieved by solving the
stationarity conditions

�E�A, z1�

�A
� 0 and

�E�A, z1�

�z1
� 0 (10)

simultaneously. After some algebra we have

A � c0�2a

k
and z1 � 	

�

4
z0, (11)

Emin � 	
1

2
c0

2az0 � E0. (12)

Energy barrier toward depolymerization

From the equations just solved, it follows that the end of a semi-infinite
tube has a radius req(0) � r0, as shown in Figs. 1 and 2,

�req�0� � c0 �a

k
. (13)

Because the lateral bonds between protofilaments in an MT can be
stretched only a little before they break, it is of interest for us to calculate
the energy connected with a forced increase of r(0), or, equivalently, �r(0).
The energy required to increase r(0) to a value corresponding to the
breaking point for lateral bonds is the energy required to initiate depoly-
merization of the MT in our simple model.

For any forced value of �r(0), we write the amplitude in Eq. 7 as A �
�r(0)/cos(z1/z0) and use this to replace A in the energy Eq. 9 with �r(0).
We then minimize the resulting energy with respect to the only free
variable left, z1, to find

z1��r�0�� � z0 arctan�	
c0

�r�0� �a

k� , (14)

and the corresponding minimal energy, which is just a second-degree
polynomial,

E��r�0�� �
kz0

4
�r2�0� �

c0a

z0
�r�0� �

1

4
ac0

2z0 � E0.

(15)

GTP contribution to cap

In the framework of this mathematical filament model, a GTP cap is
modeled as a finite segment of the same elastic material, but having zero
intrinsic curvature. This segment “caps” a semi-infinite tube of tubulin-d,
i.e., the material described above, having intrinsic curvature c0.

The elastic energy of a tube capped by a finite straight segment of length
L is given by

Etot�r� � �
0

L

dz�1

2
a�d2r�z�

dz2 �2

�
1

2
k�r�z� � r0�

2�

� �
L

�

dz�Ec�z� � Es�z��, (16)

where Ec(z) and Es(z) are given by Eqs. 2 and 3 for the GDP-part spanning
from L to infinity, and the first term is for the GTP segment of zero intrinsic
curvature, but of the same bending and stretching rigidity. The variational
principle gives the same shape equation (6) as before (note that it does not
contain c0), thus the general solution Eq. 7 with Eq. 8 remains valid for the
capped filament, too. The task is now to find the new A* and z*1 amplitude
and phase parameters minimizing Eq. 16. The substitution gives the form

E�A*, z*1� �
A*2kz0

4

�
A*c0a

z0
e	L/z0�cos�z*1 � L

z0
� � sin�z*1 � L

z0
��

�
1

2
ac0

2 �
L

�

dz (17)

in analogy with Eq. 9. The differences are the appearance of an exponential
factor and phase shift in the second term, and the different integration range
for the constant bending energy. From the minimization of Eq. 17 we get

A* � c0 �2a

k
e	L/z0 and z*1 � 	

�

4
z0 � L. (18)

The solutions for arbitrary end deflections can be obtained with the same
method as described above. In analogy with Eq. 14 we get

z*1��r�0��

� z0 arctan�	
c0

�r�0� �a

k �cos
L

z0
� sin

L

z0
�e	L/z0� , (19)
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and the minimal energy as a function of end deflection, which also is just
a second-degree polynomial:

E��r�0�� �
kz0

4
�r2�0�

�
c0a

z0
�cos

L

z0
� sin

L

z0
�e	L/z0�r�0�

�
1

4
ac0

2z0e
	2L/z0�1 � sin

2L

z0
�

�
1

2
ac0

2L � E0. (20)

We shall analyze this expression in Fig. 5 below.

RESULTS

Theoretical results

Fig. 1 shows our main result: an effectively semi-infinite
tube with a blunt end was allowed to relax (in a computer
simulation) under the influence of its own internal forces.
The parameters characterizing these forces were chosen as
previously described (Chrétien et al., 1995; Jánosi et al.,
1998) and in Jánosi and Flyvbjerg (submitted for publica-
tion), i.e., to reproduce the morphology of the long, curved
sheets observed at the plus end of growing MTs (Chrétien et
al., 1995) and the elastic properties of the tubes (Jánosi et
al., 1998; Jánosi and Flyvbjerg, submitted for publication).
The shape seen in Fig. 1 is a mathematically balanced
compromise between stresses tending to bend the wall lon-
gitudinally, and resistance to lateral stretching of the same
wall.

Now consider the stresses and energies stored in the
configuration shown in Fig. 1. The color coding in Fig. 1 A
shows the total local elastic energy stored in the wall. Well
away from the end of the tube, this is just the energy
difference between the longitudinally straight configuration
of the material and its preferred longitudinally curved con-
figuration, i.e., E0 in Eq. 9. This scenario is closely analo-
gous to that of an MT made from tubulin-d: its protofila-
ments also prefer to curve, but cannot do so except near the
ends of the tube because they are laterally bound to each
other, forming a one-protein thick sheet that forms a straight
tube.

Near the end of the tube shown in Fig. 1 the most
favorable configuration, i.e., the one with lowest mechani-
cal energy, represents a compromise between the forces at
play: the material bends somewhat, longitudinally, at the
cost of stretching around the circumference. The net effect
is a lower local energy stored in the tube, so in terms of local
energy and geometry, this tube is capped by a structure
different from its bulk: it displays a structural cap.

Fig. 1 B shows that the total energy density is dominated
by longitudinal bending. The longitudinal curvature realized

by the material also bends it toward the symmetry axis of
the tube near the end of the tube (see Fig. 1 B, at heights
below �84, and, more clearly, Fig. 2 at z � 	12 nm). This
may seem counterintuitive, but it is a natural consequence of
the mentioned tug-of-war: the wall can adopt locally unfa-
vorable configurations to minimize the total energy.

Fig. 1 C shows the lateral stretching energy. It clearly
increases toward the end, but its contribution to the total
energy is at least one order of magnitude less than that of the
longitudinal bending. If one imagines a limit to the materi-
al’s lateral stretchability, a threshold beyond which the wall
material tears, then depending on whether this threshold is
higher or lower than the stretching seen in Fig. 1, the
configuration shown is (meta-)stable or unstable. We elab-
orate this issue below.

We have not mentioned the longitudinal stretching energy or
the lateral bending energy. They are there in the model as well,
but turn out to be two to three orders of magnitude smaller than
the longitudinal bending term, so they can be neglected to a
very good approximation. Their small values can be under-
stood as follows. When a whole MT is bent, longitudinal
stretching and compression is the most important mode of
deformation in terms of associated energy (Jánosi et al., 1998).
Such bending induces some lateral bending, in the form of
flattening of the tube’s cross section, a response to bending that
may lead to local buckling, but for an unbent and otherwise
undisturbed MT like the one considered here, the primary
deformation of the tube is longitudinal bending of protofila-
ments seeking their preferred curved shape, and not bending of
the tube as such. Lateral stretching and bending are caused by
this longitudinal bending, because longitudinal bending
changes the local diameter of the tube. A change in diameter
obviously causes lateral stretching or compression, but it also
changes the lateral curvature, because the curvature is the
inverse radius. It is the resistance to these two changes that
limits the longitudinal bending of protofilaments. Lateral
stretching/compression dominates this resistance, we find, with
the parameter values determined in Jánosi et al. (1998) and
Jánosi and Flyvbjerg (submitted for publication), so a tubulin
sheet bends relatively easily laterally, but is difficult to com-
press/stretch. Most sheet materials share this property for the
simple reason that bending is done by a combined stretching
and compression of opposite sides of the material in a manner
that makes the stiffness toward this deformation scale like the
cube of the thickness, while the stiffness toward in-plane
compression/stretching of the same sheet material scales like
the thickness itself (Landau and Lifshitz, 1986; Howard,
2001). A thin piece of material typically bends easily, but may
yet be difficult to stretch/compress: a common everyday ex-
perience with objects much larger than MTs.

Changes in the local diameter of the tube also cause a
slight local longitudinal compression, as we find in our
simulation. Again, the stiffness toward compression is rel-
atively large; that is why MTs are stiff, so the role of this
mode of deformation is negligible when we analyze the
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shapes in Fig. 1: protofilaments function as incompressible
struts under the deformations shown in Fig. 1. This is very
easy to understand with the arguments just given for sheets
in general. The primary force at play in Fig. 1 is the
protofilaments’ stiffness toward bending away from their
intrinsic curvature, and this stiffness is much smaller than
their stiffness toward compression. Then we expect to find
very little compression, as we do.

The mathematical filament model described in Materials
and Methods provides more insight into the energetics of
the relaxed end-configurations. As a direct test of the fila-
ment model, we show in Fig. 2 how the shape function
given in Eq. 7 fits the computer-simulated model, the blunt
end shown in Fig. 1. Note that the function given in Eq. 7
is unique: it contains no free parameters, as its parameters
are given in Eqs. 8 and 11. The discrete nature of the
computer-simulated model requires us to fit the phase pa-
rameter z1, however. That done, we see in Fig. 2 that the
agreement between theory and simulation is excellent.

The shape in Fig. 2 represents a “zero-temperature” con-
figuration, i.e., a configuration of minimal energy, with no
thermal bending allowed for. In the case of real MTs,
thermal forces bend whole tubes visibly (Mickey and
Howard, 1995; Felgner et al., 1997). The modes of lowest
bending energy are the global ones that vary slowly across
the object. They are excited thermally with the largest
amplitude.

We consider a slowly varying bending mode that changes
�r(0) away from its equilibrium value, with the lowest
possible increase in the elastic energy of the tube. We found
the energy of this mode as in Materials and Methods.

The solutions are very similar to the equilibrium shape
shown in Fig. 2. All shapes are harmonic oscillations with
an amplitude that decreases exponentially with the distance
to the end.

What interests us is the energy E[�r(0)] of the filament as a
function of end deflection �r(0). It is given in Eq. 15 and its
graph in Fig. 3. It is a simple quadratic form, increasing with
�r(0) for �r(0) � �req(0) [see Eq. 13], until, at a critical value
�rcrit(0), lateral bonds break and the liberated part of the
filament rolls up to realize its intrinsic curvature c0. Once
started, bond breaking can continue if the geometric shape
characterized by �r(0) � �rcrit(0) can be sustained while it
moves down the tube. If it can, the net effect is that the straight
part of the tube is shortened and the amount it is shortened by
is turned into separated, rolled-up protofilaments. This critical
geometrical shape was created by a thermal fluctuation, but
sustaining it during continued depolymerization plausibly re-
quires that some of the energy released as a protofilament
separates from the MT lattice and curls up, is transferred to the
MT. The details of how this may happen is beyond our simple
model, and its description is a project in its own right because
it involves lateral bond-breaking and thermal energy gains and
losses. However, the model does suggest a scenario: at finite
temperatures the MT is meta-stable; once a thermal fluctuation

has changed its shape to such an extent that lateral bonds
break—at its end where this costs the least energy—bond-
breaking may propagate down the tube, driven by the energy
released by the curling up of intrinsically curved protofila-
ments. Conversely, if this energy release is not excessive, a
thermal fluctuation just might remove enough energy from the
end of the MT to relax the shape of its end from the depoly-
merizing critical state and back into the meta-stable state char-
acterized by �r(0) � �rcrit(0). Thus rescue may occur as the
result of a random thermal fluctuation, just as catastrophes do
in this scenario. If it does, it does so at a rate that increases with
temperature, and this is indeed found experimentally (see Fig.
13 in Fygenson et al., 1994).

Now consider an MT with a GTP cap. We assume that
tubulin-t has the same elastic properties (bending and stretch-
ing rigidities) as tubulin-d, but forms filaments that are intrin-
sically straight. The filament model was solved for the case of
such a GTP cap of length L in Materials and Methods.

Comparing the amplitudes A and A* in Eqs. 11 and 18,
we see that a GTP cap stabilizes an MT simply by being
intrinsically straight, and it does this quite efficiently: ex-
ponentially in the cap size L (see Fig. 4).

Fig. 5 shows the energy E(�r(0); L) of a filament as a
function of end deflection �r(0), for various cap lengths L.
The dashed line is the case of zero cap, also shown in Fig.
4. The dotted line shows the energy minimum with respect
to �r(0) as a function of L. At very short cap lengths, the
minimal energy increases with L, because outward bending
of the terminal GDP segment is hindered by the GTP cap.
The energy barrier toward depolymerization nevertheless
increases with L for all values of L.

FIGURE 3 The elastic energy E[�r(0)] of the filament model relative to
E0 (in units of ac0

2z0/�2 on the left axis; in units of kT on the right axis),
as a function of end deflection �r(0) (in units of req(0) on the bottom axis;
in nanometers on the top axis). The vertical dotted line marks a hypothet-
ical critical value for �r(0), beyond which lateral bonds break.
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Comparing theory with experimental results

To compare our findings with observations of MT ends, we
estimate the extent of the deformations expected at the end
of a real MT. Our model cannot provide an accurate value
by itself. It only restricts parameters to a certain range
(Jánosi and Flyvbjerg, submitted for publication). An esti-
mate can be obtained from data in Chrétien and Fuller
(2000), which presents a comprehensive experimental anal-
ysis of energetically unfavorable MT configurations. The
main result is that the tubulin lattice can tolerate distortions
due to unfavorable protofilament number and/or different
helical pitch, and does this by compression or elongation of
intra and intermolecular bonds. Some distortions result in a
longitudinal shift of protofilaments relatively to each other,
observed as a changed subunit rise. Other distortions result
in an altered protofilament separation (see Fig. 3 and Table
2 in Chrétien and Fuller, 2000).

While the longitudinal shift might be associated with a
reorganization in the complex lateral bonding structure

(Nogales et al., 1999), an increased protofilament separation
(with subunit-rise close to its equilibrium value) is more
naturally associated with an elastic deformation in the lat-
eral direction. No configurations were observed that would
correspond to ��0.2 nm lateral stretching per tubulin sub-
unit. It may be that bonds can tolerate larger strains, but the
point we want to make here and now is that an elongation of
0.2 nm has been observed in lateral bonds. This corresponds
to a 4% increase in perimeter when all the lateral bonds
around the tube are stretched. The latter situation allows
maximal outward bending of a blunt MT end, and a corre-
sponding 4% or �0.5 nm increase in the MT radius right at
its end. This value is close to what can be resolved exper-
imentally, if not below. (Note that shorter distances can be
accurately measured in a periodic structure by means of
Fourier or Moiré analysis, but the determination of end
configurations requires direct observations.) The situation is
even worse with respect to possible observation, if we
include a possible GTP-cap in our considerations, because it
reduces outward bending, as illustrated in Fig. 4).

In Fig. 6 we show some images of seemingly blunt MT
ends from an ensemble in which most MTs were in a
growing state. Despite our estimate above, most of these
blunt ends display visible outward bending at the terminal
rim, so maybe our model is correct, but our estimate above
is not: maybe lateral bonds can tolerate more stretching
without breaking than the 2 Å of our estimate, or maybe
they cannot for tubulin-d, for which the estimate was done,

FIGURE 4 The effect of a finite straight cap on the end configuration.
The elastic parameters are the same, the starting point of the cap is
indicated with a circle. The rightmost filament has no cap. (It differs a little
in shape from that in Fig. 2 because the latter was fitted to Fig. 1’s
simulated shapes.) The following filaments, from right to left, have caps of
length 4 nm, 8 nm, 12 nm, and 16 nm. The curves have been shifted
horizontally for a clear view.

FIGURE 5 The elastic energy E[�r(0)] of a filament relative to the value
E0 takes in the case of no cap (in units of ac0

2z0/�2 on the left axis; in units
of kT on the right axis) as a function of end deflection �r(0) (on bottom
axis in units of the value of req(0) for case of no cap; on top axis in
nanometers) for different cap lengths L. Heavy dots indicate the location of
the energy minimum for various values of L. The vertical dotted line marks
a hypothetical critical value for �r(0), beyond which lateral bonds break.
The difference in energy between the minimal value and the value at the
critical �r(0) is the energy barrier towards depolymerization. As expected,
it is seen to grow with the cap length L, even though lateral bond strengths
are assumed to be the same for cap and bulk of the microtubule.
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but can for tubulin-t. The latter is all that we need in order
to see what we see in Fig. 6 with our model.

For each MT shown in Fig. 6 we have measured the
diameter of its end, dend, and, at several points along the
body of the tube, the diameter of the body, dbody. This was
done by counting pixels in a much-enlarged version of the
plates in Fig. 6. Results for dbody were averaged for preci-
sion for the individual tube. Tubes with 13 protofilaments
were identified by their characteristic property of having
protofilaments parallel to the MT axis. This property shows
as two parallel dark lines in the center of the image, or no
lines at all, according to whether four protofilaments over-
lap two and two in the projection where the image is, or
precisely do not overlap.

Setting the diameter of the 13 pft body equal to 25 nm, we
have �r(0) � dend/(2dbody) � 25 nm. We found the follow-
ing values for �r(0) in Fig. 6, measured in nanometers: A:
1.5 (13 pfts); B: 2.8 (13 pfts); C: 2.3; D: 3.5; E: left MT end

is tapered, right MT end has protofilament attached; F: 6.7
(13 pfts) and 7.4 (13 pfts); G: left-to-right: 1.5, 1.5, 2.2 (12
pfts?), NA, and 2.5 (13 pfts). The MT-ends in plate F and
the fourth end in plate E appear to have curled-up proto-
filaments attached to them, an indication that they are de-
polymerizing and should be disregarded. The remaining
ends have �r(0) in an interesting range. For comparison,
Figs. 4 and 5 show that our theory predicts �r(0) � 1.3 nm
for a cap consisting of a single straight dimer per protofila-
ment, and �r(0) � 2.7 nm for an MT with no cap. At this
point it is worth noting that the parameters in our theory
were determined long before we analyzed the plates in Fig.
6, and from quite different MT ends.

Fig. 4 also shows that the slight narrowing of the MT that
occurs just before the widening at its end is negligible in the
case of an MT with an 8 nm cap. Such a narrowing is also
absent in Fig. 6, but this agreement proves nothing more
than consistency, of course.

FIGURE 6 Electron micrographs of blunt micro-
tubule ends. Different images have slightly different
magnifications for better space filling. A length
scale can be derived from a nominal MT diameter of
25 nm for 13-protofilament MTs (see text).
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In view of the approximations built into our theory, the
agreement between theory and experiment is so good that one
interpretation of Fig. 6 is that it is showing the structural cap.
The quantitative agreement we have found is what we would
expect if this interpretation is correct. This is because the
theory’s parameters were chosen to make it fit observed MT
ends which, by being tapered or ending in long sheets, dis-
played the curvature of the sheet material in such a clear
manner that the parameters could be found (Jánosi et al., 1998).

The following alternative interpretation of Fig. 6 is also
possible, however: maybe the ends observed are not really
blunt, but terminate in very short curved sheets. The fact
that the MT lattice is helical, hence must terminate in a
somewhat jagged end, invites this interpretation.

Whatever the actual configuration of the MT end is, our
key point is valid: a free end of an MT, be it blunt or
tapered, is in a lower energy state than the body of the tube,
because the protofilaments can relieve stress by bending a
little in a manner that is not possible in the body of the tube.
Furthermore, we have demonstrated that this stress relief at
a free MT end is strongly enhanced by a cap of material in
an intrinsically straight state, even a very short cap, and
even a laterally incomplete cap: a few isolated tubulin-t
dimers at a free MT end also help stabilize it; even a single
tubulin-t dimer does.

DISCUSSION

The ingredients in our structural cap model are not new. The
integration of these ingredients in a three-dimensional scenario
that makes it possible to analyze their interplay, is new. Our
description provides a simple, plausible, and common mecha-
nism for 1) the stabilizing effect of a GTP-cap that is short, or
even incomplete; 2) the “third state,” in which an MT neither
grows nor depolymerizes; and 3) rescue, the phenomenon that
an MT can change back from the depolymerizing state to the
polymerizing state. We now discuss these aspects of our model
and relate them to results in the literature when we can, and
when no clear conclusions can be drawn.

Persistent growth

Microtubule polymerization in vitro is a far-from-equilib-
rium reaction that depends strongly on temperature and the
concentration of free tubulin (Walker et al., 1988; Erickson
and O’Brien, 1992; Fygenson et al., 1994). Polymerization
proceeds by addition of GTP-liganded tubulin to the end of
an MT (Desai and Mitchison, 1997). During, or soon after,
intersubunit bonds have been formed, the unit of GTP
liganded to �-tubulin is hydrolyzed and inorganic phosphate
is released.

Three important aspects should be emphasized here.
First, GTP-liganded tubulin, the polymerizing dimer, pre-
fers to be in a straight configuration, or a configuration

straighter than the one preferred by GDP-liganded tubulin
(Kirschner, 1978; Mejillano et al., 1990; Müller-Reichert et
al., 1998), hence it must be assumed to be in that configu-
ration while in solution and, consequently, when entering
the MT lattice. Second, GTP hydrolysis is not necessary for
polymerization to proceed. Tubulin liganded with slowly
hydrolyzable GTP-analogs also polymerize (Hyman et al.,
1992; Drechsel and Kirschner, 1994). Third, GTP hydroly-
sis occurs very soon after the incorporation of a fresh
subunit in the MT (Stewart et al., 1990; Walker et al., 1991;
Melki et al., 1996), and GTP hydrolysis keeps pace with the
addition of tubulin at various rates (Vandecandelacre et al.,
1999). It is consequently believed that the GTP-cap must be
very short (Caplow and Shanks, 1996), and a simple mech-
anism has been proposed that ensures this, while agreeing
quantitatively with available experimental data (Flyvbjerg
et al., 1994, 1996). Recent results obtained with a radiola-
beling strategy yield that the cap is short indeed, consisting
of one dimer per protofilament end; a dimer of tubulin-
GDP-Pi, and not tubulin-GTP (Panda et al., 2002), but that
makes no difference in our structural cap model.

These three properties (the polymerizing unit is
straight(er); it needs not hydrolyze for polymerization to
proceed; the cap is short) are all fully incorporated into our
model: short, intrinsically straight(er) segments at the end of
protofilaments result in an MT end with reduced outward
longitudinal curvature, hence more stability toward catas-
trophe. For simple geometric reasons, such straight(er) end
segments also favor formation of lateral bonds between any
new straight(er) subunits that may be added; the subunits
attach (more) parallel to each other, rather than pointing in
different directions. Obviously, straight(er) segments need
not turn into curved ones for more straight(er) segments to
be added. On the contrary, MT made from protofilaments
that are intrinsically straight(er) throughout their length are
more stable than other MTs. They will only grow, and will
not suffer catastrophe, according to our model.

This last point is in agreement with several experiments
that suggest that addition of straight(er) subunits supports
persistent growth and stability. MTs assembled in the pres-
ence of the stabilizing agent taxol (Arnal and Wade, 1995)
and GMPCPP (Hyman et al., 1992, 1995; Müller-Reichert
et al., 1998) have a longitudinal subunit spacing that ex-
ceeds that of GDP-liganded tubuling by �0.3 nm per unit
tubulin. This indicates a straighter configuration, as explic-
itly shown by Müller-Reichert et al. (1998). Also, the
XMAP215/TOGp family seems to keep straight the end of
protofilaments, thus stimulating assembly and stabilizing
MTs (Spittle et al., 2000). These results all support the
hypothesis that GTP-tubulin is straight (or straighter than
GDP-tubulin) and that this matters for polymerization. With
an Oscar Wilde-pastiche he might have scorned, they point
to “the importance of being straight.”
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Catastrophes and “Third State”

Our cap model has as a logical consequence that a transition
from the polymerizing state to the depolymerizing one,
so-called catastrophe, occurs in two steps, via a third,
quiescent state. In this, it is consistent with the proposal of
Tran et al. (1997b) complementing the original cap model
postulated by Mitchison and Kirschner (1984; see review by
Desai and Mitchison, 1997). The first step is the loss of all
GTP-liganded tubulin at the end. This may happen as a
random event during growth, by GTP hydrolysis catching
up with the addition of fresh units of GTP-liganded tubulin.
It may be prompted in an experiment as described in Walker
et al. (1991), by flushing out the tubulin-t-containing buffer
and replacing it with buffer containing no tubulin-t, so that
GTP hydrolysis quickly removes the GTP cap. Either way,
the MT end is left in the meta-stable state we described
above, a state which it leaves for the depolymerizing state
only when a random thermal excitation pushes it over the
energy barrier toward depolymerization. This third state,
quiescent inasmuch as neither polymerization nor depoly-
merization occurs, has been observed directly by monitor-
ing the length of an MT as function of time (Tran et al.,
1997b; Vorobjev et al., 1997; Waterman-Storer and
Salmon, 1997b; Odde et al., 1999; Quarmby, 2000).

Observation of its existence does not reveal its nature, but
statistics for its “decay” to the depolymerizing state do.
Because we propose this to occur by thermal barrier cross-
ing, it follows that the waiting time for it to occur is
stochastic and exponentially distributed, just like that of
radioactive decay. One consequence of this exponential
distribution is that the root-mean-square deviation (�stan-
dard deviation) of the waiting time distribution equals the
mean waiting time. This property, as well as the exponential
distribution itself, should be observable, if this last step is
the “bottleneck” in the two-step process to catastrophe.

Conversely, if losing the tubulin-t units at the MT end is the
bottleneck, the statistics of the second step drown in the
statistics of the first, resulting in a two-step process that
looks effectively as a one-step process.

According to observations, the latter seems to be the
situation when catastrophes are studied in growing MTs.
The continued addition of fresh tubulin-t units at the grow-
ing end makes the loss of these units the bottleneck, but in
experiments where growth is arrested by flushing out the
tubulin-t-containing buffer, the “GTP cap” is quickly lost by
hydrolysis, and the second step is optimally observable. Fig.
7 shows statistics for such an experiment. In practice, it is
difficult to say exactly when growth is arrested for the
individual MT observed, because it takes a few seconds to
flush the chamber in which the experiment is done. Once
growth has been arrested, loss of the GTP cap is also a
stochastic process. But if it is not the bottleneck, then most
GTP caps are gone from an ensemble of MT ends after a
few average lifetimes for GTP caps under these circum-
stances, and additional waiting times are exponentially dis-
tributed. Such an exponential distribution is clearly seen for
delay times larger than 10 s in the inset in Fig. 7 a, i.e., for
plus ends. The inset for minus ends in Fig. 7 b appears to
show the sum of two exponentials, one dropping off faster
than the other, with one dominating between 10 and 20 s,
and the other dominating after 20 s, though the statistics are
not good in this case. These two exponentials are what one
would see if the population of MTs studied consisted of two
“species” with different barriers toward depolymerization.
Clearly, if two different MT lattice configurations are pre-
dominant in a population, they constitute such two species
according to our scenario for the transition from the third
state to the depolymerizing state.

The exponential delay time distributions shown in Fig. 7
have characteristic times of 3 and 5 s for panels a and b,

FIGURE 7 Histogram of the waiting
time before catastrophes for the plus
(a), and minus (b) ends. The insets
show the cumulative distributions
(from right to left) on a semilogarith-
mic scale. Data are from Walker et al.
(1991).
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respectively, and the tail showing after 20 s in panel B has
a characteristic time of 12 s. Can we relate these experi-
mental numbers to properties of our model? The answer is
yes and no. Yes, if we add one more feature to our model;
no, if we don’t. We can identify the inverse of the charac-
teristic time with the reaction rate k, the reaction being the
transition form the third state to the depolymerizing state.
Then we can apply classical reaction-rate theory in which
the Van’t Hoff-Arrhenius law gives the rate in terms of a
threshold energy for activation, Eb,

k � 	 exp�	Eb/�kBT�� (21)

where kB is Boltzmann’s constant and T the absolute tem-
perature (Hänggi et al., 1990). The threshold energy is
provided by our model, Eb � E(�rcrit(0)) 	 E(�req(0)), so
our model gives the temperature dependence of the rate and
predicts classical Arrhenius behavior, but our model does
not give the dimensional prefactor 	, which is needed to
obtain a result at a given temperature. To determine 	, one
needs more information about the transition state than our
model offers. One may extend our model by detailing the
transition state to the degree required to obtain 	. That does
not lead to a prediction of the experimental rate, it only
integrates the information contained in the experimental rate
into the model by extending the latter.

The temperature dependence of the time a growing mi-
crotubule will grow before catastrophe occurs has been
measured at various tubulin concentrations; (see Fig. 12 A in
Fygenson et al., 1994). It increases with increasing temper-
ature, while Eq. 21 describes a decrease with temperature
(an increase in the rate). Equation 21 does not describe the
catastrophe rate, however, but only the second step in the
two-step process to catastrophe that we propose. The first
step, loss of cap, is suppressed by increasing temperature,
because higher temperature causes faster polymerization.
Therefore, our theory is not inconsistent with experimental
data, but also receives no support on this point.

Fig. 12 B in Fygenson et al. (1994) offers the sought
support when combined with Fig. 12 A, however. At a fixed
MT velocity of growth, the time until catastrophe is longer
at lower temperatures. It is a good deal more temperature-
dependent than the rate in Eq. 21, but then the first step, the
loss of cap through GTP hydrolysis, is also slowed at lower
temperature, we imagine. Theory and experiment are con-
sistent with each other. The catastrophe frequency as a
function of growth rate at different temperatures shows the
behavior we expect for a thermally activated process: the
higher the temperature at the same growth rate, the higher
the catastrophe frequency (see Fig. 9 in Fygenson et al.,
1994).

Aspects of the scenario presented here—that the stability
of an MT tip is partly mechanical in origin, and that catas-
trophes are two-stage processes with a thermally driven
second stage—have simple consequences we must address.

First of all, GTP hydrolysis is believed to induce a local
conformational change near the dimer interface (Downing
and Nogales, 1998). This change must have a mechanical
effect at both MT ends, and catastrophes indeed occur at
both ends in vitro (Horio and Hotani, 1986; Walker et al.,
1988). This they do with different kinetic parameters, how-
ever (Walker et al., 1988, 1989, 1991; Tran et al., 1997b).
Our simple model does not describe details of the complex
bond between adjacent tubulin subunits (Nogales et al.,
1999), and consequently cannot explain differences between
the dynamics of the two MT ends. Nogales (1999) hypoth-
esizes that the lateral contacts between 
-tubulins (capping
the negative end) can be stronger than between � subunits
having GDP at the nucleotide site. We could add such an
effect in our model, and thus obtain different dynamics for
the two ends, but this would be an ad hoc addition, hence
lead to no additional insight.

The complexity of the protein-protein bonds and the
sensitivity to subtle details is clearly demonstrated by a
recent experiment in which deuterium oxide was found to
suppress catastrophes very efficiently (Panda et al., 2000).
Similar fine details can be responsible for the observed high
variability in the rate of assembly and disassembly of indi-
vidual MTs (Drechsel et al., 1992; Gildersleeve et al., 1992;
Chrétien et al., 1995; Billger et al., 1996; Desai and Mitchi-
son, 1997). This also is beyond our simple model, unless it
is caused by differences in MT lattice structure. Different
protofilament numbers would lead to different stability
properties of MT ends even in our simple model.

Another simple consequence of our model is that if more
stress is stored in the MT lattice near an MT end, a higher
frequency of catastrophes results. Comparing to the equi-
librium MT configuration (13 protofilaments, 3-start helix),
an excess elastic energy can be stored by incorporating
lattice defects or by forming a tubule with different proto-
filament numbers and different helicities of the lattice. Mea-
surements of catastrophe frequencies as a function of pro-
tofilament number have not been done. The distributions of
MT protofilament numbers and MT lengths in an ensemble
have, however, been correlated with an enhanced catastro-
phe propensity: the distribution of MTs peaked very sharply
near the 13.3 configuration in Chrétien and Fuller (2000)
and supports such a correlation.

Alternatively, the elastic energy stored in the wall can be
decreased by incorporating straight elements, as, e.g., in
mixed GMPCPP-GDP or GTP-GDP lattices. Wild-type
yeast MTs can contain 6% GTP-tubulin distributed in the
wall (Dougherty et al., 1998). We believe that the stability
of the MT’s very end determines catastrophe probabilities.
Consequently, we expect that MTs polymerized from a
mixture of tubulins including a small percentage of straight
elements will not show dramatically different stability to-
ward catastrophe, a hypothesis that one can check experi-
mentally. (Once catastrophe has occurred, however, such a
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mixed-lattice MT will depolymerize only until a cap is
encountered embedded in the lattice.)

Finally, it is well known that many agents in the buffer
increase the frequency of catastrophe. These agents are not
necessary for dynamic instability, however, because this
phenomenon occurs also in purified tubulin solution (Desai
and Mitchison, 1997). This supports that catastrophe really
is an intrinsic capacity of the MT lattice, as we have
described it, and the role of various agents is only to change
the parameter values for properties on which this capacity
depends, such as bond strengths and the flexibility/stiffness
of tubulin.

More about the third state

Direct experimental evidence for the existence of a stabi-
lizing cap is based on the removal of the growing end
(Mitchison and Kirschner, 1984; Keates and Hallett, 1988;
Walker et al., 1989, 1991; Voter et al., 1991; Caplow, 1992;
Tran et al., 1997b). To explain the results, in particular the
observed waiting time between a cut and its consequenc-
es—usually depolymerization of plus ends, and growth at
minus ends—Tran et al. (1997b) introduced the notion of a
meta-stable third state. The existence of such a state-of-
waiting is even more pronounced in vivo, where the new
ends presumably arose by breaking of MTs under motor
forces (Vorobjev et al., 1997; Waterman-Storer and
Salmon, 1997b; Odde et al., 1999), or katanin (Quarmby,
2000). In our model, this third state occurs naturally at both
MT ends that are created when an MT is cut. Figs. 1 and 2
illustrate that an MT end made from GDP-tubulin alone,
like the MT ends created by cutting an MT, is meta-stable
in our scenario. Its configuration is less stable than one
involving straight segments of tubulin-t, so it has a higher
probability per unit time for suffering catastrophe (cf.
Fig. 5).

The very different behavior of the two MT ends created
by cutting an MT we “explain” as due to the polarity of the
tubulin dimer, hence beyond our simple model. We predict
that in the absence of free GTP-tubulin in solution, the two
MT ends created by a cut will suffer catastrophe at rather
similar rates, just like the MT ends studied in dilution
experiments (Voter et al., 1991; Walker et al., 1991).

Rescue

Our model also suggests a specific mechanism for rescue,
the transition from the depolymerizing to the polymerizing
state. It suggests that rescue is caused by a random thermal
fluctuation. At a typical physiological temperature an MT
experiences thermal fluctuations; it even bends thermally.
However, it is in the nature of thermal equilibrium that
thermal fluctuations not only add configurational energy,
they can and do remove it as well, and both processes occur

at random. This rescue mechanism is then random, and
intrinsic to MTs at physiological temperatures.

Experimentally, rescue does seem an intrinsic property of
MT dynamics because it occurs in the absence of MT-
associated proteins and other additives (Billger et al., 1996).
It also appears to occur at random when MT-associated
proteins are absent. Finally, it seems a thermally activated
process, as we suggest, judging from its temperature depen-
dence in Fig. 13 in Fygenson et al. (1994). Nevertheless, it
is perhaps the least understood aspect of dynamic instability
(Desai and Mitchison, 1997).

An alternative scenario for rescue goes as follows. As we
mentioned above, fast depolymerization is plausibly driven
by the spontaneous curling up of protofilaments (Tran et al.,
1997a). However, long coiled oligomers remain attached
only when they are stabilized by Mg2� or Ca2� ions (Man-
delkow et al., 1991; Tran et al., 1997a). This suggests that
breaking of longitudinal bonds in curled-up protofilaments
occurs in parallel with their curling up. If the breaking of
longitudinal bonds in a peeling protofilament is random and
can happen at a position that has not crossed the energy
barrier toward depolymerization (see Fig. 3), depolymeriza-
tion ceases, the third state has been recovered, and a tran-
sition back to the growing state has become possible. Here,
we have argued as if what happens to one protofilament,
happens to all protofilaments in a tubule simultaneously.
This is of course not the case. A real rescue requires that the
overwhelming majority of protofilaments stop to shrink
almost simultaneously. If we assume that the random break-
ing of longitudinal inter-dimer bonds is uncorrelated be-
tween protofilaments, this breaking must happen very often
at links of subcritical deflection to arrive at a reasonable
value for the joint probability. If lateral bond-breaking,
however, is strongly correlated with the curling-up, e.g.,
triggered by it, and curling up occurs with the same speed
for all protofilament (Tran et al., 1997a), coordinated by
interactions via lateral bonds, then rescues are easily ex-
plained as occurring via the randomly recurring third state.
Occam’s razor clearly favors our first suggestion above, that
rescue is the result of a simple thermal fluctuation relaxing
the MT lattice from its depolymerizing state and into its
meta-stable state.

Be that as it may, many details at the microscopic level
remain to be clarified experimentally. On the theoretical
side, full exploitation of our model regarding rescues re-
quires a Monte Carlo simulation of it, treating each proto-
filament independently and accounting for its lateral bonds
in the MT, and random breaking of longitudinal bonds as it
curls up at a depolymerizing end. More experimental input
is needed to guide the choices that must be made in the
detailing of such a simulation.

Experimental support for the random nature of rescue just
described would be provided by observation of pauses dur-
ing depolymerization in a buffer without free tubulin. Such
pauses we would interpret as the MT end being in the third
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state. As no free tubulin is present, full rescue to the grow-
ing state cannot occur; but half the process, its first step,
would have been observed in this interpretation. Such dis-
continuous shrinking is observed in various experiments
(Gildersleeve et al., 1992; Caplow and Shanks, 1996;
Vorobjev et al., 1997). The interpretation of these experi-
ments is ambiguous, however, as the effect on the rescue
process of solute tubulin and drugs present is not known.

Tapered MT ends

Many MTs appear to grow as a sheet of laterally bound
protofilaments that elongates at its tip, while closing into a
tube at its base (Erickson, 1975; Simon and Salmon, 1990;
Chrétien et al., 1995; Hyman and Karsenti, 1996; O’Toole
et al., 1999; Arnal et al., 2000). GTP hydrolysis is not
related to tubular geometry, it is observed also in extended
flat sheets induced by zinc ions (Melki and Carlier, 1993)
and in taxol-stabilized oligomers (Melki et al., 1996). This,
and the absence of observable tubulin-t at growing MT
ends, suggest that the curved terminal sheets are formed
mostly from GDP tubulin, and only the very end of them
can contain GTP subunits. The tubulin lattice in these open
sheets does not experience the stresses that the lattice in
closed tubules does, however. The sheets relax some of their
elastic stresses by adopting a curved configuration, bending
out longitudinally while bending toward closure into a tube
laterally. (Jánosi et al., 1998; Chrétien et al., 1999). Such a
sheet is consequently more stable in the third, meta-stable
state than a closed tube is, and it is more effectively stabi-
lized by a little tubulin-t at the ends of its protofilaments. It
may consequently serve as a structural cap, further stabi-
lized by tubulin-t. This scenario is quite far from that of a
GTP-cap stabilizing the blunt ends of a MT like the hoops
holding a barrel together, but it is logically consistent, and
in agreement with observations.
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