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ABSTRACT We develop a computationally efficient method to simulate the transition of a protein between two conforma-
tions. Our method is based on a coarse-grained elastic network model in which distances between spatially proximal amino
acids are interpolated between the values specified by the two end conformations. The computational speed of this method
depends strongly on the choice of cutoff distance used to define interactions as measured by the density of entries of the
constant linking/contact matrix. To circumvent this problem we introduce the concept of using a cutoff based on a maximum
number of nearest neighbors. This generates linking matrices that are both sparse and uniform, hence allowing for efficient
computations that are independent of the arbitrariness of cutoff distance choices. Simulation results demonstrate that the
method developed here reliably generates feasible intermediate conformations, because our method observes steric
constraints and produces monotonic changes in virtual bond and torsion angles. Applications are readily made to large
proteins, and we demonstrate our method on lactate dehydrogenase, citrate synthase, and lactoferrin. We also illustrate how
this framework can be used to complement experimental techniques that partially observe protein motions.

INTRODUCTION

Proteins are well known to be intrinsically flexible struc-
tures. Many proteins have been determined to have multiple
conformations (in some cases called “open” and “closed”
forms; Berman et al., 2000). Conformational transitions
between two forms are often important for understanding
the relationship between structure and function. In other
words, such motions are involved in many basic functions
such as catalysis, regulation, transportation, and aggregation
(Subbiah, 1996). Hence, comprehending conformational
transitions can be useful for understanding biological mech-
anisms, especially for protein machines.

However, it is also an important topic in molecular graph-
ics to visualize conformational transitions. Obviously, one
of the best ways is through animations, such as digital
movie files (e.g., AVI or MPEG). Animations usually are
produced by inserting images of intermediate conformations
between the two conformations. These hypothetical inter-
mediate conformations are visualized in sequence for an
animation.

There have been several previous efforts in this area.
Vonrhein et al. (1995) produced movies of conformational
transitions by linear interpolation between the atomic coor-
dinates of the two end conformations in Cartesian space.
One problem with that method is that the bond lengths and
angles of the intermediate conformations can be unrealistic,

and in several cases protein chains actually pass through one
another. To overcome this problem, Gerstein and Krebs
(1998) applied proper restraints and minimized the energy
of each intermediate conformation to correct for molecular
stereochemistry and enforce rules of molecular structure.

An alternative interpolation approach is to use internal
coordinates such as bond lengths, bond angles, and torsion
angles instead. Kleywegt and Jones (1996) implemented
this approach to construct intermediate conformations with
their LSQMAN program. Ideally, this approach produces
realistic bond lengths and torsional angles, but this method
also has some problems. If one constructs intermediate
conformations by interpolating torsional angles between
two end conformations while holding bond lengths and
angles fixed, one will often obtain infeasible pathways for
several reasons. First, it may not even be possible for the
conformation from one end to reach the other end in Car-
tesian space because the two conformations do not have
identical values of internal variables such as bond lengths
and bond angles. Therefore, one must either refine the two
end conformations until they have a consistent set of inter-
nal variables, except for the torsion angles, before interpo-
lating over torsion angles, or instead interpolate all of the
internal variables simultaneously to avoid this problem. A
second limitation is that in the process of generating inter-
mediate conformations some residues can come too close to
each other in order to not break the smoothness of the
simulated pathway and this can produce unfavorable states
in the sense of high-energy interactions and steric clashes.
Fig. 1 shows that a particular pair of �-carbons can come
too close to each other during conformational transitions
using internal coordinate interpolation, which would give
rise to exceedingly high repulsive energy peaks because of
van der Waals forces between nonbonded atoms. A third
problem occurs for specific values of internal rotation an-
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gles. Most are not equi-energetic for all values. Conse-
quently, some forms have higher energies, and the interme-
diate forms generated could have inordinately high values,
even if other lower energy pathways do exist.

There has been substantial work on the development of
algorithms to generate plausible “reaction pathways.” Elber
and Karplus (1987) proposed to make a trial path connect-
ing reactant and product structures. This path minimizes the
functional

T �
1

L �
rR

rP

U�r�dl�r�, (1)

where l(r) is the reaction path connecting reactant (rR) and
product (rP) structures, U(r) is the potential energy, and L �
� dl(r) is the path length (Czerminski and Elber, 1990). This
algorithm demonstrates a good reaction path for the alanine
dipeptide and the tetrapeptide IAN. However, the path that
minimizes the functional above may not be the path with the
maximum rate of transition between reactants and products.
Jónsson et al. (1998) developed a “nudged elastic band
method,” which is a modified path method to find minimum
energy paths by constructing a set of intermediate confor-
mations between reactant and product structures. A spring
interaction between adjacent conformations is added to en-
sure the continuity of the path. Minimization of the force

acting on the conformations yields the minimum energy
path. Another path method is the MaxFlux method proposed
by Huo et al. (1997). It computes the reaction pathway of
maximum diffusive flux by minimizing a discretized form
of the line integral in Eq. 1 with added restraints such as
constant mean-square distance between adjacent intermedi-
ates, repulsive interactions between adjacent intermediates
along the path, and linear and angular momentum conser-
vation for the system. This method was used to find the
optimal pathway of the coil-to-helix transition in a short
polyalanine chain, but these path methods have not been
applied to a large protein because it is a computationally
demanding task to find the global minimum value of the
objective function in a high-dimensional space out of all
possible reaction paths.

Some methods have considered probabilistic models of
pathways. Olender and Elber (1996) integrated classical
Newtonian dynamical equations of motion to compute long-
time molecular dynamics trajectories based on the stochas-
tic path integral. The activated dynamical transition path
method developed by Dellago et al. (1997) generates and
samples an ensemble of transition paths, which evolve ac-
cording to stochastic dynamics (either Metropolis Monte
Carlo or Brownian dynamics) and conserve the Boltzmann
distribution. Again, these stochastic methods have been
tested for simple cases such as the alanine dipeptide and
two-dimensional Lennard-Jones clusters, but they also are
computationally too expensive to be applied to a large
protein.

Molecular dynamics (MD) simulations, a powerful
method for the study of details of molecular motion, and
normal mode analysis (NMA) using all-atom empirical po-
tentials, are often used to follow the dynamics of proteins
(Brooks and Karplus, 1985; Xu et al., 1997; Xu and Sigler,
1998). However, the use of atomic approaches becomes
computationally inefficient with the increased size of a
system.

To reduce such a computational burden, many recent
papers have demonstrated the utility of coarse-grained pro-
tein models by including, for example, only �-carbons as
point masses representing residues and using a simplified
potential for considering internal interactions between
neighboring residues. Such models are suitable to describe
the global motions of complex systems of small proteins or
single proteins having more than several thousand residues
(Atilgan et al., 2001; Bahar and Jernigan, 1998; Bahar et al.,
1999; Jaaskelainen et al., 1998; Tama and Sanejouand,
2001; Tirion and Ben-Avraham, 1993, 1998).

In this paper we develop a new interpolation method for
generating feasible pathways for conformational transitions
using the simplest potential and coarse-grained protein
models. The key idea is to interpolate uniformly the dis-
tances between spatially proximal residues in both confor-
mations within the context of the elastic network model.
The present approach can be referred to as a “distance
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FIGURE 1 An example of torsional angle interpolation between two lac
repressor headpiece structures (named 1LCC and 1LCD, Protein Data
Bank). (a) During the conformational transition from 1LCC to 1LCD, the
�-carbons of Val-15 and Thr-34 unrealistically come too close to each
other, �1 Å. (b) This unrealistic relative distance between two atoms
(solid-dot line) is compared to the result of the “distance interpolation
method” developed in this paper (solid line). The conformation from one
end does not reach the other end in Cartesian space because the two sets of
crystallographic coordinates do not yield identical values of bond lengths
and bond angles. One must either refine the two end conformations until
they have a consistent set of internal variables, except for the torsion
angles, before interpolating over torsion angles, or interpolate the full set of
internal variables simultaneously. However, our method appears to con-
form well to steric constraints when reaching the other end without refine-
ment of internal variables.
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interpolation method,” which is completely different from
position interpolation in Cartesian space. Because we inter-
polate relative distance between spatially close residues,
unrealistic conformations and steric clashes become far less
likely. This method offers a reasonable compromise be-
tween oversimplified linear interpolation in Cartesian or
internal coordinates and computationally expensive meth-
ods such as MD simulations. We discuss this efficient
modeling technique for large proteins. Our method com-
putes sets of interpolated conformations within reasonable
times in cases where full-atom computations such as MD or
even NMA may be infeasible. Unlike dynamics-based
methods in which the size of the timestep used is limited by
the stiffest part of the structure, our method is purely geo-
metric and so the number of required animation frames is
dictated only by the difference in shape between the two
conformations. An added advantage to this kind of model is
that having virtual bonds attaching each �-carbon to all those
that are within a sequential distance of three units induces
stiffnesses in the virtual bond angles and torsion angles while
retaining the ease of using Cartesian coordinates.

METHODS

Incremental construction of
intermediate conformations

We derive here an incremental formulation to generate intermediate con-
formations. The key idea is to interpolate between two values for the
distances between spatially proximal �-carbons, which are artificially
connected with springs in the elastic network model (Atilgan et al., 2001;
Bahar et al., 1997). Although the relationship between molecular confor-
mations and the distances between atoms in conformations has been
studied extensively (Crippen and Havel, 1988), our goal is to generate
intermediate conformations by finding small changes in �-carbon positions
that result from inducing correspondingly small changes in inter-residue
distances.

Suppose that we have sets of �-carbon coordinates for the two end
conformations of the same protein denoted by {xi} and {�i}, respectively.
One can build two elastic network models, one for each of these confor-
mations. We introduce a cost function as follows

C��� �
1

2 �
i�1

n�1 �
j�i�1

n

ki,j��xi � �i � xj � �j� � li,j�
2. (2)

Here � � [�1
T, . . . , �n

T]T is a 3n-dimensional vector of displacements, with
n being the number of residues. An intermediate conformation is defined
by the value of � that minimizes this cost when all other parameters are
held constant. The linking (“contact”) matrix k is an n 	 n matrix
containing the information about which amino acid residue is either con-
nected to, or in contact with, any other. It is formed as the “union” of the
two linking matrices for {xi} and {�i}, so that ki,j can have value 1
whenever residues i and j are judged to be in contact in either conformation
and 0 otherwise. The value li,j is the desired distance between i and j, which
can be chosen as

li,j � �1 � ���xi � xj� � ���i � �j�, (3)

where � is the coefficient specifying how far a given state is along the
transition from {xi} to {�i}. For example, when � � 0.5, the desired
conformation is the one with inter-residue distances at the average values

of those for conformations {xi} and {�i}. Using the “union” linking
matrices confines the intermediate conformations to the interval between
the two end conformations.

The cost function in Eq. 2 can be related to the classical pairwise
potential functions of biophysics in the following way. Suppose that a
coarse-grained (C-alpha) potential function between any two residues i and
j is Vi,j(�xi � xj�). If from the crystal data we know that there are two
conformations, we seek to establish a series of “artificial” equilibrium
states by perturbing this potential at artificial time t. This results in an
artificial potential of the form

V��, t� � �
i,j

Vi,j��xi � �i � xj � �j� � li,j�t��. (4)

The goal at each value of time is then to let the system relax so that the
values of the small displacements cause the new conformations to settle at
new artificial equilibria. Because the i � 1st state is always calculated
relative to the artificial equilibrium established for the ith state, a Taylor
series expansion of each Vi,j(r) up to quadratic order will result in an
expression of the form in Eq. 2. Here r is the inter-residue distance. The
linear term in the Taylor series expansion

Vi,j�r0 � �� � Vi,j�r0� � V
i,j�r0�� � 1
2

V �i,j�r0��
2 (5)

(where r0 is the previous equilibrium value of inter-residue distance and �

is the small change) vanishes when summed over all values of i and j
because of the definition of an equilibrium state. Even if the potential
function is singular, such as in a six-twelve potential, the Taylor series
expansion in a small neighborhood of an equilibrium is valid because the
function will always be analytic locally. Hence, starting from an arbitrary
potential function, one will always arrive at Eq. 2 when small incremental
deviations from equilibrium are made. The only influence the potential will
have is on the values of ki,j, which are held constant over time and over all
values of i and j for simplicity in the elastic network model, but could
easily be allowed to vary within the framework given below to reflect any
potential function.

Our goal is to find values of � that minimize Eq. 2, which itself can be
linearized for small values of ��i� and ��j� with a Taylor series approxi-
mation. If we consider an individual term in Eq. 2

Ci,j � 1
2

ki,j��xi � �i � xj � �j� � li,j�
2, (6)

then this can be written as

Ci,j � 1
2

ki,j�Ci,j
(1) � Ci,j

(2) � Ci,j
(3)�, (7)

where

Ci,j
(1) � ��i � �j�

T��3 � li,j

A�xi � xj�

�xi � xj� ���i � �j�, (8)

Ci,j
(2) � 2�1 �

li,j

�xi � xj�
��xi � xj�

T��i � �j�, (9)

and

Ci,j
(3) � �xi � xj�

T�xi � xj� � 2li,j�xi � xj� � li,j
2 . (10)
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In Eq. 8 we use � 3 to denote the 3 	 3 identity matrix, and

A�x� � �3 �
xxT

�x�2 .

If we take G
i,j � �3	3 such that

G
i,j � ki,j��3 � li,j

A�xi � xj�

�xi � xj� � , (11)

then

1

2 �
i�1

n�1 �
j�i�1

n

ki,jCi,j
(1) �

1

2
�T�� (12)

for some 3n 	 3n matrix �, which can be divided into 3 	 3 blocks �i,j.
Generally, if i 
 j,

�i,j � �G
i,j. (13)

When i � j, the result is

�i,i � �
k�1

i�1

G
k,i � �
k�i�1

n

G
i,k � �
k
i

G
k,i. (14)

Let vi,j � �1	3 be

vi,j � 2ki,j�1 �
li,j

�xi � xj�
��xi � xj�

T. (15)

Then

1

2 �
i�1

n�1 �
j�i�1

n

ki,jCi,j
(2) �

1

2
��, (16)

where

� � ��1, �2, . . . , �n� � �1	3n (17)

and

�i � � �
k�1

i�1

vk,i � �
k�i�1

n

vi,k � �
k
i

vi,k. (18)

Let B be

B �
1

2 �
i�1

n�1 �
j�i�1

n

ki,jCi,j
(3). (19)

When retaining terms to quadratic order, the result will have the form

C��� � �
i�1

n�1 �
j�i�1

n

Ci,j �
1

2
�T�� �

1

2
�� � B, (20)

where B is a constant. The matrix � is a 3n 	 3n matrix akin to a stiffness
matrix that relates the relative cost of displacing any particular residue
from its current position as compared to all other residues. We minimize
C(�) with respect to �, which results in the following constraint equation:

�C���

��
� �� �

1

2
�T � 0. (21)

We note that � � �3n	3n always has three zero eigenvalues correspond-
ing to translation modes, because a translated version of � satisfying Eq. 21
can also minimize the cost function. That is, the solution of Eq. 21 is not
unique. To solve this problem, one can either assume a particular point is

fixed in space so that � can be reduced to a nonsingular (invertible) matrix,
or add the constraint of linear momentum conservation such that

�
i�1

n

mi�i � 0. (22)

In this case we take mi � 1. Viewing � as a stiffness matrix, � is like a
generalized force that is used to push the system along the simplest
realizable path connecting the two conformations.

Computational complexity

We have previously observed that the dynamic behavior and computational
complexity of elastic network models of proteins vary with distance cutoff
values defining interactions. Namely, large cutoff values yield increased
numbers of interacting pairs. Consequently, the system becomes stiff, the
amplitudes of fluctuations diminish with larger cutoff values, and the
matrices describing the system become less sparse. Also for relatively short
cutoff values, it is possible to get more than six zero eigenvalues corre-
sponding to rigid-body modes in normal mode analysis, and there can be
extremely large amplitude fluctuations along particular directions for par-
ticular residues (Atilgan et al., 2001). Likewise, our interpolation method,
which is basically derived from a matrix similar to a stiffness matrix, is
sensitive to cutoff values and the geometry of a given protein structure.
Extremely short cutoff values will connect the residues only with their
local neighbors. This can cause unrealistic results that lead to discontinuous
animations. Adoption of larger cutoff values eliminates such behavior.
However, denser linking matrices can increase tremendously the compu-
tation time required for generating intermediate transitions in large protein
models composed of thousands of residues. The denser the matrix is, the
longer the computation time is. Later we will demonstrate this relationship
quantitatively. Fig. 2 illustrates how the sparsity pattern of the union
linking matrices of lactoferrin (1LFG and 1LFH) depends on the cutoff
values. When the cutoff value is 10 Å in (a), some residues have poor
connections, so that the resulting pathway cannot be realistic. A larger
cutoff value of 15 Å substantially increases the density of the linking
matrix.

We address a new way to produce uniformly sparse linking matrices.
The method reduces computational costs for the whole interpolation pro-
cess and also guarantees realistic results. For this purpose, a linking matrix
can be created by imposing a cutoff on the number of residue contacts
rather than on the cutoff distances. We can connect one residue to its
neighboring residues by increasing the cutoff distance until the limiting
number of contacts is reached, regardless of the actual distance of the last
connection. This enables the linking matrix to remain sparse and uniformly
dense because all residues will have the same number of connections. One
can see that this method creates a suitable linking matrix based on a contact
number of 20 with a sparseness resembling one based on a cutoff distance
of 10 Å in Fig. 2, but which no longer has any weakly connected parts. This
is a smoothed, more uniform representation of protein structure.

Visualization

Animations of conformational transitions are more comprehensible than a
series of static pictures, and are particularly useful for teaching (Booth,
2001). We incrementally generate 99 transient conformations between the
two end conformations using the present distance interpolation method. In
the implementation, we calculate � to minimize our cost function in Eq. 2
when � � 0.01. Then we obtain the first intermediate conformation
denoted by {xi

1}, which is 1% along the path between {xi} and {�i}. That
is,

xi
1 � xi � �i (23)
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where xi
1 is the position of the ith residue out of the set {xi

1}. Likewise for
the next incremental conformation {xi

2},

xi
2 � xi

1 � �i (24)

where � is the solution of Eq. 21 when � � 0.02 in the next incremental
step. The remaining conformations are then obtained in this iterative way.
We store them in pdb format and generate 3D pictures with Rasmol. These
static pictures are used sequentially to create movies.

Our interpolation method concerns itself not with the absolute spatial
positions of atoms, but instead with distances between interacting pairs.
For this reason, sometimes the solved conformations starting from one
conformation do not converge to the actual spatial position and orientation
of the other conformation, even though the shape is sequentially interpo-
lated quite well. We resolve this problem simply by doing a rigid-body
superposition at each timestep.

SIMULATION RESULTS

To test our interpolation method, we choose several protein
conformation pairs: lac repressor headpiece (1LCC and
1LCD), lactate dehydrogenase (1LDM and 6LDH), citrate
synthase (4CTS and 1CTS), and lactoferrin (1LFG and
1LFH). Movies of the conformational transitions in these
systems can be found at http://custer.me.jhu.edu/proteins/
movies.html. Table 1 shows that the size of the protein and
the density of the linking matrix are major determinants of
computational time.

For small proteins it appears that a cutoff distance of 10
Å is sufficient to form a linking matrix for generating a
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FIGURE 2 The sparsity patterns
of the linking matrices. We apply
two different cutoff methods to a
model protein lactoferrin (1LFG and
1LFH). (a) The cutoff distance is 10
Å and this matrix contains 2.91%
nonzero values. (b) The contact
number of 20 is used as a cutoff
regardless of neighbor distance. The
density of this matrix is similar to
the one based on a cutoff distance of
10 Å having a density of 3.17%, but
it is more uniform and produces
smoother transition pathway. (c)
New connections are shown. (d)
Broken connections are displayed.

TABLE 1 Relationships between linking matrix density and computational efficiency for sample proteins

Transition No. of Res. Cutoff Type Density* Flops† Time‡ (sec)

1LCC 3 1LCD 51 10Å 30.8% 5.41 	 106 0.44
1LDM 3 6LDH 329 10Å 5.8% 3.72 	 108 52.12
4CTS 3 1CTS 437 10Å 4.3% 6.13 	 108 96.17
1LFG 3 1LFH 691 10Å 2.9% 2.11 	 109 257.22
1LFG 3 1LFH 691 15Å 8.6% 4.36 	 109 1386.80
1LFG 3 1LFH 691 No. of Contacts � 20 3.2% 2.57 	 109 275.12

*Density is the percentage of nonzero elements in the linking matrix.
†Flops is the total number of floating point operations used in a Matlab implementation of the algorithm.
‡Time is elapsed time for calculating a single intermediate conformation on a 1.5 GHz Pentium with 512 MB memory.
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feasible pathway, but the linking matrix of lactoferrin with
the same cutoff distance creates unrealistic intermediate
conformations between 1LFG and 1LFH. In such a case,
poorly connected parts move discontinuously in Cartesian
space during the transition. One can adopt larger cutoff
distances to overcome this problem. However, the larger
cutoff distances increase computation times sharply. Simu-
lation with a cutoff distance of 15 Å for lactoferrin takes about
five times as long as with a cutoff distance of 10 Å. Alterna-
tively, our uniform and sparse linking matrix, generated with a
contact number cutoff of 20, enables computing feasible path-
ways in relatively short times. This method not only generates
feasible pathways more reliably but also runs faster.

Figs. 3 and 4 illustrate the conformational transition be-
tween the corresponding pair of “open” and “closed” crys-
tallographic structures of lactate dehydrogenase and citrate
synthase, respectively. Intermediate conformations obtained
using the distance interpolation method developed in this
paper give rise to feasible and continuous pathways.

Our interpolation method reliably generates conforma-
tional transitions without steric obstructions for large pro-
tein pairs. Fig. 5 shows the simulation results for the con-
formational transition of lactoferrin, which consists of 691
residues. This simulation illustrates the movement from the
closed (diferric) form (1LFG) to the open (apo) form
(1LFH). Virtual bond angles and torsion angles are calcu-
lated for the intermediate conformations. Secondary struc-
tures of the protein move approximately as rigid bodies
during the transition. Their virtual bond and torsion angles
change little between the two end conformations. However,
the dominant angle changes often occur near loops, which
connect two secondary structures. In Fig. 6, dark parts of the
structure represent the residues with torsion angles having
the largest changes during the transition. Most of them,
except Val-250, are located in loop regions. Val-250 and
Thr-90 play an important role in the transition, acting as a

hinge between the two subdomains at the bottom of the
structure. Fig. 7 a shows the minimum distance between the
closest pairs of �-carbons. Our interpolation method creates
intermediate conformations without the severe steric clashes
that occur with the simple method of interpolating over
internal coordinates as shown in Fig. 1. RMS value mea-
sures the position error between corresponding �-carbons of
the two conformations. Fig. 7 b displays RMS values of all
intermediate conformations with respect to the initial con-
formation {xi}. They increase linearly and monotonically
throughout the transition. Fig. 7 c shows the value of the
cost function in Eq. 2. Fundamentally, the cost function is a
geometric measure of how far the conformation is from the
prespecified simplest path between conformations. By def-
inition, the cost at the endpoints will be zero if the method
has successfully generated a feasible pathway, and as the
cost is a nonnegative quantity, it will always have a maxi-
mum located between the initial and final conformations.
The density of linking matrices for all intermediate confor-
mations is shown in Fig. 7 d when using a distance cutoff.
The intermediate conformations are more flexible than the
two end conformations in the context of an elastic protein
model with a distance cutoff, whereas density is constant
when using a number cutoff.

We provide as a goal for the model a set of linearly
interpolated distances between every pair of connected res-
idues in Eq. 3. This is chosen because it is the simplest way,
but this does not mean that the path that is actually gener-
ated by our method corresponds to linear interpolation of
distances because of the cooperativity of the coupled set of
springs. Conversely, if various nonlinear trajectories in in-
ter-residue distances are specified, the cooperativity of the
system can wash out deviations from the collective behav-
ior. To illustrate this point, we examine an example in
which the set of desired distances li,j are no longer linearly
interpolated, but still have the same initial and end values as

FIGURE 3 Simulation of interme-
diate conformations between 1LDM
and 6LDH of lactate dehydrogenase
structures using the cutoff distance of
10 Å. A large conformational change
is observed at the upper left, where a
surface loop opens at the active site.

FIGURE 4 Simulation of interme-
diate conformations between 4CTS
and 1CTS of citrate synthase struc-
tures using the cutoff distance of 10
Å. It consists of two domains with
the active site between them. The
small domain swings away from the
large one to uncover the active site.
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before. We generate sequences of coordinates using the new
li,j functions (some of which are nonlinear functions), and
apply our method. The shape deviations in the resulting
conformations during the animation are compared to those
obtained when using linear distance interpolation by RMS
position error (Fig. 8). We apply a quadratic li,j to the two

residue pairs having the largest distance changes during the
transition with all the other li,j values driven linearly, as in
Eq. 3. However, the two pairs that are specified to behave in
a nonlinear way end up being forced by their surrounding to
behave linearly, as shown in Fig. 9. The constraints from the
surroundings do not allow them to trace the “desired” input

FIGURE 5 Simulation of intermediate conforma-
tions between lactoferrin forms 1LFG (“closed”)
and 1LFH (“open”) using the contact number cutoff
of 20. Here 99 intermediate conformations are ob-
tained incrementally using our interpolation method,
and 2 of these intermediate conformations (� �
0.33, 0.66) are shown. This shows the movement of
lactoferrin from the “closed” form to the “open”
form.

FIGURE 6 Virtual torsion angle
variation during transition of lacto-
ferrin. Bold stripes represent the res-
idues for which torsion angles signif-
icantly vary. Especially, Thr-90 and
Val-250 residues act like hinges to
open two subdomains at the bottom,
as shown in Fig. 5. Large angle
changes between the two end confor-
mations appear primarily in loop
structures.
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paths. Furthermore, all of the RMS values we calculated in
Fig. 8 are smaller than the resolution of the experimentally
determined crystal structures themselves.

From the above discussion we conclude that for all prac-
tical purposes our method generates feasible pathways that
are somewhat insensitive to the user-specified choice of li,j.
That is, the global behavior of this coarse-grained model
overrides particular user-specified parameters when those
parameters deviate substantially from the collective behav-
ior. Hence, as long as the overall trend is for inter-residue
distance trajectories to follow a monotonic temporal path,
our linear inputs are a reasonable choice. However, if one is
not interested in the simplest feasible pathway, our method

can still be useful. For instance, if one is interested in
generating ensembles of paths rather than a single feasible
path, our method can be run many times (serially or in
parallel) to generate truly different pathways by varying the
lij(t) relative to each other. Hence, the speed of our method
has the potential to assist in the statistical mechanical anal-
ysis of protein conformational transitions, though that is not
our emphasis here.

Incorporating partial conformational data

In this section we explain how our distance interpolation
method can be used to incorporate incomplete conforma-

FIGURE 7 Statistics of the confor-
mational transition in lactoferrin. (a)
The minimum distance between all
possible pairs of �-carbons in inter-
mediate conformations shows that
our method observes steric con-
straints. (b) RMS measures the dif-
ference of position between corre-
sponding �-carbons relative to the
starting form. (c) The value of the
cost function in Eq. 1 is shown. (d)
Linking matrices of intermediate
conformation are sparser than those
of the two end conformations when
using a distance cutoff.

FIGURE 8 The comparison of
simulation results using several dif-
ferent inputs in lactoferrin. (a) RMS
values of the intermediate conforma-
tions generated by linear, quadratic,
and cubic distance trajectory inputs
with respect to the initial conforma-
tion {xi} are shown, respectively. (b)
The shape deviations of the interme-
diate conformations calculated using
nonlinear distance trajectories as in-
puts compared to those obtained
when using linear interpolation is
shown. The magnitudes of the varia-
tions are smaller than the resolution
of the crystal structure of lactoferrin.
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tional information obtained from experiments into computer
simulations of protein motions. In instances when two crys-
tallographic structures are not available, this application of
our model will be of value. A number of experimental
techniques are available for determining partial conforma-
tional data. One set of techniques is centered around the use
of fluorescent energy transfer to capture a limited number of
inter-residue distances in different conformations (Wu and
Brand, 1994). Other techniques have been developed to
mechanically manipulate large molecules directly and mea-
sure the history of the applied force (Bustamante et al.,
2000). NMR can be used for determining time-resolved
conformational data (Balbach et al., 1995; Dyson and
Wright, 1996).

These experimental methods for determining conforma-
tional data generally do not provide as complete information
as crystallography, but in some instances this is balanced by

their ability to provide time-resolved information. Equation
2, which forms the basis for our method, applies in the
context of interpolating between two crystal structures, and
it also can serve as a tool for visualizing global protein
motions that are consistent with time-resolved distance tra-
jectories between two or more residues. In the context when
a small subset of the li,j values can be determined experi-
mentally as functions of time, these values can be directly
substituted into Eq. 2. Then our formulation proceeds as
before.

We now demonstrate how this incorporation of partial
conformational data into our model can be done. Consider
again lactoferrin, and assume that only the open crystallo-
graphic state is given. In this case the linking matrix for this
state alone (and not the union of two linking matrices) is
used for ki,j. Again, a value of one means two residues are
in contact and a zero means that they are not. To test how

FIGURE 10 A schematic diagram of lactoferrin structure and the “windowed RMS” values of the simulation results from a single complete set of
crystallographic data and limited amounts of time-resolved data. (a) The open lactoferrin structure is simplified as three rigid body pieces and it is assumed
that seven new inter-residue distances are measured for a second conformation. The li,j(t) values that describe the new conformation are enforced by direct
substitution into Eq. 2 with a large value of that particular ki,j of 100, and the same ki,j value is applied to the connections within each rigid body component.
(b) The RMS difference between the end conformation generated in this way, {xi

100}, and the targeted conformation, {�i}, is only 2.5 Å. The windowed
RMS plots consecutively capture 70 residues per window. The solid line stands for the windowed RMS value of {xi} relative to {�i}, while the solid-dot
line indicates the windowed RMS value between {xi

100} and {�i}. Our distance interpolation method with limited secondary conformational data captures
the global behavior of lactoferrin’s conformational transition well.

FIGURE 9 Simulation result in
lactoferrin with mixed input such that
most residue pairs are designated to
follow the linear interpolation of dis-
tance, except two particular pairs that
are driven by the quadratic input (sol-
id-dot line). (a) The distance between
Asn-13 and Gln-186 (solid line) ap-
pears to vary linearly, not following
the input form. (b) Likewise, the dis-
tance between Asn-234 and Val-606
decreases linearly. This indicates that
surrounding pairs force them to fol-
low the global behavior with obser-
vation of sterics.
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well our method would work if a second incomplete set of
inter-residue distances were determined experimentally, we
sample a small subset of li,j values from the closed crystal-
lized form of lactoferrin. We choose this subset of the li,j
values to contain at least one set of six residue-residue pairs.
We have divided the whole structure into three essentially
rigid pieces and assumed seven experimentally determined
li,j(t) values to be linear trajectories from the open to closed
values in Fig. 10 a. Because most inter-residue distances are
not specified for the second conformation, we use the sim-
ple update rule for those pairs that are not specified in the
second conformation as follows

li,j�t � �t� � 	 �xi�t� � xj�t�� if �xi�t� � xj�t�� 	 lmin

lmin if �xi�t� � xj�t�� � lmin,

(25)

where we set lmin � 3.8 Å.
This allows any strain between intermediate and initial

conformations to relax unless it results in steric clashes. The
RMS difference between the end conformation generated in
this way with the targeted crystallographic data is small, as
shown in Fig. 10 b, indicating that the protein’s cooperat-
ivity is captured well using our incremental distance inter-
polation method, and that much can be inferred about global
protein motions from a single complete set of crystallo-
graphic data and limited amounts of partial data that de-
scribe a second conformation. Hence, our framework may
be used as a visualization tool for experimentalists to su-
perimpose partial conformational data onto crystal struc-
tures to examine the structural/kinematic implications of
measured inter-residue distances.

CONCLUSIONS

We have developed a computationally efficient method for
the realistic simulation of proteins exhibiting transitions
between two crystallized conformations. Our method is also
flexible and general enough to incorporate partially ob-
served, time-dependent conformational data from experi-
ments. It is based on a coarse-grained elastic network
model. Using cutoffs in the number of nearest neighbors
generates a linking matrix that is both sparse and uniformly
dense, hence permitting efficient computations. Our dis-
tance interpolation method is the fastest method available
for generating conformational transitions while still preserv-
ing steric constraints. This is because it involves only one
inversion of a very sparse 3n 	 3n matrix for each frame in
the animation, where n is the number of amino acid resi-
dues. Unlike dynamics-based methods in which the size of
the timestep used is limited by the stiffest part of the
structure, our method is purely geometric, and so the num-
ber of required animation frames is dictated only by the
difference in shape between the two conformations. Typi-
cally, we choose 99 intermediate frames, whereas dynam-

ics-based approaches must use several orders of magnitude
more timesteps to achieve conformational transitions. Our
method also has the benefit that it is not sensitive to param-
eter choices, solvation, or quantum mechanical effects,
which is not the case with the most physically detailed
models. While physical reality is the ultimate goal of all
computational modeling methods, we believe that having a
method effective for proteins of several hundred residues
with an accessible PC in a few hours may be preferable to
more “realistic” techniques requiring months of high-per-
formance computer time, and are not guaranteed to con-
verge due to round-off errors, instability of numerical inte-
gration, or even a lack of full knowledge about the true
nature of the chemical potentials involved in proteins.

Simulation results illustrate that the distance interpolation
method presented here reliably generates sequences of fea-
sible intermediate conformations of proteins without steric
clashes. Animations produced using this method are posted
at http://custer.me.jhu.edu/proteins/movies.html. The dis-
tance interpolation method represents an improvement over
simplified linear position interpolations in terms of the
realism of intermediate forms, and over all-atom computa-
tional methods such as MD and NMA, in terms of compu-
tational efficiency.
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