R.E. Georgescu, E.G. Alexov, and M.R. Gunner

Supplementary material: Biophysical Journal Oct. 2002

SM I-X: Experimental and calculated pK_a 's for residues with measured pK_a 's. Residue name is underlined if it has electrostatic interactions with residue is in either category reaction field energy ($\Delta\Delta G_{rxn} > 4.08$ kcal/mol). Only the initial heavy atom conformer in the starred protein data file is used to determine if a another residue of more than -3 ApK units (-4.08 kcal/mol). If the residue name is in bold the ionized form has lost more than 3 ApK units of

were explicitly reported otherwise n was estimated from the shape of published titration curves). Expt: Experimental pK_a 's: \pm : Reported error of experimental measurements; n: reported Hill coefficient value (<u>underlined</u>, if the n values

All other coordinates obtained by x-ray crystallography. For the NMR structures the pK_a is the average value for the ensemble of structures; Electrostatics. All other calculations obtained with MCCE. *: Representative calculation for this protein. §: Calculations using NMR structures Absolute errors greater than 1 pH unit in bold while those greater than 2 pH units are also underlined. #: SCCE: Single Conformation Continuum The columns headed by protein data file name contains the calculated pK_a 's. Err: Difference between calculated and experimental value

computed pK_a's for a given protein data file is $sqrt(\frac{1}{N}\sum_{i=1}^{N}(pK_{exp} - pK_{calc})^2)$ where N is the number of residues with known pK_a's; Conf: calculations carried out with 0.15 M ionic strength and $\varepsilon_{\text{prot}}=4$ except for \P where $\varepsilon_{\text{prot}}=8$ and \parallel where $\varepsilon_{\text{prot}}=20$. RMS: root-mean-square error of RMSV: Root-mean-square-variation of pKa's calculated for a given residue (J) in the group of n structures is $sqrt(\frac{1}{n}\sum_{j=1}^{n}(pK_{av}-pK_{J})^{2})$. All

Number of conformers in the calculation. Several proteins have ions that influence residue pK_a's. +: Ion included; -: no ion.

	SM
	B
	nci
	<i>U</i>
	S
	am
	y la
	0li
١	gu
\$	ef
	aci
	iet
	SI
	ğ
	E
	na
	Se
	•

X-ray structures: 1A2P (Martin et al., 1999) and 1B20 (Buckle et al., 1993) and 20 NMR structures in 1BNR (Bycroft et al., 1991). Experimental pK_a's (Oliveberg et al., 1995). The pK_a of His18 (Loewenthal et al., 1993)

Conf	RMS	His	Glu	<u>Gh</u>	Glu	Ctr	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp	
		18 7.72	<u>73</u> 2.1	<u>60</u> 3.20	29 3.75	<u>110</u> 3.30	101 2.00	<u>93</u> 2	86 4.20	<u>75</u> 3.10	<u>54</u> 2.2	44 3.50	22 3.30	<u>12</u> 3.65	<u>8</u> 3.06	Expt
		$0.05 \ 1.0$	0.1 1.2	0.1 0.9	0.05 0.8	0.1 0.9	$0.2 \ 1.0$	0.3 \	0.1 0.8	0.2 \	0.3 0.9	0.1 0.9	0.1 0.9	0.1 0.9	0.1 0.9	± n
		7.0	-1.0	4.1	1.4	-0.4	-0.9	-1.1	5.2	3.9	-1.1	4.1	2.5	2.6	1.1	#1A2P
96	2.11	-0.7	<u>-3.1</u>	0.9	-2.4	-3.7	-2.9	<u>-3.1</u>	1.0	0.8	<u>-3.3</u>	0.6	-0.8	-1.1	-2.0	#Err
		6.6	0.6	1.8	2.6	2.7	3.2	1.4	4.9	4.5	2.3	4.0	2.7	3.7	1.4	*1A2P
526	1.04	-1.1	-1.5	-1.4	-1.2	-0.7	1.2	-0.6	0.6	1.4	0.1	0.5	-0.6	0.0	-1.7	*Err
		7.0	-0.8	2.9	2.3	1.9	3.3	2.7	4.8	4.8	2.8	3.9	3.7	3.6	1.7	1B20
480	1.26	-0.8	-2.9	-0.3	-1.5	-1.4	1.3	0.7	0.6	1.7	0.6	0.4	0.4	-0.1	-1.4	Err
		6.8	3.6	3.6	4.5	3.4	3.0	1.6	5.9	4.6	1.8	3.9	3.7	3.8	2.0	§1BNR
291	0.94	-0.9	1.5	0.4	0.8	0.1	1.0	-0.4	1.7	1.5	-0.4	0.4	0.4	0.2	-1.0	§Err
	1.63	0.1	3.2	1.3	0.8	1.6	1.3	0.8	1.8	2.3	2.6	0.5	0.6	0.8	1.2	§RMSV
		6.6	0.6	3.1	4.1	2.0	2.6	2.4	4.9	1.4	1.3	4.3	3.5	3.4	3.4	¶1A2P
450	0.91	-1.1	-1.5	-0.1	0.4	-1.3	0.6	0.4	0.7	-1.8	-1.0	0.8	0.2	-0.2	0.3	¶Err
		6.6	2.5	3.4	4.3	1.8	3.5	3.3	4.1	1.5	2.5	4.5	3.7	3.7	3.7	1A2P
299	0.89	-1.2	0.4	0.2	0.5	-1.5	1.5	1.3	-0.1	-1.6	0.4	1.0	0.4	0.1	0.6	Err

<u>SM II. Bovine Pancreatic Trypsin Inhibitor</u>. X-ray structures: 4PTI (Marquart et al., 1983) and 20 NMR structures in 1PIT (Berndt et al., 1992). Experimental pKa's (Brown et al., 1976; March et al., 1982)

Conf	RMS	Tyr	Tyr	Tyr	Tyr	Ntr	Lys	Lys	Lys	Lys	Glu	<u>Glu</u>	Ctr	Asp	Asp	
		35	<u>23</u>	21	10	1	46	41	26	15	49	Ţ	85	50	3	
		10.60	11	9.94	9.46	7.90	10.35	10.75	10.44	10.43	3.91	3.85	3.10	3.20	3.55	Expt.
		0.1	0.1	0.0	0.0	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.3	0.0	0.1	Err.
		0.8	/	0.8	0.7	1.0	/	/	/	/	/	0.8	0.9	/	/	n
		10.5	12.0	10.1	9.0	6.5	10.6	12.1	10.5	10.9	3.2	5.6	3.4	3.4	3.8	#4PTI
53	0.80	-0.1	1.0	0.2	-0.4	-1.4	0.2	1.4	0.1	0.5	-0.7	1.7	0.3	0.2	0.3	#Err.
		10.0	12.1	10.3	9.4	7.7	10.3	11.6	10.6	10.9	3.9	2.6	3.7	2.3	3.9	*4PTI
187	0.64	-0.6	1.1	0.4	-0.0	-0.2	-0.0	0.8	0.2	0.5	0.0	-1.3	0.6	-0.9	0.4	Err
		12.4	10.6	10.6	9.7	8.3	10.2	11.2	10.6	10.4	3.5	3.1	2.7	2.6	3.7	§1PIT
140	0.62	1.8	-0.4	0.6	0.3	0.4	-0.2	0.5	0.1	-0.1	-0.4	-0.7	-0.4	-0.6	0.1	§Err
	1.40	3.9	1.5	0.7	1.6	0.8	0.6	1.0	0.4	0.4	1.1	1.4	0.5	1.0	0.3	§RMSV
		9.7	11.0	10.2	9.4	7.8	10.4	11.4	10.8	11.0	4.4	4.5	3.8	2.9	4.0	¶4PTI
138	0.47	-0.9	0.0	0.3	-0.1	-0.1	0.1	0.6	0.3	0.5	0.5	0.6	0.7	-0.3	0.5	¶Err
		10.4	10.8	10.4	9.9	7.9	10.3	11.3	10.7	10.8	4.4	4.1	3.8	3.0	4.3	4PTI
131	0.41	-0.2	-0.2	0.5	0.4	-0.0	-0.0	0.5	0.3	0.4	0.5	0.2	0.7	-0.2	0.7	Err

SM-II
I. Intesti
nal Bo
vine C:
alcium-
Binding
Protein
(CabD)

of experimental pK_a values is less than 0.08. The 33 NMR structures in 1CLB (Skelton et al., 1995) do not (apo-form). Experimental pKa's (Kesvatera et al., 1996; 1999). The reported error X-ray structure: 3ICB (Szebenyi and Moffat, 1986) and the 24 NMR structures in 1CDN (Akke et al., 1995) have calcium bound (holo-enzyme).

Conf	RMS	Lys	Lys	Lys	Lys	Lys	<u>Lys</u>	Lys	Lys	Lys	Lys	Glu	Glu	Glu	<u>Glu</u>	<u>Glu</u>	Glu	Glu	Ctr	Asp	Ca^{+2}	
		72	71	55	41	29	25	16	12	Γ	-	64	48	26	17	<u> </u>	S	4	75	<u>47</u>		
		10.96	10.72	11.38	10.89	10.97	11.81	10.09	10.82	11.35	10.60										+	рКa
		11.33	10.73	12.12	10.93	11.37	11.69	10.07	11.06	11.39	10.60	3.80	4.60	4.10	3.62	4.70	3.40	3.80	3.20	3.00	Ι	рК _а
		0.8	0.8	0.9	0.8	0.8	0.9	0.7	0.7	0.9	0.7	0.8	<u>0.6</u>	0.9	0.6	<u>0.7</u>	$\underline{0.8}$	0.8	<u>1.1</u>	$\underline{0.7}$		n
		10.8	10.1	10.2	10.9	9.5	13.3	11.1	10.9	10.9	11.0										+	3ICB
72	0.87	-0.2	-0.6	-1.2	0.0	-1.5	1.4	1.0	0.1	-0.4	0.4											Err
		10.5	9.9	11.6	10.9	10.4	13.4	10.6	10.8	10.7	10.8										+	*3ICB
273	0.66	-0.5	-0.8	0.2	0.(-0.5	1.5	0.5	-0.(-0.7	0.2											Err
		11.	11.	12.4	10.1	10.:	12.1	10.) 11.	11.:	11.										+	§1CDN
336	0.47	2 0.2	1 0.4	4 1.0	3 -0.1	5 -0.4	2 0.4	1 0.0	2 0.3	5 0.2	3 0.7											§Eri
	7 1					-																§R
	.17	0.9	0.7	1.1	0.9	1.3	0.9	2.2	0.5	1.0	1.3											MSV
		10.7	10.2	11.7	10.6	10.2	11.5	11.2	10.9	10.9	9.7	4.3	4.4	2.7	4.1	4.9	3.1	3.5	4.6	2.9	Ι	§1CLB
237	0.71	-0.7	-0.5	-0.4	-0.3	-1.2	-0.1	1.1	-0.1	-0.5	-0.9	0.5	-0.2	-1.4	0.5	0.2	-0.3	-0.3	1.4	-0.1		§Err
	1.27	1.3	1.3	0.8	0.9	1.6	0.7	2.2	0.5	1.0	2.2	0.7	0.9	1.8	2.9	0.8	1.2	0.7	1.8	0.7		§RMSV
		10.9	10.4	11.3	10.9	11.0	12.7	11.0	11.3	11.4	11.5										+	¶3ICB
175	0.38	-0.0	-0.3	-0.0	0.0	0.0	0.9	0.9	0.4	0.1	0.9											¶Err
		11.3	10.7	12.2	11.0	11.3	12.7	11.5	11.8	11.8	11.8										+	3ICB
146	0.59	0.3	0.0	0.9	0.1	0.3	0.9	1.4	0.9	0.5	1.2											Err

SM-VI. Rat T-Lymphocyte Adhesion Glycoprotein (CD2). X-ray structure 1HNG (Jones et al., 1992)

Conf	RMS	Glu	Glu	<u>Glu</u>	Glu	<u>Glu</u>	Ctr	Asp	<u>Asp</u>	Asp	Asp	Asp	Asp	Asp	Asp	
		99	56	<u>41</u>	33	$\frac{29}{29}$	99	94	72	71	62	28	26	25	2	
		4.10	3.95	6.53	4.20	4.51	3.11	3.83	4.14	3.20	4.18	3.57	3.58	3.53	3.50	Expt
		0.05	0.02	0.10	0.04	0.10	0.05	0.04	0.05	0.10	0.03	0.06	0.03	0.02	0.02	₽
		0.8	0.8	0.5	0.8	0.6	0.8	0.8	0.8	0.8	0.8	0.8	0.9	0.9	0.9	n
		4.6	3.9	7.5	4.7	1.8	-1.0	3.0	4.4	3.8	6.5	1.5	3.9	3.8	3.1	#1HNG
154	1.62	0.5	-0.0	0.9	0.5	<u>-2.7</u>	<u>-4.1</u>	-0.8	0.2	0.6	$\frac{2.4}{2.4}$	<u>-2.1</u>	0.4	0.3	-0.4	#Err
		4.0	4.0	5.8	4.5	4.8	3.8	3.4	4.8	3.8	5.8	1.9	4.1	3.9	3.0	*1HNG
398	0.77	-0.1	0.0	-0.7	0.3	0.3	0.7	-0.4	0.7	0.6	1.6	-1.7	0.5	0.4	-0.5	*Err
		4.0	4.0	5.3	4.5	3.0	3.8	3.9	5.0	3.9	5.2	2.8	4.2	4.2	3.4	TIHNG
309	0.76	-0.1	0.1	-1.2	0.3	-1.5	0.7	0.1	0.9	0.7	1.0	-0.8	0.7	0.6	-0.1	¶ Err
		3.9	3.9	5.0	4.3	3.7	3.9	3.6	3.9	4.4	4.8	3.0	4.5	4.4	3.8	1HNG
285	0.73	-0.2	-0.0	-1.5	0.1	-0.9	0.8	-0.2	-0.2	1.2	0.6	-0.6	0.9	0.8	0.3	Err

SM-V. Hen Egg-White Lysozyme (HEWL).

2LZT and 1B0D. al., 2001). Experimental data (Kuramitsu and Hamaguchi, 1980; Bartik et al., 1994). SCCE columns show only errors of calculated pKa's for -X-ray structures: 1B0D (Vaney et al., 1996); 2LZT (Ramanadham et al., 1981), 1HEL (Wilson et al., 1992). NMR structure 1E8L (Schwalbe et

Conf	RMS	Tyr	<u>Tyr</u>	Lys	Lys	Lys	Lys	Lys	<u>Lys</u>	His	Glu	<u>Glu</u>	Ctr	Asp	Asp	Asp	Asp	Asp	Asp	Asp		
		23	<u>20</u>	116	97	96	33	13	<u> </u>	15	35	L	129	119	101	78	<u>90</u>	52	<u>48</u>	18		
		9.80	10.30	10.20	10.30	10.80	10.40	10.50	10.80	5.36	6.20	2.85	2.75	3.20	4.08	2.07	0.90	3.68	1.60	2.66		Expt
		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.1	0.1	0.1	0.2	0.5	0.1	0.4	0.1		₽
		/	/	/	/	/	_	/	/	/	/	/	/	/	/	_	/	0.8	_	0.8		n
	2.05	-0.8	-1.8	0.2	1.0	0.7	1.9	<u>3.8</u>	0.8	-1.5	0.8	1.0	<u>-3.8</u>	-0.1	-4.7	0.7	1.9	<u>-3.4</u>	-0.7	-0.1	err	#2LZT
104	1.74	0.5	1.3	1.5	-0.6	-1.4	1.3	-0.9	-1.7	-1.8	1.3	$\frac{2.4}{2.4}$	0.8	-0.3	0.5	$\underline{3.1}$	1.9	<u>-4.1</u>	$\frac{2.1}{2.1}$	0.3	err.	#1BOD
		9.3	9.7	10.0	10.5	11.3	9.8	11.2	10.3	6.5	6.2	3.5	2.4	4.1	3.8	1.0	1.5	3.9	0.6	3.0		*1BOD
451	0.63	-0.5	-0.6	-0.2	0.2	0.5	-0.6	0.1	-0.5	1.1	0.0	0.6	-0.4	0.9	-0.3	<u>-1</u> .1	0.6	0.2	-1.0	0.4		Err
		<u>5</u> 9.3	11.1	9.5	11.1	5 11.9	8.9	7 10.8	9.8	6.4) 6.2	5 2.2	1 2.6) 2.4	5.1	1.2	2.6	3.0	1.7	1 2.8		2LZT
466	0.86	-0.5	0.8	-0.7	0.8	1.1	- <u>1</u> .5	0.3	-1.0	1.0	-0.0	-0.6	-0.1	-0.8	1.0	-0.9	1.7	-0.7	0.1	0.2		Err
		9.7	9.6	9.4	10.8	11.8	9.5	10.7	10.2	6.8	6.6	2.2	3.0	3.8	4.3	1.2	1.8	4.6	-0.2	2.2		2HEL
44	0.8	-0.	-0.	-0.8	0.5	1.(-0.9	0.2	-0.0	1.5	0.4	-0.0	0.2	0.0	0.)	-0.9	0.9	0.9	-1.8	-0.5		Err
5	1	1 9.3	7 9.7	3 9.8	5 10.6) 10.8	9.1	2 10.9	5 10.3	5 5.8	4 6.8	5 3.3	2 2.5	5 3.3	2 4.1	• 1.7) 2.7) 3.8	3.2	5 3.6		§1E8L
250	0.73	-0.5	-0.0	-0.4	0	0.(<u>-</u> 1	0.4	-0.0	0.5	0.0	0.5	-0.3	0.	0.0	-0	1.8	0.	1.0	0.9		§Err
3	3 1.77	5 0.7	5 1.0	4 0.7	3 0.7) 0.8	3 1.4	4 0.4	5 1.0	5 0.3	5 6.8	5 0.2	3 0.6	0.4) 0.2	3 0.3	3 0.8	2.5	0.2	0.5		§RMSV
		9.6	9.5	10.5	10.8	12.2	10.3	11.2	12.1	5.7	5.7	3.1	2.5	4.4	4.2	2.7	1.4	4.5	2.6	3.6		¶2LZT
331	0.74	-0.2	-0.8	0.3	0.5	1.4	-0.1	0.7	1.3	0.3	-0.5	0.2	-0.2	1.2	0.1	0.6	0.5	0.9	1.0	1.0		¶Err
		9.9	10.4	10.4	11.4	11.5	10.2	11.2	10.3	5.5	4.8	3.5	3.0	3.7	4.1	3.5	1.9	3.5	4.1	3.5		2LZT
288	0.90	0.1	0.1	0.2	1.1	0.7	-0.2	0.7	-0.5	0.1	-1.4	0.7	0.2	0.5	0.1	1.5	1.0	-0.2	2.5	0.8		Err

8/14/02 Georgescu, Alexov, and Gunner Supplementary Material Pg 6

VI. Third domain of the turkey ovomucoid inhibitor (OMTKY3)	SM-
Third domain of the turkey ovomucoid inhibitor (OMTKY3)	VI.
domain of the turkey ovomucoid inhibitor (OMTKY3)	Third
<u>of the turkey ovomucoid inhibitor (OMTKY3)</u>	domain
<u>the turkey ovomucoid inhibitor (OMTKY3)</u>	of 1
<u>turkey ovomucoid inhibitor (OMTKY3)</u>	the
<u>ovomucoid inhibitor (OMTKY3)</u>	turkey
oitor (OMTKY3)	ovomucoid inhit
(OMTKY3)	bitor (
	OMT

X-ray structures: 1PPF (Bode et al., 1986), 1CHO (Fujinaga et al., 1987) and 3SGB (Read et al., 1983). The 50 NMR structures in 1OMU (Hoogstraten et al., 1995). Experimental data (Schaller and Roberston, 1995; Forsyth et al., 1998)

Conf	RMS	Tyr	Tyr	Tyr	Ntr	Lys	<u>Lys</u>	Lys	Lys	His	Glu	Glu	<u>Glu</u>	Ctr	Asp	Asp	
		31	20	<u>11</u>	1	55	<u>34</u>	29	<u>13</u>	52	43	19	<u>10</u>	56	27	<u>_</u>	
		12.5	11.1	10.2	8.0	11.1	10.1	11.1	9.9	7.5	4.8	3.2	4.1	2.2	2.3	2.7	Expt
		/	0.2	0.1	0.0	0.1	0.1	0.1	0.0	/	0.2	0.0	0.2	0.2	0.1	0.1	₽
		/	<u>0.6</u>	<u>0.7</u>	0.9	<u>0.6</u>	<u>0.7</u>	0.9	<u>0.7</u>	0.9	1.0	<u> .</u>	0.9	0.9	0.9	<u>0.7</u>	n
5	2.	15.0 <u>3</u>	9.8 -1	8.9 -1	5.9 <u>-</u> 2	10.3 -(12.4 <u>2</u>	11.7 (14.3 4	8.5 1	4.6 -(-0.3 <u>-</u> 3	3.7 -(2.7 (3.9 1	0.4 -2	#1PPF #E
1	90	.0	ີເມ	.3	2.0).8	ü).6	.4	.0).2	i.).4).5	.6	i.	rr *
		12.2	10.1	11.8	7.3	10.2	7.2	11.2	11.5	8.2	4.5	1.6	3.5	3.2	3.3	2.8	1 PPF
213	1.19	-0.3	-1.0	1.6	-0.7	-0.9	<u>-2.9</u>	0.1	1.6	0.7	-0.3	-1.6	-0.6	0.9	0.9	0.1	Err
		14.4	10.8	13.7	7.3	10.8	8.8	10.9	10.1	8.6	4.6	2.9	3.9	3.2	2.7	4.2	1CHO
219	1.24	1.9	-0.3	<u>3.5</u>	-0.7	-0.3	-1:3	-0.2	0.2	1.1	-0.2	-0.3	-0.2	0.9	0.4	1.5	Err
		13.0	9.4	14.6	7	11.7	10.1	10.8	10.0	8.5	4.6	2.7	4.2	3.2	2.3	2.7	3SGB
167	1.34	0.5	-1.7	$\frac{4.4}{1}$		0.6	0.0	-0.3	0.1	1.0	-0.2	-0.5	0.1	0.9	0.0	-0.0	Err
		12.5	10.6	12.7	8.4	10.8	7.6	10.4	11.2	7.1	4.8	2.7	3.7	3.3	3.2	2.9	\$10MU
164	1.10	0.0	-0.5	<u>2.5</u>	0.4	-0.3	-2.5	-0.7	1.3	-0.4	-0.0	-0.5	-0.4	1.1	0.9	0.3	§Err
	0.87	0.3	0.7	1.5	0.5	0.6	1.3	1.1	1.6	0.7	0.1	0.6	0.6	0.9	0.5	0.5	§RMSV
		11.4	9.8	10.3	7.4	10.7	12.6	11.4	11.4	7.5	4.6	3.9	3.7	3.2	4.0	4.0	¶1PPF
154	1.10	-1.1	-1.3	0.1	-0.5	-0.4	<u>2.5</u>	0.3	1.5	-0.0	-0.2	0.7	-0.4	1.0	1.7	1.3	TErr
		13.9	10.1	10.5	7.6	10.9	12.0	11.3	12.0	6.9	4.9	4.3	3.8	3.3	3.6	5.0	1PPF
122	1.19	1.5	-1.0	0.3	-0.4	-0.2	1.9	0.2	<u>2.1</u>	-0.6	0.1	1.1	-0.3	1.1	1.3	<u>2.3</u>	Err

	5
	2
	T
	<
	•
	B
	-
	Ξ.
	Ξ
	3
	Ξ
	E
0	ř
	5
	Ξ
	7
	ġ,
	Ξ.
	Q
	Ξ.
Q	P
	2
	doj
	dom
	domai
	domain
	domain o
	domain of
	domain of st
	domain of stre
	domain of strep
	domain of strepte
	domain of streptoc
	domain of streptocod
	domain of streptococc
	domain of streptococcal
	domain of streptococcal p
	domain of streptococcal pr
	domain of streptococcal prot
	domain of streptococcal protein
	domain of streptococcal protein
	domain of streptococcal protein (

Estimated n-values are all in the range 0.9 - 1. X-ray structures 1PGA (Gallagher et al., 1994), 60 NMR structures in 1GBL (Gronenborn et al., 1991). Experimental pKa's (Khare et al., 1997).

Conf	RMS	Tyr	Lys	Lys	Lys	Glu	<u>Glu</u>	<u>Glu</u>	<u>Glu</u>	Glu	Ctr	Asp	Asp	Asp	Asp	Asp	
		33	<u>28</u>	13	10	42	$\frac{27}{27}$	$\underline{19}$	<u>15</u>	56	56	<u>47</u>	46	40	36	22	
		11.0	10.9	11.0	11.0	4.4	4.5	3.7	4.4	4.0	4.0	3.4	3.6	4.0	3.8	2.9	Expt
		/	/	/	/	0.1	0.1	0.2	0.1	0.1	0.1	0.3	0.1	0.2	0.1	0.1	₽
		10.7	13.4	11.0	11.9	5.0	-0.5	2.7	1.7	3.9	3.0	0.3	1.6	4.5	5.3	0.5	#1PGA
55	2.13	-0.3	<u>2.5</u>	-0.0	0.9	0.6	-5.0	-1.0	-2.7	-0.1	-1.0	<u>-3.2</u>	-2.0	0.5	1.5	-2.4	#Err
		10.8	11.7	10.8	11.4	5.1	3.8	3.5	3.8	5.3	3.3	2.3	3.1	4.1	5.0	2.2	*1PGA
240	0.67	-0.2	0.8	-0.2	0.4	0.7	-0.7	-0.2	-0.6	1.3	-0.7	-1.1	-0.5	0.1	1.2	-0.7	*Err
		10.3	10.2	10.8	11.1	5.0	4.5	4.2	4.3	6.8	4.3	4.4	3.7	5.4	4.7	2.6	§1GBL
202	0.65	-0.7	-0.7	-0.2	0.1	0.6	0.0	0.5	-0.1	2.8	0.3	1.0	0.1	1.4	0.9	-0.3	§Err
	0.60	0.2	0.7	0.6	0.4	0.5	0.2	0.2	0.6	0.8	0.9	0.2	0.3	0.9	0.7	1.0	§RMSV
		10.5	11.8	11.0	11.2	5.0	3.9	3.9	3.8	4.9	3.5	3.0	4.2	4.7	5.2	3.1	1PGA
143	0.63	-0.5	0.9	-0.0	0.2	0.6	-0.6	0.2	-0.6	0.9	-0.5	-0.4	0.6	0.7	1.4	0.2	Err
		10.9	12.0	11.5	11.5	5.2	3.3	4.0	4.1	4.7	3.7	3.2	4.4	5.0	5.0	3.7	1PGA
107	0.75	-0.1	1.1	0.5	0.5	0.8	-1.2	0.3	-0.3	0.7	-0.4	-0.2	0.8	1.0	1.2	0.8	Err

SM-VIII Ribonuclease A (RNase A).

from (Meadows et al., 1969; Cohen et al., 1973). Westmoreland, 1973; Walters and Allerhand, 1980). Only the pKa's of His 12 and 19 are effected by added PO₄. +: with PO₄. Experimental values Experimental values (Antosiewicz et al., 1996). His pKa values averages experimental data (Ruterjans and Witzel, 1969; Matthews and X-ray structures 3RN3 (Howlin et al., 1989), 7RSA (Wlodawer et al., 1988) and the 32 NMR structures in 2AAS (Santoro et al., 1993).

Calculations had PO₄ dynamically equilibrated with the protein during Monte Carlo sampling. -: no PO₄.

Conf	RMS	Ntr		His	His	His		His	Glu	Glu	Glu	Glu	<u>Glu</u>	Ctr	Asp	Asp	Asp	Asp	Asp	PO_4	
		1	119 +	<u>119-</u>	105	<u>48</u>	12+	<u>12-</u>	111	98	49	9	2	124	<u>121</u>	83	53	38	$\underline{14}$		
		7.6	7.1	6.1	6.6	6.3	7	5.8	3.5	4.1	4.7	4	2.8	2.4	3.1	3.5	3.9	3.1	2		Expt
		0.15		0.1	0.15	0.1		0.05	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2		₽
		6.0		6.7	6.1	3.1		-1.0	4.4	4.4	5.7	5.8	-0.6	-0.0	-1.0	6.3	3.4	3.0	-1.0	+	#3RN3
123	2.69	-1.6		0.6	-0.5	<u>-3.2</u>		<u>-6.8</u>	0.9	0.3	1.0	1.8	<u>-3.4</u>	-2.4	<u>-4.1</u>	2.8	-0.5	-0.1	<u>-3.0</u>		#Err.
		7.4	6.0	5.4	5.9	8.8	6.7	4.2	3.9	4.2	5.5	5.4	1.3	1.3	3.2	3.8	3.7	3.0	0.6	+	*3RN3
406	0.98	-0.2	-1.1	-0.7	-0.7	2.5	-0.3	-1.6	0.4	0.1	0.8	1.4	-1.5	-1.1	0.1	0.3	-0.2	-0.1	-1.4		*Err.
		8.7		6.1	6.1	7.5		4.2	. 4.3	5.7	5.7	5.5	5.6	0.9	0.5	3.2	3.4	1.7	0.6	+	7RSA
422	1.44	1.1		0.0	-0.5	1.2		-1.6	0.8	1.6	1.0	1.5	2.8	-1.5	<u>-2.6</u>	-0.3	-0.5	-1.4	-1.4		Err.
		8.0		5.4	6.2	4.7		4.7	4.8	4.6	7.5	5.1	2.4	1.6	2.2	2.7	4.0	3.1	4.9	Ι	§2AAS
356	1.28	0.4		-0.7	-0.4	-1.6		-1.1	1.3	0.5	2.8	1.1	-0.4	-0.8	-0.9	-0.8	0.1	0.0	<u>2.9</u>		§Err
	2.21	0.7		1.2	0.4	4.4		2.0	1.6	0.9	2.9	1.2	1.5	1.0	1.4	1.2	1.2	0.4	5.5		§RMSV
		7.5	6.7		6.4	8.0	6.7		4.1	4.8	5.3	5.0	2.8	1.7	2.7	3.6	4.3	3.6	1.3	+	¶3RN3
350	0.66	-0.1	-0.4		-0.2	1.7	-0.3		0.6	0.7	0.6	1.0	0.0	-0.7	-0.4	0.1	0.4	0.5	-0.7		¶Err.
		7.5	6.7		6.3	6.7	6.9		4.2	4.5	5.0	4.6	3.2	2.2	3.0	3.1	4.3	3.8	2.8	+	3RN3
285	0.44	-0.1	-0.3		-0.3	0.4	-0.1		0.7	0.4	0.3	0.6	0.4	-0.2	-0.1	-0.4	0.4	0.7	0.8		Err.

8/14/02 Georgescu, Alexov, and Gunner Supplementary Material Pg 9

SM IX. Ribonuclease Hi (RNase H).

independent of added ion. The pKa's of Asp 10 are not included in the RMS calculations. 1RNH does not contain coordinates for residues 1-3 and values that differ by more than 0.2 pH units are bold; No pK_a's with Mg^{+2} are reported for His. The reported errors assume that these pK_a's are 153 through the C-terminal 155. (Yamazaki et al., 1997). The experimental pK_a 's (in presence or absence of Mg^{+2}) are from (Oda et al., 1993; Oda et al., 1994). Experimental X-ray structure: 2RN2 (Katayanagi et al., 1992), 1RNH (Yang et al., 1990), and 1RDD (Katayanagi et al., 1993) and 8 NMR structures in 1RCH

Conf	RMS	<u>His</u>	His	His	His	His	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu	<u>Glu</u>	Glu	<u>Glu</u>	<u>Glu</u>	Ctr	Asp	Asp	Asp	Asp	Asp	Asp	Asp	${ m Mg}^{+2}$	2
		127	124	114	83	62	154	147	135	131	129	<u>119</u>	64	61	<u>57</u>	48	<u>32</u>	<u>9</u>	155	148	134	108	102	94	70	10		
		7.9	7.1	5.0	5.5	7.0	4.4	4.2	4.3	4.3	3.6	4.1	4.4	3.9	3.2	4.4	3.6	4.5	3.4	2.0	4.1	3.2	2.0	3.2	2.6	6.1	I	Expt
							4.4	4.2	4.3	4.4	4.0	4.3	4.5	4.0	3.4	4.4	3.6	4.5	3.5	2.0	4.2	3.5	2.0	3.3	3.4	4.2	+	Expt
		0.9	0.85	0.9	1	0.9	1	1	0.9	0.85	0.7	0.75	0.9	0.9	1	0.75	0.73	0.9	0.8	/	0.8	0.9	/	1	0.6			₽
		8.1	4.5	4.2	5.4	5.7	2.6	4	4	5.1	0.0	-0.4	4.6	1.7	1.7	5.3	1.5	4.]	3.7	6.9	1.(1.7	-1.(11.9	2.4	10.9	I	#2RN2
133	2.75	0.2	<u>-2.6</u>	-0.8	- 0.1	7 -1.3	5 -1.8	3 0.1	-0.0	0.8) <u>-3.6</u>	<u>-4.5</u>	0.2	$\frac{-2.2}{}$	-1.5	3 0.9	$\frac{-2.3}{}$	-0.4	7 0.3	(4.9)	$\frac{-3.1}{}$	-1.5	-3.0) <u>8.7</u>	4 -0.2	$\frac{4.8}{4.8}$		#Err.
	5	7.0	4.5	4.5	5.4	6.7	3.8	4.4	4.3	5.0	2.8	3.1	4.3	2.9	2.5	5.5	2.1	6.3	2.7	1.1	2.2	2.0	2.0	3.8	2.3	10.4	I	*2RN2
512	1.04) -0.9	-2.6	-0.6	-0.1	-0.3	3 -0.6	F 0.2	0.0	0.7	-0.8	-1.0	-0.1	-1.0	-0.8	1.1	-1.5	1.8	-0.7	-0.9	-1.9	-1.2	-0.0	° 0.€	-0.3	1 <u>4.</u> j		*Err.
	-	8.7	8.7	4.2	4.8	6.5	5	4.9) 3.5	⁷ 3.4	3 2.9	4.4	2.9	3.5	3 2.0	6.4	5 1.6	4 .3	7) 3.9	4.4	2.0) 1.4	3.4	3.2	<u> </u>	I	IRNH
	1.0	0.1	1.	-0.	-0.	-0		0.	-0.	-0.0	-0.	0.1	-1.	-0.	-1.	2.0	-2.0	-0.0		1.9	0.1	-1.	-0.0	0.1	0.0	9.		Err
	6	8 8.	6 4.	8 5.	7 5.	5 6.	6.	7 4.	8	9 5.	7 2.	3.5.	4	4 0.	2 2.	0 5.	0 1.	2 5.	2.	9 -1.	3.	2 4.	5 1.	2 1.	5 2.	<u>3</u> 8.	+	1RDI
45	1.4	.8 0.	<u>9</u> <u>-2</u> .	·3 0.	.8 0.	-0.	.7 <u>2</u> .	5 0.	.4 0.	5 1.	·5 -1.	.8 1.	.8 0.	5 -3	-0.	2 0.	5 <u>-2</u>	.7 1 .	2 -1.	.0 <u>-3</u> .	-0.	.8 1.	6 -0.	·4 -1.	4 -1.	7 <u>4</u> .		D Err.
6	.9	.9		ώ 	່ເ ນ	.6	<u>.</u>	ω.	1	`	in	in 	່ເ ນ	in.	%	∞ ∞	–	.2	.3	.0	.4	نى	.4	9	.0	S.	1	§1r
	1	6.5 -	4.7	2.8	5.4 -	6.1 -	4.8	4.2 -	4.3	5.3	2.2 -	5.3	5.3	3.5 -	4.5	5.1	3 .3	5.4	2.4 -	4.4	4.2	4.4	2.3	3.6	4.0	14		ch §I
365	.15	1.4	2.4	.2.2	0.1	0.9	0.4	0.0	0.0	1.0	1.4	1.2	0.9	0.4	1.3	0.7	0.3	0.9	-1.0	2.3	0.1	1.2	0.3	0.4	1.4	7.9		Err &
	1.60	1.7	2.5	3.1	0.4	1.0	0.6	0.5	0.3	1.2	1.7	1.4	1.7	0.7	1.5	2.9	0.5	1.1	1.7	3.6	0.5	1.0	0.5	0.6	1.1	3.1		RMSV
		7.3	5.2	4.8	5.5	6.6	4.0	4.7	4.6	5.0	3.2	3.3	4.4	3.3	3.0	5.6	2.5	5.1	3.7	-0.5	2.7	3.1	1.8	3.6	3.6	8.7	I	¶2RN2
396	0.87	-0.6	-1.9	-0.2	0.0	-0.4	-0.4	0.5	0.3	0.7	-0.4	-0.8	-0.0	-0.6	-0.2	1.2	-1.1	0.6	0.3	-2.5	-1.4	-0.1	-0.2	0.4	1.0	<u>2.6</u>		¶Err.
		7.7	5.7	5.7	5.6	6.5	4.6	4.7	4.6	4.8	3.0	3.9	4.3	3.2	3.3	4.7	3.5	3.9	3.4	1.3	3.3	3.0	-0.5	3.7	3.9	6.4	I	2RN2
268	0.77	-0.2	-1.4	0.7	0.1	-0.5	0.2	0.5	0.3	0.5	-0.6	-0.2	-0.1	-0.7	0.1	0.3	-0.1	-0.6	0.0	-0.7	-0.8	-0.2	<u>-2.5</u>	0.5	1.3	0.3		Err.

8/14/02 Georgescu, Alexov, and Gunner Supplementary Material Pg 10

SM-X. Ribonuclease T1 (RNase T). X-ray structure: 3RNT (Kostrewa et al., 1989). Experimental values (Inagaki et al., 1981; McNutt et al., 1990).

RMS Conf	<u>Glu</u>	<u>His</u>	<u>His</u>	His	
	<u>58</u>	<u>92</u>	$\underline{40}$	<u>27</u>	
	4.3	7.8	7.9	7.3	Expt
	0.2	0.2	0.2	0.1	₽
	/	/	/	/	n
	-0.4	8.0	13.0	12.0	#3RNT
4.18 95	<u>-4.7</u>	0.2	<u>5.1</u>	4.7	#Err.
	4.5	7.1	9.0	8.0	*3RNT
0.75 395	0.2	-0.7	1.1	0.7	*Err.
	4.2	6.9	8.4	7.6	¶3RNT
0.54 316	-0.1	-0.9	0.5	0.3	¶Err.
	5.2	7.5	7.2	7.8	3RTN
0.63 244	0.9	-0.3	-0.7	0.5	Err.

SM XI. Lennard-Jones parameters (kcal/mol).

$$\Delta G_{ij}^{non.el} = \left(\frac{A}{r^{12}} - \frac{B}{r^6}\right).$$

Value varies for atom types. not-H* are heavy atoms other than H, N, C, or O.

Å where $\Delta G^{ij}=0$ is the distance between atom centers where $\Delta G_{ij}^{non.el}=0$,.

 \mathbf{E}_{\min} is the energy minimum for this atom pair is.

same residue. No Lennard-Jones interactions are determined for atoms in the same side chain or between CA (in the backbone) and CB (in the side chain) of the

atoms	A	В	\mathbf{E}_{\min}	Å where $\Delta G^{lj} = 0$
H : H	$1.33 \times 10^{+1}$	$1.81X10^{+0}$	-0.05	1.40
H : C	$1.61X10^{+3}$	$6.66 ext{X} 10^{+1}$	-0.54	1.70
H : O	$4.02 \mathrm{X10^{+2}}$	$3.33 X 10^{+1}$	-0.54	1.51
H : N	$6.27 X 10^{+2}$	$3.73 X 10^{+1}$	-0.44	1.60
H : not-H*	$1.61 X 10^{+3}$	$6.66 \mathrm{X10^{+1}}$	-0.54	1.70
not-H : not-H	$2.96 X 10^{+5}$	$1.05 \mathrm{X10^{+2}}$	-0.01	3.76

between this reference value and the reaction field energy for a conformer in the protein. $\Delta\Delta G_{rxn,i}$ is constrained to have a minimum of 0. <u>SM XII. Reaction field energies (kcal/mol) for isolated side chains.</u> Energy for transfer from a medium with a dielectric constant of $\varepsilon_{\text{prot}}$ of 4, 8, or 20 to a solvent with $\varepsilon=80$. $\Delta\Delta G_{\text{rxn,i}}$ (in eqn. 3) is the difference

Residue $\varepsilon = 4.0$ $\varepsilon = 4.0$ $\varepsilon = 8.0$ ASP 18.1 2.1 6.1 CTR 16.6 1.5 7.9 GLU 18.7 2.2 8.9 HIS 11.8 1.8 5.7 LYS 19.6 1.1 9.8 TYR 15.2 1.2 7.3 NTR 13.3 1.8 6.7 ARG 12.8 3.4 8.0 ASN 5.9 5.9 5.9 GLN 5.9 1.8 4.80 THR 1.8 1.8 HOH 5.2 3.6 PO_4^{-2} 62.1 32.5 M2 ⁺² 17.8 8.9				1		1	
ionizedneutralionizedASP 18.1 2.1 8.7 CTR 16.6 1.5 7.9 GLU 18.7 2.2 8.9 HIS 11.8 1.8 5.7 LYS 19.6 1.1 9.8 TYR 15.2 1.2 7.3 NTR 13.3 1.8 6.7 ARG 12.8 3.4 8.0 ASN 5.9 5.9 5.9 GLN 5.9 1.8 8.0 HOH 1.8 1.8 HOH 5.2 3.6 M_g^{+2} 62.1 32.5	Residue	$\varepsilon = 4.0$	$\varepsilon = 4.0$	$\varepsilon = 8.0$	0.= 3	$\varepsilon = 20.0$	$\varepsilon = 20.0$
ASP 18.1 2.1 8.7 CTR 16.6 1.5 7.9 GLU 18.7 2.2 8.9 HIS 11.8 1.8 5.7 LYS 19.6 1.1 9.8 TYR 15.2 1.2 7.3 NTR 13.3 1.8 6.7 ARG 12.8 3.4 8.0 ASN 5.9 5.9 5.9 GLN 5.9 1.8 4.80 THR 1.8 1.8 HOH 5.6 1.8 PO_4^{-2} 62.1 32.5 M_{2}^{+2} 17.8 8.9		ionized	neutral	ionized	neutral	ionized	neutra
CTR16.61.57.9GLU18.72.28.9HIS11.81.85.7LYS19.61.19.8TYR15.21.27.3NTR13.31.86.7ARG12.83.48.0GLN5.95.9GLN5.91.8THR1.83.6 PO_4^{-2} 62.132.5 M_{R}^{+2} 17.88.9	ASP	18.1	2.1	8.7	1.1	2.9	0.3
GLU 18.7 2.2 8.9 HIS 11.8 1.8 5.7 LYS 19.6 1.1 9.8 TYR 15.2 1.2 7.3 NTR 13.3 1.8 6.7 ARG 12.8 3.4 8.0 ASN 5.9 5.9 5.9 GLN 5.9 1.8 1.8 THR 1.8 1.8 HOH 3.6 32.5 M_{Ω}^{+2} 17.8 8.9	CTR	16.6	1.5	7.9	0.8	2.6	0.2
HIS11.81.85.7LYS19.61.19.8TYR15.21.27.3NTR13.31.86.7ARG12.83.48.0ASN5.95.9GLN5.91.8THR1.81.8HOH3.632.5 M_{Ω}^{+2} 17.88.9	GLU	18.7	2.2	8.9	1.1	2.9	0.4
LYS19.61.19.8TYR15.21.27.3NTR13.31.86.7ARG12.83.48.0ASN5.95.9GLN5.95.9SER1.81.8THR1.81.8 PO_4^{-2} 62.132.5 Mg^{+2} 17.88.9	HIS	11.8	1.8	5.7	0.9	2.1	0.3
TYR15.21.27.3NTR13.31.86.7ARG12.83.48.0ASN5.95.9GLN5.95.9SER1.81.8THR1.81.8 PO_4^{-2} 62.132.5 Mg^{+2} 17.88.9	LYS	19.6	1.1	9.8	0.6	3.2	0.2
NTR13.31.86.7ARG12.83.48.0ASN5.95.9GLN5.95.9SER1.81.8THR1.81.8 HOH 3.632.5 PO_4^{-2} 62.132.5 M_{Ω}^{+2} 17.88.9	TYR	15.2	1.2	7.3	1.1	2.4	0.3
ARG12.8 3.4 8.0 ASN5.95.9GLN5.95.9SER1.81.8THR1.81.8HOH3.632.5 PO_4^{-2} 62.132.5 M_{Ω}^{+2} 17.88.9	NTR	13.3	1.8	6.7	0.9	2.1	0.3
ASN 5.9 GLN 5.9 SER 1.8 THR 1.8 HOH 3.6 PO_4^{-2} 62.1 32.5 Mg^{+2} 17.8 8.9	ARG	12.8	3.4	8.0	1.7	2.9	0.5
GLN5.9SER1.8THR1.8HOH3.6 PO_4^{-2} 62.1 32.5 M_{Ω}^{+2} 17.8 8.9	ASN		5.9		1.7		0.5
SER1.8THR1.8HOH3.6 PO_4^{-2} 62.1 32.5 M_{22}^{+2} 17.8 8.9	GLN		5.9		1.7		0.5
THR1.8HOH 3.6 PO_4^{-2} 62.1 32.5 M_{22}^{+2} 17.8 8.9	SER		1.8		0.8		0.3
HOH 3.6 PO ₄ ⁻² 62.1 32.5 Mg ⁺² 17.8 8.9	THR		1.8		0.8		0.2
PO_4^{-2} 62.1 32.5 M_{22}^{+2} 17.8 8.9	НОН		3.6		2.4		1.1
M_{g}^{+2} 17.8 8.9	PO_4^{-2}	62.1		32.5		14.8	
a	Mg^{+2}	17.8		8.9		4.7	