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Intramembrane Electrostatic Interactions Destabilize Lipid Vesicles

Scott D. Shoemaker and T. Kyle Vanderlick

Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544 USA

ABSTRACT Membrane stability is of central concern in many biology and biotechnology processes. It has been suggested
that intramembrane electrostatic interactions play a key role in membrane stability. However, due primarily to a lack of
supporting experimental evidence, they are not commonly considered in mechanical analyses of lipid membranes. In this
paper, we use the micropipette aspiration technique to characterize the elastic moduli and critical tensions of lipid vesicles
with varying surface charge. Charge was induced by doping neutral phosphatidylcholine vesicles with anionic lipids
phosphatidylglycerol and phosphatidic acid. Measurements were taken in potassium chloride (moderate ion-lipid binding)
and tetramethylammonium chloride (low ion-lipid binding) solutions. We show that inclusion of anionic lipid does not
appreciably alter the areal dilation elasticity of lipid vesicles. However, the tension required for vesicle rupture decreases with
increasing anionic lipid fraction and is a function of electrolyte composition. Using vesicles with 30% charged (i.e., unbound)
anionic lipid, we measured critical tension reductions of 75%, demonstrating the important role of electrostatic interactions

in membrane stability.

INTRODUCTION

As self-assembled structures, the mechanical properties of
membranes are derived from noncovalent forces such as the
hydrophobic effect, steric forces, and electrostatic interac-
tions. The electrostatic force has drawn considerable atten-
tion, as most biological membranes are rich in anionic lipids
and are therefore charged in aqueous solution. Plasma mem-
branes of mammalian cells often consist of 10—20% anionic
lipid (Yeagle, 1992), whereas bacterial membranes contain
as much as 80% (Kates, 1964; for reviews on membrane
electrostatics, see Cevc, 1990; Langner and Kubica, 1999).

Modulating the electrostatic interactions can tip the care-
ful balance of forces in the bilayer and thus have implica-
tions on the mechanical properties of lipid membranes. For
example, several authors have considered the effect of elec-
trostatics on the various elastic moduli of lipid membranes
both experimentally (Song and Waugh, 1990) and theoret-
icaly (Bivas and Hristova, 1991; Kozlov et al., 1992; Lek-
kerkerker, 1989; May, 1996). Of special interest is a series
of papers regarding the rupture of red blood cell membranes
placed in low ionic media (Betterton and Brenner, 1999;
Cortez-Maghelly and Bisch, 1995; Gallez and Coakley,
1986). Betterton and Brenner (1999) described this using an
electrostatic argument: as the salt concentration is lowered,
the surface charges in the membrane are less screened.
Eventually, the repulsive nature of the charge-charge inter-
actions overpowers membrane cohesive forces, and the cell
ruptures. Their conclusions are contrasted by the findings of
Diederich et a. (1998). These authors, using an induced
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tension argument, expected a reduction in the stability of
charged black lipid membranes (BLMs) to electroporation.
However, their experimental findings were that BLM sta-
bility is not affected by surface charge or electrolyte con-
centration. Clearly, additional experimental work is needed,
preferably using spherical lipid vesicles that are structurally
more relevant to cellular membranes than BLMs.

In this paper, we use the micropipette aspiration tech-
nique to determine the mechanical properties of charged
lipid vesicles. Our results demonstrate that the introduction
of surface charge has little effect on bilayer elasticity but
dramatically lowers the tension that can be applied to ves-
icles before rupture. This effect is dependent on the fraction
of charged lipid present in the bilayer, with critical tension
reductions up to 75%. Similar results are seen for the
anionic lipids phosphatidic acid (PA) and phosphatidylglyc-
erol (PG). Data show the effect of electrolyte identity as
higher stabilities are measured in moderately binding po-
tassium chloride (KCI) than in poorly binding trimethylam-
monium chloride (TMA-CI). We hypothesize that the re-
ductions in mechanical stability are due to electrostatic
interactions and demonstrate that the destabilization scales
with an electrostatically induced tension. Finaly, we com-
ment on key experimental issues, especially regarding glass
surface coatings, that must be addressed for the micropipette
technique to be confidently used in the mechanical charac-
terization of charged lipid membranes.

MATERIALS AND METHODS
Vesicle preparation

Giant unilamellar vesicles (GUV's) were created using amodification of the
electroformation method (Angelova and Dimitrov, 1987; Longo et al.,
1997). Neutral palmitoyloleoylphosphatidylcholine (POPC) was combined
with anionic lipids palmitoyloleoyl phosphatidylglycerol (POPG), or palmi-
toyloleoylphosphatidic acid (POPA) (Avanti Polar Lipids, Alabaster, AL)
to make 0.5 mg/ml solutions in chloroform with the desired anionic lipid
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fraction. 50 ul of lipid solution was spread on platinum electrodes that
were held 5 mm apart in a Teflon/glass cell. Films were dried under
vacuum overnight to remove trace solvent. Vesicle interior solution was
added to the cell, and vesicles were formed by the application of a 1.0-V
sine wave across the electrodes. Interior solutions consisted of 150 mM
sucrose, 1 mM electrolyte (KCl or TMA-CI), and 10 uM EDTA and were
titrated to pH 7.4 with base (KOH or TMA-OH).

Similar to previous studies (Akashi et al., 1996; Needham and Hoch-
muth, 1989), a small amount of anionic lipid (at least 4%) was required to
form well-behaved GUVs in electrolyte solutions. Neutral POPC vesicles
did form in electrolyte solutions; however, they frequently had nonlinear
stresg/strain curves and were therefore deemed unsuitable for mechanical
testing. Vesicles at low to moderate anionic lipid fractions had extremely
high yields, with vesicles numbering in the tens or hundreds of thousands.
At larger anionic fractions, yields decreased dramatically, limiting the
experimentally accessible range. Additionally, yields of GUVs dropped
rapidly with increasing electrolyte concentration, limiting experiments to
~1mM salt. Before micromanipulation, vesicles were mixed with an equal
volume of vesicle exterior solution (170 mM glucose, 1 mM matching
electrolyte, 10 uM EDTA, pH 7.4). The osmotic imbalance causes vesicles
to dightly deflate, aiding aspiration. Using glucose improves optical con-
trast and forces vesiclesto sink, resulting in an accumulation of vesicles on
the bottom of the sample chamber.

Determination of vesicle mechanical properties

The micropipette technique was used to determine the el asticity and critical
tension of charged vesicles. Briefly, suction pressures were applied with a
glass micropipette to individual GUVSs, creating an isotropic membrane
tension. Vesicle deformations from increased suction pressures allow cal-
culation of vesicle elasticity. The applied areal strain at rupture is defined
as the critical strain (for a general review of the technique, see Needham
and Zhelev, 1996).

Using the concepts of Helfrich (Helfrich and Servuss, 1984), the rela-
tionship between stress, 7, and strain, «, for vesicles under aspiration is
(Rawicz et al., 2000):

B T)I cTA /
o= 8wa nl—i—Tb + 7/K, (1)

where A is the total membrane area, K, is the elastic bending modulus, K
is the elastic dilation modulus, k is Boltzmann's constant, T is absolute
temperature, and c is a constant, ~0.1. At low tensions, the logarithmic
term dominates, and the change in membrane area is due to the smoothing
of thermal undulations. At larger tensions, the linear term dominates and
the vesicle approaches the expected elastic behavior described by 7 = Ka.
However, even at the largest tensions, there is still a small contribution
from the logarithmic term (Rawicz et ., 2000). As a result, linear fits to
the high-tension regime commonly reported in micropipette aspiration
studies overestimate K by 10—20%.

In this paper, we follow common convention and report the slope of
stress versus strain in the high-tension regime (= > 0.5 mN/m) as the
elastic dilation modulus. One must use caution here, as changes in the
bending modulus (which may occur with changing surface charge) may
manifest themselves in changes in the apparent dilation modulus. Asit was
difficult to experimentally determine K,, for highly charged vesicles, we
performed calculations to assess this effect. Using experimental results
(Song and Waugh, 1990) or theoretical predictions (May, 1996), electro-
statically induced changes in bending moduli do not alter fits to high-
tension stress/strain data (i.e., K for both charged and neutral membranes
will be similarly overestimated). We therefore neglect this effect.

Proper pipette and cell preparation protocol was critical in obtaining
reproducible results (see below). Borosilicate capillaries (0.9 mm o.d., 0.5
mm i.d.; Friedrich and Dimmock, Millville, NJ) were pulled to a fine point
with a Kopf model 730 puller (Tujunga, CA) and forged to ~5-7 wm with
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a Narishige MF 830 microforge (Micron Optics, Cedar Knoll, NJ). Tips
were then immersed in exterior solution doped with 1 wt % bovine serum
albumin (BSA, 98% by electrophoresis; Sigma Chemical Co., St. Louis,
MO) for 30 min. After incubation, the BSA solution in the tip was
discharged and the tip was rinsed several times by aspirating and discharg-
ing water to insure removal of any nonadsorbed protein. The tip was then
filled with water and flushed for at least 5 min by aspiration in the sample
chamber. To reduce the possibility of artifacts, each vesicle batch was
examined with at least two pipettes. The results of the two pipettes werein
every case statistically identical.

Glass used for the sample chamber was coated with a self-assembled
monolayer (SAM) of 2-[methoxy(polyethylenoxy)propyl] trimethoxysi-
lane (Gelest, Tullytown, PA). For deposition, glass was immersed for 1
mininalwt % SAM solution (95% ethanol, 5% water, to pH 5 with acetic
acid), rinsed in ethanol, and then cured in a 110°C oven for 15 min.
Air/SAM/water contact angles consistently measured 20°-25° with a
Rame-Hart goniometer (Mountain Lakes, NJ). Chambers were manufac-
tured by gluing two SAM-treated glass pieces to a 2.0-mm Teflon spacer
with RTV sealant. Superior optical resolution was achieved by using a
1.0-mm-thick microscope slide as the top of the chamber and a 1%2
coverslip for the bottom. Chambers had one side open to the atmosphere
for micromanipulation and were held constant at 25.0°C by a circulating
bath.

Vesicle aspiration tests were conducted using an inverted optical mi-
croscope fitted with differential interference contrast optics (Nikon TE200,
Micron Optics). A Narishige MHW-3 micromanipulator (Micron Optics)
was used for pipette manipulation. Digital images taken with a Kodak
ES310 CCD camera were directly acquired on PC using a PIXCI-D
imaging board (EPIX, Buffalo Grove, IL). (Capturing digital images di-
rectly provides greater image acquisition speed and resolution compared
with an analog data source such as a VCR.) Both vesicle and pipette
features were measured opticaly using the Subpixel Edger tool in the
XCAP software package (EPIX). Suction pressure applied to vesicles was
measured with Validyne pressure transducers (Advanced Controls, Warm-
inster, PA) and recorded along with vesicle images. Pressure was stepwise
increased to give membrane stress rates of 0.9 = 0.1 mN m™*min~? until
vesicle rupture. Mechanical properties reported are the averages of ~20
vesicles.

Chemicals and reagents

Unless otherwise stated, all chemicals were from Sigma, of the highest
grade available, and used as received. Water used was produced by a
Milli-Q UF unit (Millipore, Bedford, MA) and had a resistivity of 18.2
megohm-cm.

Micromanipulation of charged lipid vesicles

In this work, we used the micropipette aspiration method to assess the
effect of electrostatic interactions on the mechanical properties of lipid
membranes. Although this technique has become somewhat routine in the
characterization of neutral membranes, we found aterations in standard
micropipette protocols were essential to determine the mechanical proper-
ties of charged vesicles. Given the growing popularity of this versatile
technique, we report on these new protocols here.

The most important factor in the success of charged membrane aspira-
tion involves proper preparation of the pipette tip and sample chamber.
Vesicles, both charged and uncharged, adhere to bare glass. Thisresultsin
very irreproducible stress/strain curves and extremely low lysis tensions
when vesicles are examined by micropipette aspiration. To aleviate this
problem, most micropipette experimenters use BSA, a globular protein that
adheres strongly to glass, either as a precoating on the chamber and tip or
in the sample solution itself.
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We found that this protocol is not applicable to the micropipette
aspiration of charged vesicles in either electrolyte or nonelectrolyte solu-
tions. The presence of even trace amounts of unadsorbed BSA in the
sample chamber results in degraded vesicles, as evidenced by extremely
irreproducible mechanical data or even the complete dissolution of GUV's
(data not shown). This is consistent with experiments that show BSA in
solution causes leakage of anionic lipid vesicles (Wu and Fletcher, 2000;
Yokouchi et a., 2001). Although we assume the concentration of unad-
sorbed BSA remaining in the sample chamber is markedly lower than the
0.1 mg/ml Yokouchi et al. used to induce leakage from PG vesicles
(Y okouchi et al., 2001), it is quite possible that even when present at lower
concentrations, BSA structurally perturbs anionic lipid membranes.

To eliminate unadsorbed BSA from the sample, we have adopted a
protocol in which the pipette tip is thoroughly rinsed with water after BSA
incubation and the sample chamber is coated with a self-assembled mono-
layer (SAM) instead of BSA. (It would clearly be desirable to eliminate
BSA atogether by SAM-coating the pipette tip. To this end, we have
screened SAMs with different terminal moieties (methyl, methoxyl, and
chlorodimethylsiloxyl) but have yet to find one that allows reproducible
determination of POPC mechanical properties (unpublished results). For-
tunately, it seems far more important to avoid BSA treatment of the cell (as
compared with the tip), as the cell has alarge surface area and many nooks
that make rinsing of unadsorbed BSA difficult.) We emphasize the
removal of unadsorbed BSA, because once adsorbed to glass, BSA does
not appreciably desorb into agqueous solutions (Zhelev, 1998). We have
conducted fluorometric and contact angle studies that suggest that BSA
also does not desorb onto POPG/POPC vesicles in 1 mM electrolyte
(data not shown). Therefore, minimization of BSA-coated surfaces and
copious rinsing should result in BSA-free solutions.

Finally, athough the problems with the standard BSA protocol are
exacerbated when charged vesicles are examined, we strongly recommend
that experimenters exercise caution even when using BSA in membrane
tests on neutral vesicles. It has been shown that BSA binds to (Wu and
Fletcher, 2000) and causes aggregation of (Sato et al., 1999; Schenkman et
al., 1981) neutral phosphatidylcholine vesicles. This suggests that the use
of BSA could result in experimental artifacts when neutral membranes are
examined.

RESULTS AND DISCUSSION

We used the micropipette aspiration technique to determine
the mechanical properties of lipid vesicles of varying sur-
face charge. According to Gouy-Chapman-Stern (GCS)
electrostatic theory, surface charge is set by the fraction of
anionic lipids in the membrane and the extent of ion-lipid
binding (Cevc, 1990). We therefore measured the elastic
modulus, K, and the applied tension required to rupture,
7eh for vesicles as afunction of both anionic lipid fraction
and electrolyte composition. Two different anionic lipids,
POPG, (pKS = 2.9) and POPA (pKS = 3.5; pK2~ = 9.5)
(Cevc, 1990) were examined. We also analyzed vesicles in
two different electrolytes, KCl and TMA-CI. These sdts
were chosen because they bind to anionic lipids with dif-
fering affinities; KCl is considered a moderately binding
salt, whereas TMA-CI binds poorly to lipid membranes
(Eisenberg et a., 1979).

Measured area dilation elastic moduli for POPG/POPC
vesicles in 1 mM KCIl are shown in Fig. 1. Within the
margin of error, we detected no measurable change in
elagticity as the anionic lipid fraction, A, is increased. The
average vaue, 143 mN/m, was significantly different than
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FIGURE 1 Measured areal dilation elasticities for POPG/POPC vesicles
in 1 mM KCI. Symbols are experimental values (average + SD). The solid
line is the prediction of Eq. 7 with KN fitted to 148 mN/m. The dashed line
is a constant value K = 143 mN/m, the average of al points.

the 178 mN/m found in our lab for neutral POPC vesiclesin
nonelectrolyte (Shoemaker and VVanderlick, 2002). Because
K is constant with increasing anionic lipid content, this
difference is not electrostatic in origin but might rather
reflect the difference in membrane hydration of electrolyte
and nonelectrolyte solutions.

Data for POPG/POPC vesicles in 1 mM TMA-CI and
POPA/POPC vesiclesin 1 mM KCI shown in Table 1 also
show a lack of dependence on anionic lipid fraction. There
is little experimental work on charged vesicles in the liter-
ature for comparison. Akashi et al. (1996) reported elastic

TABLE 1 Mechanical properties for anionic lipid vesicles in
1 mM electrolyte solution

Anionic Critical
lipid Elastic tension,
Lipid fraction, modulus, gech

components Salt A K (mN/m) (mN/m)
POPG/POPC KCl 0.04 146 += 15 71+16
0.1 142 = 12 55=*09
0.2 135+ 13 29+0.9
0.3 143 = 15 24+08
0.4 148 = 13 23*09
POPG/POPC TMA-CI 0.04 145 + 10 72+10
0.1 148 + 16 52+0.7
0.2 140 = 12 22*07
0.3 NA* 1.7+ 0.7
POPA/POPC KCl 0.04 156 + 13 73*12
0.1 156 =7 6.1*+0.7
0.2 145 + 11 50+ 11
0.3 154 *= 17 29+11

*Vesicles ruptured too low to accurately measure K.
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moduli for 10% charged vesicles equal to neutral mem-
branes. Using osmotic swelling, Haines and co-workers
(Haines et a., 1987) demonstrated a large effect of surface
charge on elasticity but later retracted that result (Rutkowski
et a., 1991).

We can compare our €elasticity results to a simple contin-
uum model. The free energy of a neutral monolayer, f N, is
commonly described by (Israglachvili et al., 1980):

fN = ya + yal/a, @)

where vy is the interfacial tension, a, is the optimal area per
lipid headgroup, and a is the instantaneous lipid area. In this
model, the energetic cost of small deformations can be
found as (Israelachvili et a., 1980):

fN(a)
a,

1
= 2y+ 5 (29 ®

where « is membrane area strain, (a — a,)/a,. Because, by
definition, mechanical free energy ~¥2Ka?, we see that the
areal dilation elasticity for a neutral lipid bilayer, KV, is 4y
(where the additional factor of 2 is to account for the two
monolayers in a bilayer) (Israelachvili et a., 1980).

We now assume that we may approximate the free energy
of a charged monolayer, f<, by adding the free energy of
electrostatic interactions, ¢, to that of a neutral monolayer
(i.e, f€ =N + ). We can again calculate the cost of
small derivations from a;

@ | %)

, 1 .
2yt ¥ (@a + 5 2y + af *(ad)a?

(4)

(Note that because we are interested in the coefficient of the
quadratic term, we have neglected the small change in a,
due to electrostatic interactions.) Using the definition of
elasticity and accounting for the two monolayers in the
bilayer we see:

KE =4y + 2af(a,)
= K" + 2a,f(a,) ()

To evaluate K€, the areal dilation elasticity of the charged
bilayer, we need only to calculate the free energy of elec-
trostatic interactions from Gouy-Chapman theory. We use
the derivation given by May (1996) following the method of
Lekkerkerker (1989):

=22 i+ g 6)
p
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FIGURE 2 Measured critical stresses for anionic vesicles in 1 mM
electrolyte. Triangles, diamonds, and squares correspond to POPG/POPC
in TMA-CI, POPG/POPC in KCI, and POPA/POPC in KCI, respectively.
Data are averages = SD, and lines are drawn to aid the eye.

with
A€
p= 2xase KT
and
q=\p*+1,

where e is the elementary charge, « is the inverse Debye
length, e isthe dielectric constant, and €, is the permittivity
of vacuum. We can now calculate the expected effect of
electrostatic interactions on lipid membrane elasticity as:

AKTAp
~a

Predictions from Eq. 7 are plotted along with the experi-
mental data in Fig. 1. Clearly, the introduction of electro-
static interactions has little effect on lipid elasticity, as the
predicted total change in K is within the size of the exper-
imental error bars. Therefore, the lack of a strong depen-
dence of K on A for each of our experimenta systemsis not
surprising; in fact it suggests our data are well behaved and
reproducible.

Fig. 2 shows the applied tension that results in vesicle
rupture, 71", for lipid vesicles of varying anionic content
(data are also tabulated in Table 1). At low anionic fraction
(A = 0.04), vesicles rupture at ~7 mN/m, similar to un-
charged POPC vesicles in nonelectrolyte solutions (Shoe-
maker and Vanderlick, 2002). Thereislittle in the literature

KE = K"

()
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on charged vesicles for comparison. Akashi et al. (1996) did
not report a critical strain for 10% anionic vesicles, but
implied that vesicles frequently ruptured at tensions less
than 1 mN/m. This is well below our results for our 10%
POPG vesicles, and likely results from their use of BSA as
a surface coating (see Materials and Methods).

As shown in Fig. 2, we measure a clear change in 71"
as the fraction of anionic lipid is increased. This effect is
seen for both POPG and POPA and in the presence of
different electrolytes, KCl and TMA-CI. Although there
appear to be subtle differences between the lipid/salt sys-
tems, in all cases the lysis tensions steeply decrease with
increasing anionic fraction. At 30% anionic lipid, the de-
cease in 7" is 60—75%.

As discussed earlier, the addition of anionic lipid adds an
electrostatic component to the membrane free energy. This
by itself might be expected to alter membrane stability.
However, we must consider other possible effects of anionic
lipid inclusion. Surface hydration, a key consideration for
membrane mechanics (Cevc, 1990), increases with anionic
lipid fraction. This, however, should serve to increase sta-
bility (Kraayenhof et al., 1996), contrary to our experimen-
tal results. Another potential effect involves the different
headgroup size of the PA or PG lipid molecules. This is
unlikely to be key, as micropipette studies suggest no effect
from the inclusion of the small headgroup phosphatidyleth-
anolamine (PE) on PC membrane stability (Evans and
Needham, 1987). Finally, because our charged membranes
are two-component systems, there is the possibility of phase
separation, which could impact mechanical properties. Dif-
ferential scanning calorimetry has shown that in the absence
of calcium, PG/PC (Findlay and Barton, 1978) and PA/PC
(Graham et a., 1985) membranes are in a single fluid phase
at room temperature. We have performed all experimentsin
the presence of EDTA to remove divalent impurities, mean-
ing that phase separation is not a likely cause for the
lowered stability of anionic vesicles. We therefore conclude
that electrostatic interactions are the most probable expla-
nation for our experimental data.

Additional evidence directly implicating electrostatic in-
teractions is the similar behavior of POPA- and POPG-
doped vesicles. PA and PG headgroups have identica
charge states at neutral pH and are therefore electrostatically
identical. Otherwise, the two lipid molecules are somewhat
dissimilar. PG lipids contain a glycerol moiety linked to the
phosphate group in the head region. This not only alters the
size of the headgroup, it sterically impedes interaction with
either moleculesin solution or other lipids as compared with
the sterically unhindered PA structure (Langner and Kubica,
1999). Thus, the lipids, for example, show different binding
characteristics (Cevc, 1990), gel transition temperatures
(Silvius, 1982), and phase behavior (Findlay and Barton,
1978; Graham et al., 1985).

If indeed the reduction in stability is solely due to elec-
trostatic interactions, electrolyte composition and concen-
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tration should be important parameters. For example, higher
salt concentrations should screen headgroup charges, reduc-
ing the effect. Unfortunately, unlike previous techniques
(Akashi et al., 1996), our formation method requires low
(<10 mM) electrolyte concentration, making concentration
effects impossible to detect. We can, on the other hand,
examine vesicle mechanical stability in the presence of
different electrolytes. Anionic lipids bind electrolytes from
solution, causing the surface charge to partially neutralize.
The extent of this neutralization is both lipid and salt de-
pendent, leading to the term specific binding (Eisenberg et
a., 1979). In the GCS framework, thisis usually described
by a Langmuir-type equilibrium:

)\eff — A (8)
1+ BC exp(—ey/KT)’

where A isthe anionic lipid fraction in the bilayer and A%

isthe effectively charged lipid fraction after binding. B is
a first-order binding constant and the exponential func-
tion accounts for the accumulation of cations at the
interface due to electrostatic attraction. As alluded to
earlier, the glycerol moiety of PG headgroups gives the
lipid alower binding affinity relative to PA lipids (Lang-
ner and Kubica, 1999). The bulky TMA™ ion binds less
efficiently than K™, also presumably for steric reasons
(Eisenberg et al., 1979). Thus, binding constants follow
the pattern PA":K* > PG :K" > PG :TMA™. Com-
mon values found in the literature range from 1.1 M~ * for
K™ binding to the monomethy! ester of phosphatidic acid
to negligible binding of TMA™ to phosphatidylserine
(Cevc, 1990; Eisenberg et a., 1979; Kraayenhof et al.,
1996; Langner and Kubica, 1999).

Fig. 2 shows that, athough al three lipid/salt systems
show similar monotonic decreases in lysis tension, there
appear to be small systematic differences. We now may
understand this based on differing cation binding levels;
because higher binding constants result in greater anionic
charge neutralization, lipid stabilities should fall in the same
order. Thistrendisseenin Fig. 2, further suggesting that the
stability reduction is electrostatic in nature.

Defining the mechanistic cause of this electrostatic sta-
bility reduction is more difficult. One approach, following
the suggestion of Diederich et al. (1998), is to consider the
electrostatic interactions in terms of an induced membrane
tension. As mentioned earlier, neutral POPC vesicles can
support mechanical tensions up to ~7 mN/m before rupture
(Shoemaker and Vanderlick, 2002). If other forces generate
a membrane tension, this may reduce the mechanical ten-
sion that the vesicle can withstand before the membrane is
burst.

Electrostatic interactions force lipid films to dilate (Jah-
nig et a., 1979), creating such an effective membrane
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FIGURE 3 Symbols are measured critical tensions for POPG/POPC
vesiclesin 1 mM TMA-CI (left axis). The solid lineis 7 calculated from
Eq. 9 assuming negligible ion binding (right axis).

tension. This effective electrostatic tension, 7, can be cal-
culated using the definition of tension and Eq. 6:
2KTAS (g — 1
(5
where the factor of 2 is to account for the two monolayers
in a bilayer. In Fig. 3, we use this equation to calculate
electrostatically induced tension in the absence of ion bind-
ing (that is, A = A, shown on the right axis) along with the
critical tension data from the POPG/TMA-Cl system
(shown on the left axis). Noting that the scales of the two
axes are identical, the reduction in measured critical tension
equals the tension from electrostatic interactions. This sug-
gests that the electrostatic and mechanical tensions are
simply additive; as the electrostatic tension is increased, the
mechanical tension that may be applied before the critical
point is reached is diminished. This is summarized in the
equation:

= —df¥/da = 2 (9)

eff
T?ech — T}:otal _ ,Tel — Tz:otal _ 4KTA (q _ 1) , (10)
a p
where 799 jsthe total tension that is required for membrane

rupture. This quantity is defined as the tension required to
rupture a neutral membrane and is assumed to be a constant
with increasing anionic lipid content.

Equation 10 can be used to fit our experimental data
using the binding constant B as afit parameter. Fig. 4 shows
the results of this procedure for each of the lipid/salt sys-
tems. The data are fairly well described using binding
constants of 0.8 M™%, 0.4 M™%, and 0.0 M~ * for PA™:K™,
PG :K™, and PG:TMA™, respectively. Numerical com-
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FIGURE 4 Model fits (shown in solid lines) to experimentally measured
anionic vesicle critical stresses. Symbols match those in Fig. 2. Fits were
obtained using Eq. 10 and binding constants of 0.8 M™%, 0.4 M™%, and 0.0
M~*for PAT:K*, PG :K*, and PG :TMA™, respectively.

parison with literature values is difficult, as B is sensitive to
salt concentration (Kraayenhof et al., 1996), and to the best
of our knowledge no binding studies have been conducted
in 1 mM electrolyte. Instead, we point out that we have
correctly captured the relative order of the binding constants
and the resulting B values are within the range normally
reported (0.0—1.1 M %) (Cevc, 1990; Eisenberg et al., 1979;
Kraayenhof et a., 1996; Langner and Kubica, 1999).

The data from Fig. 4 are replotted in Fig. 5 as scaled
critical tension (critical tension divided by that of a neutral
POPC membrane) versusthe effective charged lipid fraction
A¥T. As expected, the data collapse to the line predicted by
Eqg. 10. In addition, this plot indicates the large magnitude of
this effect, as an effectively charged lipid fraction of 0.3
reduces the tension required to rupture by 75%.

Although a simple tension additivity model appears to
follow the datawell, we must ask how physically reasonable
the approach is. The model relies on two basic assumptions:
first, that electrostatic and mechanical tensions (or electro-
static and mechanical free energies) are additive, and sec-
ond, that the critical tension needed to lyse the membraneis
not a function of anionic lipid content. The first assumption
seems logical. As supporting experimental evidence, Need-
ham and Hochmuth (1989) showed that the effects of elec-
trocompression and mechanical deformation were additive
when electroporating tense lipid vesicles (these authors used
additive strains rather than stresses, an equivalent argument
when K isa constant). Additionally, NMR (Pott et al., 1995)
and Raman spectroscopy (Jahnig et al., 1979) show lipid tail
ordering is nearly independent of headgroup charge. This
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tively charged lipid fraction. Plotted in this way, experimental data (shown
in symbols defined as in Fig. 2) collapses on the predictions of Eq. 10,
shown by the solid line.

suggests that the mechanical properties of the neutral bi-
layer, which are dominated by tail interactions (Needham
and Zhelev, 1996), are relatively unaffected by electrostat-
ics. Thus, to first order, electrostatic interactions may be
assumed additive to neutral bilayer interactions.

The second assumption is more problematic. Rupture is
usualy described by the propagation of unstable pores. If
membrane energy decreases with increasing pore radius, the
membrane is said to be unstable and will lyse (Zhelev and
Needham, 1993). Therefore, our assumption of constant
7% implies the energetics of the pore are essentially un-
changed by the addition of anionic lipid. Electroporation
studies have suggested that the effective line energy of
charged bilayers is higher than their neutral analogs, mean-
ing charged bilayers possess a higher energy barrier to pore
growth (Genco et a., 1993). This indicates that 7@ would
increase with A, offsetting a portion of the expected stability
reduction.

We can rationalize electrostatic effects on pore energetics
in the spirit of Gouy-Chapman-Stern theory. If we assume
the total area of the membrane constant, opening a pore of
radius r,, forces charged lipids into a closer configuration,
which is electrostatically unfavorable. However, as Better-
ton and Brenner have pointed out, if the pore is sufficiently
smal (r, < k1), the screening cloud of double-layer
charges effectively spill over and fill the pore. Thus, the
volume of the double layer is essentially unchanged, and the
contribution of electrostatic interactions to pore energetics
is vanishingly small (Betterton and Brenner, 1999). The
radius for an unstable pore in a neutral membrane can be
approximated as the ratio of line energy, 10~ ** N (Zhelev
and Needham, 1993), and the tension required to rupture,
~ 7 mN/m. Comparing the result of 1.4 nm to the Debye
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length in 1 mM electrolyte, 9.7 nm, shows that we may
indeed be in the small pore limit and 7@ is approximately
constant. Improved calculations will be needed to further
evaluate this result.

CONCLUSIONS

Using the micropi pette aspiration technique, we have shown
that anionic lipids do not alter the elasticity of lipid vesicles
but substantially reduce their mechanical stability. This
destabilization, measured as the decrease in mechanical
tension that induces vesicle rupture, is a function of the
anionic lipid fraction in the bilayer and the choice of elec-
trolyte. Similar results are seen using two different anionic
lipids, POPG and POPA. We hypothesize that the reduc-
tions in stability are due to the presence of electrostatic
interactions in the lipid membrane. We can fit our stability
data with a simple model in which membranes rupture at a
fixed sum of electrostatic and mechanical tensions. The
large (~75%) reductions in membrane stability dictate that
this effect be considered whenever charged membrane me-
chanics are examined.

Our results contrast those of Diederich et al. (1998) who
examined the stability of charged BLMs to electroperme-
abilization. Contrary to their expectations, the authors did
not see areduction in BLM stability with increased electro-
static interactions. The reasons for the discrepancy between
their results and ours are not yet clear. We postulate that the
difference may stem from the experimental systems used:
vesicles are closed systems, whereas BLM lipid molecules
may exchange between the bilayer and the Plateau-Gibbs
reservoir (Picard et al., 1991). Asaresult, the elastic moduli
and interfacia tension of BLMs and vesicles differ mark-
edly (Picard et a., 1991), which could give rise to the
discrepancy between our results and those of Diederich and
colleagues.
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