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ABSTRACT Linear regression analysis found that either contact order (CO) or long-range order (LRO) parameter has a
significant correlation with the logarithms of folding rates. This suggests that sequence separation per contact and total
number of contacts are both important in determining the rate of folding. Here, the two factors are incorporated into a new
parameter, total contact distance (TCD). Using a database of 28 two-state or weakly three-state folding proteins, TCD is found
to be the most accurate among the three parameters (CO, LRO, and TCD) in terms of correlation and prediction. It provides
even more accurate prediction than the best neural network results with two descriptors (contact order and stability per
residue). The improvement is achieved in all three-structural classes (all �, �, and mixed). The accuracy of total contact
distance in predicting folding rates is essentially unchanged if “short”-ranged contacts (�i � j� � 14) are not included in
calculation. Thus, only long-range contacts with a sequence separation of more than 14 residues are important in determining
the rate of folding. This is consistent with the results from the long-range order parameter. One of the significant outliers in
prediction is found to be associated with the only protein in the database that involves nonlocal disulfide bonds. Removing
the protein leads to a correlation coefficient of 0.89 between experimental observed and predicted folding rates in jackknife
cross validation. The corresponding values for CO and LRO are 0.71 and 0.80, respectively.

INTRODUCTION

The logarithms of folding rates (ln kf) of proteins that fold
with two- or weakly three-state kinetics have a surprisingly
simple and statistically significant correlation with a single
parameter called contact order (CO) (Plaxco et al., 1998),

CO �
1

ncnr
�

k�1
�i�j��lcut

nc

�i � j�, (1)

where nr is number of amino acid residues of a protein
(excluding disordered regions), and nc is number of nonlo-
cal residue–residue contacts. A nonlocal contact is defined
as two heavy atoms within a cutoff distance Rcut and sepa-
rated by at least a residue separation cutoff value lcut.
Typically, Rcut � 4–6 Å and lcut � 2 (Plaxco et al., 1998;
Munoz and Eaton, 1999). The significant correlation be-
tween ln kf and CO suggested that the average sequence
separation per contact per residue of protein’s native struc-
ture plays a dominant role in determining the rate of folding.
This led to the development of several kinetic theories to
predict folding rates from native structures (Alm and Baker,
1999; Munoz and Eaton, 1999; Debe and Goddard, 1999;
Galzitskaya and Finkelstein, 1999). The accuracy in predic-
tion can be improved further by incorporating contact order
and other descriptors (such as stability) in artificial neural
networks (Dinner and Karplus, 2001; Dinner et al., 2001).

Recently, a different parameter is found to correlate better
with ln kf than CO. The parameter is called long-range order
(LRO) (Grombiha and Selvaraj, 2001), which is defined as
the number of long-range contacts per residue. That is,
LRO � nc/nr with lcut � 12 and Rcut � 8 Å based on a
C�–C� distance. The residue separation cutoff lcut was also
optimized for different classes of proteins (lcut � 27, 10, and
44 for all-�, mixed � and �, and all-� proteins, respective-
ly). The new result suggests the importance of the long-
range contacts in folding kinetics. This is different from
contact order in which “shorter” range contacts (lcut � 12)
also make significant contributions to the correlation with
ln kf.

In this paper, we use a new parameter, total contact
distance (TCD), to predict folding rates. The new parameter
is shown to be the best in correlation with the logarithms of
folding rates. Its accuracy in prediction is even better than
the best neural network results with two descriptors (contact
order and stability per residue) (Dinner and Karplus, 2001;
Dinner et al., 2001). Moreover, the accuracy in correlation
is essentially unchanged for any lcut values between 0 and
14. Thus, long-range contacts with a sequence separation of
more than 14 residues play a dominant role in the folding
rate of a protein.

THE NEW PARAMETER

The probability of finding residues i and j separated by
spatial distance r, gij(r), can be calculated from the equation
given by (Page 55, Allen and Tildesley, 1987)

gij�r� �
2

nr�nr � 1�
���r � rij��, (2)

where � � denotes ensemble average, �(r) is a Dirac delta
function and nr(nr � 1)/2 is the total number of pairs (a
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normalization factor). The average sequence separation, S� ,
satisfies

S� � �
0

	

dr �
�i�j��0

�i � j�gij�r�. (3)

We define TCD as the contribution to the average sequence
separation by contacting residues within a distance Rcut,

TCD �
1

2�
0

Rcut

dr �
�i�j��0

�i � j�gij�r�, (4)

where a factor of 1⁄2 is used to simplify the expression for
TCD. The term “total” is used here because it is the sum-
mation of contact distances in sequence space for all the
contacts, i.e., it is not normalized by number of contacts
[
0

Rcut dr ¥�i�j��0 gij(r)] as in contact order.
For the case that only a single native structure is used in

calculation, the integration and the ensemble average in
Eqs. 2 and 4 become a simple summation over number of
contacts. That is,

TCD �
1

nr
2�

0

Rcut �
�i�j��0

�i�j����r�rij�� dr �
1

nr
2 �

k�1
�i�j��0

nc

�i�j�,

(5)

where we have assumed nr �� 1. A more accurate evalua-
tion of TCD would require an ensemble of native structures
from molecular dynamics simulations. The summation in
Eq. 5 includes both local and nonlocal contacts. To relate
TCD with CO and LRO, we introduce an adjustable residue-
separation cutoff, lcut, in the summation. Thus, the final
expression for total contact distance is

TCD �
1

nr
2 �

k�1
�i�j��lcut

nc

�i � j�. (6)

Compared to Eq. 1, TCD differs from CO in its prefactor.
Different prefactors give different physical meanings to the
two parameters. CO is a quantity per contact per residue
whereas TCD is the summation over all the contacts per
residue. TCD is related to CO and LRO by a simple mul-
tiplication (TCD � CO � LRO) if LRO is calculated with
the same lcut value as CO.

FOLDING RATE DATABASE

The database collected by Dinner et al. (2001), except the
heme-containing cytochrome group and mutant proteins, is
used in this study. Inclusion of these proteins in the data set,
however, does not significantly alter the results reported
here (see Table 2). It contains experimental data of 28
proteins. There are four all-� proteins (1LMB, 2ABD,

1IMQ, and 2PDD), 13 all-� proteins (1NYF, 1PKS, 1SHG,
1SRL, 1FNF_9, 1FNF_10, 1HNG, 1TEN, 1TIT, 1WIT,
1CSP, 1MJC, and 2AIT), and 11 mixed �,� proteins (1APS,
1HDN, 1URN, 2HQI, 1PBA, 1UBQ, 2PTL, 1FKB, 1COA,
1DIV, and 2VIK). These proteins are divided into four
structurally related groups and one structurally unique
group to perform structure-based cross validation as sug-
gested by Dinner and Karplus (2001). Table 1 lists the
experimental data along with CO, LRO, and TCD parame-
ters generated from proteins’ structures. As with all earlier
studies, no correction for temperature variation of experi-
mental folding rates was made.

RESULTS AND DISCUSSION

Figure 1 plots the results of linear regressions of experi-
mental ln kf values against CO, LRO, and TCD, respec-
tively. Visual inspection of the figure shows that the CO has
a poor correlation for proteins with high COs. A significant
improvement in correlation is made by LRO, whereas the
TCD is the best.

Another way to measure the significance of regression is
the jackknife cross-validation method. A jackknife cross
validation is done by using folding rates of all but one
proteins for linear regression, and the regression parameters
obtained are used to predict the folding rate of the one that
was left out. The results are plotted in Fig. 2. CO makes an
over estimation of folding rates for slow folding proteins
and an under estimation for proteins folding with interme-
diate rates. The LRO parameter improves the prediction
somewhat, whereas TCD provides the best results.

The results of these three parameters are quantitatively
compared in Table 2. TCD has a correlation coefficient of
�0.88 (p-value � 7 � 10�10) with the logarithms of folding
rates of the 28 proteins. This is a remarkable improvement
over already good correlation coefficients of �0.74 (p-
value � 7 � 10�6) and �0.81 (p-value � 2 � 10�7) for CO
and LRO, respectively. More importantly, the TCD param-
eter has the best correlation for � and mixed proteins. For
example, the correlation between LRO and ln kf (with c.c. �
�0.50) for all-� proteins is slightly worse than that between
CO and ln kf (with c.c. � �0.54). The corresponding value
for TCD is �0.69. For all-� proteins, the LRO is slightly
better than TCD in correlation coefficients but the number
of data points is too small (only 4) to be certain.

Table 2 also shows that total contact distance is the most
accurate in predicting folding rates among three parameters.
This is reflected from both jackknife and structure-based
cross validations. A structure-based cross validation is to
leave one structure group out, rather than one protein out in
the jackknife test. (See Table 1 for group definition.) The
prediction accuracy of total contact distance is the best in
both cross-validation coefficients and root-mean-squared
deviations (rmsd) between the predicted and measured ln kf.
In particular, rmsd is reduced from 2.16 for CO and 1.89 for
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LRO to 1.53 for TCD in the jackknife prediction. Similar
improvement is found in structure-based cross validation.

In Table 2, we further compare the predicting power of
TCD with that of genetic neural networks based on CO,
stability, and other descriptors using the same data set of 33
proteins (Dinner et al., 2001). Adding cytochrome and mu-
tated proteins does not change overall TCD results, except

that the correlation with � proteins becomes worse in the
presence of a few mutants. Although neural networks
yielded slightly better correlations when all data are in-
cluded in training, the prediction using the TCD parameter
is more accurate than the two-descriptor model in structure-
based cross validations and is more or at least as accurate as
the three-descriptor model in terms of both correlation co-
efficients and rmsd values between predicted and measured
ln kf. This is a significant improvement considering that
TCD is a quantity with only two free parameters (Rcut and
lcut).

In folding rates predicted by total contact distance (Fig. 2
c), one of the obvious outliers is due to the �-amylase
inhibitor tendamistat (2AIT, an all-� protein). The experi-
mental observed ln kf is equal to 4.2, whereas the predicted
one is only 0.70. In other words, the actual folding rate is
about 33 times faster than the predicted one. A close in-
spection of all 28 proteins in the database found that 2AIT
and another protein 2HQI (oxidized form of mercuric trans-
port protein) are the only two proteins that have disulfide
bonds. 2AIT has two nonlocal disulfide bonds at �i � j� �

TABLE 1 The database and the values of three parameters
(CO, LRO, and TCD) used in this study

Group*
Protein

ID† nr
‡ CO§ (%) LRO¶ TCD§

Experimental
ln kf

All-�
(v) 1LMB 80 18.4 0.61 0.75 8.50
(v) 2ABD 86 24.4 1.15 1.04 6.55
(v) 1IMQ 86 22.0 0.85 0.93 7.31
(v) 2PDD 43 23.9 0.49 0.75 9.80

All-�
(i) 1NYF 58 32.9 1.40 1.22 4.54
(i) 1PKS 76 32.3 1.92 1.38 �1.05
(i) 1SHG 57 34.8 1.51 1.35 1.41
(i) 1SRL 56 34.5 1.55 1.25 4.04
(ii) 1FNF_9 90 33.9 1.99 1.30 �0.91
(ii) 1FNF_10 94 30.1 1.87 1.14 5.48
(ii) 1HNG 98 33.3 1.56 1.25 2.89
(ii) 1TEN 90 32.8 1.92 1.24 1.06
(ii) 1TIT 89 33.2 2.07 1.26 3.47
(ii) 1WIT 93 35.1 2.48 1.48 0.41
(iv) 1CSP 67 30.9 1.52 1.10 6.98
(iv) 1MJC 69 30.8 1.49 1.14 5.24
(v) 2AIT 74 34.3 2.07 1.42 4.20

Mixed �,�
(iii) 1APS 98 34.9 2.09 1.52 �1.48
(iii) 1HDN 85 31.1 1.73 1.35 2.70
(iii) 1URN 96 30.4 1.46 1.20 5.73
(iii) 2HQI 72 31.1 2.15 1.48 0.18
(iii) 1PBA 81 29.8 1.32 1.08 6.80
(v) 1UBQ 76 29.1 1.18 1.07 7.33
(v) 2PTL 62 31.1 1.37 1.23 4.10
(v) 1FKB 107 31.6 1.98 1.30 1.46
(v) 1COA 64 31.0 1.42 1.14 3.87
(v) 1DIV 56 24.4 0.84 0.88 6.58
(v) 2VIK 126 21.7 1.67 0.97 6.80

*Groups: (i), SH3; (ii), �-sandwich; (iii), acylphosphatase; (iv), cold
shock; (v), unique.
†1LMB (Burton et al., 1996), 2ABD (Kragelund et al., 1996), 1IMQ
(Ferguson et al., 1999), 2PDD (Spector et al., 1998; Spector and Raleigh,
1999), 1PKS (Guijarro et al., 1988), 1FNF_9 (Plaxco et al., 1997),
1FNF_10, 1HNG, 1TIT, 1WIT (Clarke et al., 1999), 1CSP (Schindler et
al., 1995; Schindler and Schmid, 1996), 2AIT (Schonbrunner et al., 1997a),
1APS (Nuland et al., 1998a), 1HDN (Nuland et al., 1998b), 1URN (Otzen
et al., 1999), 2HQI (Aronsson et al., 1997), 1PBA (Villegas et al., 1995),
1UBQ (Khorasanizadeh et al., 1993), 2PTL (Scalley and Baker, 1997),
1DIV (Kuhlman et al., 1998). All others from (Jackson, 1998).
‡Only the residues that have coordinates in the PDB are counted. That is,
nr is number of structured residues.
§Rcut � 6 Å (based on the heavy atom distance) and lcut � 2. In this table,
TCD � CO � LRO due to the use of a different cutoff for LRO.
¶The cutoffs as in the original paper (Grombiha and Selvaraj, 2001). Rcut �
8 Å based on the C�–C� distance and lcut � 12. (Using Rcut based on heavy
atom distance for LRO yielded essentially the same results.)

FIGURE 1 Correlation between the experimental observed ln kf and the
three parameters. (a) CO, (b) LRO, and (c) TCD. Circles denote all-�,
triangles denote all-�, and squares denote mixed proteins.
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16, and 28, respectively, whereas 2HQI only has a mostly
local disulfide bond (�i � j� � 3). Experimental studies
(Schonbrunner et al., 1997b) have shown that removing one
disulfide bond via mutation would reduce the folding rate of
2AIT by eight fold for the bond with �i � j� � 16, or 30-fold
for the bond with �i � j� � 28. Thus, the observed folding
rate after a single disulfide bond mutation (ln kf � 2.1 or
0.79) is a lot closer to the predicted one (0.70) and is within
the normal prediction accuracy. However, when two disul-
fide bonds are removed, the protein does not fold. Thus, it
seems that total contact distance cannot predict accurately
the folding rates of proteins with more than one nonlocal
disulfide bond.

Removing 2AIT from the database makes TCD an even
better parameter in prediction. Table 2 shows that the cor-
relation coefficient between predicted and measured ln kf in
jackknife cross validation increases from 0.86 to 0.89, and
the rmsd value decreases from 1.53 to 1.40. The correspond-
ing correlation coefficient and rmsd are 0.71 and 2.16 for
CO and 0.80 and 1.84 for LRO, respectively. As for CO and
LRO, significant change in prediction accuracy is not ex-
pected for the neural network three-descriptor model.

The results from neural networks (Dinner and Karplus,
2001; Dinner et al., 2001) revealed that there is a linear
correlation (c.c. � 0.79) between the stability (G) and ln
kf of 13 proteins that have high unnormalized contact orders
(nr � CO). They are 1PKS, 1FNF_9, 1FNF_10, 1HNG,
1TEN, 1TIT, 1WIT, 1APS, 1HDN, 1URN, 2HQI, 1FKB,
and 2VIK. (Protein 2AIT was removed from the original 14
proteins for the reason described above.) The folding rates
of these proteins can be described equally well or better by
total contact distance (c.c. � �0.83) (c.c. � �0.75 if 2AIT
is included). There is a weak correlation between G and
TCD (c.c. � �0.50) for these 13 proteins. It is not clear

FIGURE 2 Scatter plots of the experimental observed and predicted
folding rates by jackknife test. (a) CO, (b) LRO, and (c) TCD of contacting
residues. Circles denote all-�, triangles denote all-�, and squares denote
mixed proteins.

TABLE 2 Linear regression correlation coefficients between ln kf and three different parameters (CO, LRO, and TCD) and the
results from the jackknife and structure-based cross validations. For comparison, some results from genetic neural networks
(Dinner and Karplus, 2001; Dinner et al., 2001) are also included

Correlation Coefficients Jackknife Structure-based

all � � mixed r* �rmsd
† r* �rmsd

†

CO �0.74 (�0.75) �0.17 �0.52 (�0.60) �0.71 0.70 (0.71) 2.16 (2.16) 0.68 (0.70) 3.24 (3.23)
LRO �0.81 (�0.82) �0.96 �0.50 (�0.56) �0.84 0.78 (0.80) 1.89 (1.84) 0.77 (0.80) 1.95 (1.89)
TCD �0.88 (�0.90) �0.93 �0.69 (�0.83) �0.92 0.86 (0.89) 1.53 (1.40) 0.84 (0.87) 1.92 (1.78)
TCD‡ �0.88 (�0.91) �0.67§ �0.60 (�0.83) �0.91 0.86 (0.90) 1.65 (1.43) 0.86 (0.91) 1.65 (1.41)
GNN 2¶ 0.89� — — 0.81 1.90**
GNN 3†† 0.92� 0.84 — 0.86 1.66**

Numbers in the parenthesis are results without 2AIT.
*Cross-validation correlation coefficient between predicted and experimental logarithmic folding rates.
†Rmsd between predicted and experimental logarithmic folding rates.
‡TCD for 33-protein data set as used in genetic neural networks.
§A drop in correlation is due to inclusions of cytochrome and mutated proteins.
¶Genetic neural networks (Dinner and Karplus, 2001; Dinner et al., 2001). Two descriptors are contact order and stability per residue.
�Correlation coefficient between predicted and observed folding rates when all protein are used for training.
**Calculated from qcv

2 value of (Dinner et al., 2001).
††Three descriptors are contact order, stability per residue, and predicted � sheet contents.
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whether neural networks that include TCD in descriptors
will continue to improve the accuracy of rate prediction.

It is of interest to know how sensitive is the result to the
change of the cutoff values that are used to define a contact
(Rcut) and the nonlocalness of the contact (lcut). The depen-
dences of correlation coefficients for CO, LRO, and TCD as
a function of Rcut and lcut are shown in Fig. 3, a and b,
respectively. Results are not very sensitive to Rcut (up to 10
Å) for all three parameters. CO is very sensitive to the
residue separation cutoff lcut. The correlation is significantly
worse if lcut � 4. In contrast, correlation coefficients are
stable over a wide range of lcut for long-range order and total
contact distance. In particular, the correlation coefficient
between ln kf and total contact distance is essentially the
same for 0 � lcut � 14. Because a larger lcut means that
shorter-range contacts (�i � j� � lcut) are not used in corre-
lations, only long-range contacts with �i � j� � 15 determine
the folding rates of proteins. This is consistent with the
results from the long-range order parameter (Grombiha and
Selvaraj, 2001).

To further test the performance of TCD, we apply TCD to
the original database (Plaxco et al., 1998), a database of 23
proteins (Grombiha and Selvaraj, 2001), and a database of
24 proteins (Plaxco et al., 2000). TCD outperformed all
other parameters in all the databases. Ladurner and Fersht

(1997) and Viguera and Serrano (1997) systematically in-
vestigated the folding of CI2 and SH3 domain as a function
of the length of solvent-exposed unstructured loop. The
logarithms of the folding rates for those CI2 and SH3
mutants are found to have an excellent correlation with
contact order (Fersht, 2000). In this case, the correlation
between TCD and ln kf is identical to that between CO and
ln kf. This is because the number of residues (excluding
disordered regions) and the total number of contacts are
unchanged among mutants, and total contact distance dif-
fers from contact order only by a constant factor.

What makes total contact distance to be superior to either
CO or LRO in folding rate prediction? The significant
correlation of either CO or LRO with ln kf indicates that
sequence distance per contact and total number of contacts
per residue are both important in determining the folding
rate of a protein. This is not surprising because a larger
sequence distance between two residues means a greater
physical distance in the coil state and a greater physical
distance will take a longer time for the two residues to make
contact. For a protein to fold fast, the fewer the number of
rate-determining long-range contacts, the better. The new
parameter, TCD, captures both effects in one parameter.

A fortran program (pdb-to-tcd.f) that calculates TCD,
CO, and LRO from a pdb structure will be freely available
upon request (yqzhou@buffalo.edu).
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