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ABSTRACT The dynamics of human neutrophils during micropipette aspiration are frequently analyzed by approximating
these cells as simple slippery droplets of viscous fluid. Here, we present computations that reveal the detailed predictions of
the simplest and most idealized case of such a scheme; namely, the case where the fluid of the droplet is homogeneous and
Newtonian, and the surface tension of the droplet is constant. We have investigated the behavior of this model as a function
of surface tension, droplet radius, viscosity, aspiration pressure, and pipette radius. In addition, we have tabulated a
dimensionless factor, M, which can be utilized to calculate the apparent viscosity of the slippery droplet. Computations were
carried out using a low Reynolds number hydrodynamics transport code based on the finite-element method. Although
idealized and simplistic, we find that the slippery droplet model predicts many observed features of neutrophil aspiration.
However, there are certain features that are not observed in neutrophils. In particular, the model predicts dilation of the
membrane past the point of being continuous, as well as a reentrant jet at high aspiration pressures.

INTRODUCTION

The diameter of a neutrophil is on the order of twice the
diameter of a typical capillary vessel (9mm versus 4.5mm)
(Ting-Beall et al., 1993). These cells are therefore forced to
repeatedly undergo cycles of large deformation and recov-
ery as they pass through the systemic and pulmonary cir-
culations. The rheological behavior of a cell as it undergoes
these deformations is passive (i.e., the necessary energy is
supplied by the transcapillary gradient of blood pressure,
which in turn is generated by the action of the heart). In
addition, there is considerable circumstantial evidence indi-
cating that the blockages caused by white cells stuck inside
capillaries can contribute to pathology during acute isch-
emic incidents (Sutton and Schmid-Scho¨nbein, 1992). Thus,
despite the low numbers of white blood cells, the incidence
of heart attack is directly correlated with the white cell
count (Friedman et al., 1974; Prentice et al., 1982; Schmid-
Schönbein and Engler, 1986).

Experimental studies of the physiological process by
which white cells pass into and out of small capillaries have
frequently been based on cell behavior during micropipette
aspiration and on the subsequent recovery of the cells to
their resting spherical shape. The general and rather remark-
able conclusion of such work is that circulating granulo-
cytes are rather like droplets of liquid mercury (i.e., they are
incompressible Newtonian fluids, they are very slippery,
and they have a considerable surface tension) (Evans and
Kukan, 1984).

Although few dispute the fact that this simple model is
remarkably close to the truth, there remains plenty of room
in which to quibble about details. For example, Evans and
Yeung have presented a model in which the surface layer of

the granulocyte is characterized by a surface shear and
dilatation viscosity in addition to a constant cortical tension
(Evans and Yeung, 1989; Yeung and Evans, 1989). Other
groups have presented calculations in which the interior of
the leukocyte is modeled as a standard viscoelastic solid
(Schmid-Scho¨nbein et al., 1981) or as a Maxwell fluid
inside a prestressed elastic cortical shell (Dong et al., 1988,
1991; Dong and Skalak, 1992). More recently it has been
postulated that the neutrophil behaves as a pseudoplastic or
power law fluid (Tsai et al., 1993). In related developments
it has been suggested that the apparent surface tension of the
white cell should not be treated as a constant, but instead
should be regarded as a function of surface dilation (Need-
ham and Hochmuth, 1992). Finally, it has been put forth that
at very high rates of aspiration, friction in the lubrication
layer between the cell and the capillary wall can have a
significant effect (Shao and Hochmuth, 1997).

One may thus stipulate that all of the simple features of
the slippery droplet model have been questioned at one time
or another. Nevertheless, a decision as to whether one or
another of the suggested improvements to the slippery drop-
let model is actually justified requires accurate numerical
studies for each case and comparison of such studies with
experiments. Before undertaking such testing, however, it
seems that one would be well advised to first understand the
pluses and minuses of the simplest interesting case in some
detail. Therefore our objective in the current paper is mainly
to present some results that will serve to indicate exactly
what does and does not happen when a slippery droplet of
Newtonian fluid is aspirated into a tube.

THEORY

The Stokes equations

Introducing cylindrical coordinates (r, u, z), we will hence-
forth consider a “pipette” to be a cylindrical cavity or tube
drilled into the half-spacez . 0. We denote the interior
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caliber of the pipette byRp. The two-dimensional manifolds
{ r . Rp; z 5 0} and {r 5 Rp; z . 0} are then called the
exterior and interior surfaces of the pipette, respectively (see
Fig. 1). The portion of a pipette boundary that cannot be
clearly classified as interior or exterior is called the “noz-
zle.” For purposes of our current discussion, the nozzle then
consists only of the circular locus {r 5 Rp; z 5 0}. One
should bear in mind that our simplified model for a pipette
neglects the fact that real pipettes have a finite “lip” char-
acterized by a small but nonzero radius of curvature.

The particular abstractions considered by us to be repre-
sentative of neutrophils will be simple droplets of an in-
compressible and slippery Newtonian fluid. Therefore to
avoid confusion, we shall henceforth use the word “droplet”
when we mean to refer to such a simplified model of a cell.
We will generally assume that at an arbitrary instant of time
such a droplet can be said to occupy some simply connected
region,V(t), that this region has radial symmetry, and that
its boundary is piecewise smooth. Att 5 0, we takeV to be
a sphere of radiusRc. We also assume that this sphere
touches the pipette along the ring formed by the sharp
corner of the nozzle and that at all subsequent times the
gasket formed by the contact of the droplet and the nozzle
remains leakproof. This last assumption ensures that the

regions of bathing fluid inside and outside the lumen of the
pipette are effectively disconnected.

The requirements of incompressibility and momentum
balance within the droplet lead to the Stokes equations:

¹ z v 5 0 (1a)

and

¹ z ~m~¹v 1 ~¹v!T! 2 pI ! 5 0, (1b)

where p and v are the pressure and velocity fields,m is
viscosity, andI is a unit tensor.

Boundary conditions

Because the pipette is solid and immovable, portions of the
droplet’s boundary that contact its interior or exterior sur-
faces are constrained and prevented from further motion in
the direction of the outward normal. On the other hand,
because the droplet is assumed to be perfectly slippery,
contact of the droplet with the pipette does not imply
complete cessation of fluid motion (i.e., the fluid can still
flow in the tangent direction).

In any event, the interaction of the droplet with the pipette
means that when enforcing boundary conditions, it is gen-
erally necessary to consider the surface of a droplet as
comprising the union of several submanifoldsGfin, Gcin,
Gcex, andGfex. These are the free-interior, constrained-inte-
rior, constrained-exterior, and free-exterior surfaces of the
droplet, respectively (see Fig. 1). All of these manifolds can
grow or shrink in extent and shape as functions of time, and
in some configurations certain manifolds (e.g.,Gcex) may
not exist at all. There is a fifth boundary,Gzax, which exists
at the axis of rotation. This is a purely logical boundary that is
important numerically but which has no physical significance.

Generally we will letn and t denote unit normal and
tangent vectors on the surface of the droplet (n will point in
the outward direction andt in the direction of increasing
latitude). We also letk be the mean curvature of the free
surface of the droplet,g be the droplet surface tension,Pin

be the hydrostatic pressure acting on the free surfaces of the
droplet inside the lumen of the pipette, andPex be the
pressure acting on the free surfaces of the droplet outside
the pipette. We may then state the boundary conditions on
the four segments of the droplet periphery as follows:

~m~¹v 1 ~¹v!T! 2 pI ! z n 5 2~2kg 1 Pin!n onGfin,
(2a)

~m~¹v 1 ~¹v!T! 2 pI ! z n 5 2~2kg 1 Pex!n onGfex,
(2b)

t z ~m~¹v 1 ~¹v!T! 2 pI ! z n 5 0, v z n 5 0 onGcin,
(2c)

and

t z ~m~¹v 1 ~¹v!T! 2 pI ! z n 5 0, v z n 5 0 onGcex.
(2d)

FIGURE 1 Geometry of the “pipette” and “droplet” for the conditions of
the standard aspiration calculation. The “exterior,” “interior,” and “nozzle”
of the pipette are indicated. The geometry of the droplet is described by an
axisymmetrical domainV that is initially taken to be a sphere of radiusRc.
We denote the interior caliber of the pipette byRp. The various submani-
folds that comprise the boundary of the pipette are indicated, whereGfex,
Gcex, Gfin, Gcin, andGzaxrefer to the free-exterior boundary, the constrained-
exterior boundary, the free-interior boundary, the constrained-interior
boundary, and the logical boundary (associated with the axis of rotation),
respectively.
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Measures of aspiration

Several quantities provide observable scalar measures of the
extent and progress of aspiration. The most frequently re-
ported is the axial distance separating the nozzle and the
most aspirated pole of the cell,Lp(t). Another useful mea-
sure of aspiration is the volume of cytoplasm contained with
the lumen of the pipette,Vasp(t). It should be remembered
that because of the curvature of the cell surface, the starting
value of Lp is already positive, with valueLp(0) 5 Rc 2
=Rc

2 2 Rp
2 . By a standard formula of analytic geometry, the

starting value of the aspirated volume isVasp(0) 5 (p/
6)Lp(0) (3Rp

2 1 Lp
2(0)). The rate of droplet aspiration is

expressed in terms of the time derivativesL̇p [ dLp(t)/dt and
Q̇ [ dVasp(t)/dt.

The shape of the external surface of the droplet is char-
acterized in terms of the maximum over the droplet surface
of the radial coordinate (denotedRmax(t)). Also useful is the
minimum value of the axial coordinate (Zmin(t)). In the
starting conditionRmax(0) 5 Rc andZmin(0) 5 2Rc 2 Lp(0).

Static equilibrium

For given independent parameters and initial conditions, the
ultimate fate of the droplet is determined by whether the
aspiration pressure is sufficient to overcome the effects of
surface tension. If this is not the case, then the droplet
asymptotically approaches a condition of static mechanical
equilibrium in which there is only partial aspiration. To
investigate the criteria for such an outcome, we first note
that when the velocity field vanishes, Eqs. 1a and 1b are
satisfied if and only if the pressure field inside the droplet is
a constant (henceforth denotedpstat). It then follows from
the boundary conditions that the curvatures of the two free
surfaces of a static droplet are also constants. Accordingly
on Gfin,

k 5 const.5 kfin2stat5
~pstat2 Pin!

2g
,

and onGfex,

k 5 const.5 kfex2stat5
~pstat2 Pex!

2g
.

Subtracting one of these equations from the other leads to a
form of the law of Laplace:

DP ; Pex 2 Pin 5 2g~kfin2stat2 kfex2stat!. (3a)

Several additional remarks about this equation are worth-
while. First, because spheres are the only kinds of surfaces
with constant positive curvature, bothGfin andGfex must be
spherical caps at static equilibrium. Second, curvature of a
spherical cap is the inverse of the radius, and the largest
spherical cap that will fit inside a pipette without touching
the walls has radiusRp. Hence, after some analytic geom-
etry we can express the static curvature ofGfin as an analytic

function of Lp2stat:

kfin2stat 5
2Lp2stat

Rp
2 1 Lp2stat

2 if Lp2stat, Rp

5 1/Rp if Lp2stat. Rp.

(3b)

For Gfex, similar considerations also suffice to determine
the static curvature. To start with, we can writekfex2stat as
the inverse of the radius of a spherical cap having baseRp

and volume (4p/3)Rc
3 2 Vasp2stat. The solution to this ge-

ometry problem can be written in the form

kfex2stat

5 b~8Rc
3 2 3Rp

2Lp2stat2 Lp2stat
3 !21/3 if Lp2stat, Rp

5 b~8Rc
3 1 2Rp

3 2 6Lp2statRp
2!21/3 if Lp2stat. Rp,

(3c)

whereb is a shape factor bounded in the range [22/3, 2]. In
actuality, this shape factor depends weakly onLp2stat in a
complicated way that cannot be written in closed form.
Nevertheless, for practical purposes it is sufficient to regard
b as a constant with value fixed by the first term of a
Taylor’s expansion about the initial state:b ' (4 1 (4 1
2(Rp/Rc)

2)=1 2 (Rp/Rc)
2)1/3.

Combining Eqs. 3b and 3c, we find that the difference
kfin2stat 2 kfex2stat depends onLp2stat, Rp, and Rc only.
Furthermore, ifRp andRc are fixed, this function attains a
maximum for some value ofLp2stat, Rp. The precise value
of Lp2stat that yields this maximum is denotedLp2crit, and
the value ofDP that causes aspiration to exactly this point
is denoted byDPcrit. If we start from the standard initial
conditions and apply a pressure dropDP . DPcrit, then Eqs.
3 a, b, and c cannot be simultaneously satisfied by any
choice ofLp2stat. Thus a static equilibrium cannot exist, and
the droplet will be completely aspirated. Conversely, if
DP , DPcrit, then equilibrium will be possible for some
value ofLp2stat # Lp2crit , Rp.

It can be seen by direct differentiation of Eq. 3a, that in
general the value ofLp2crit is very close toRp. Then for a
narrow pipetteRp ,, Rc, we can make some simplifications:

DPcrit 5 2g~kfin2stat~Lp2crit! 2 kfex2stat~Lp2crit!!

< 2g~kfin2stat~Rp! 2 kfex2stat~Rp!!

5 2g~1/Rp 2 1/Rc!. (3d)

This formula is the basis for a simple experimental protocol
for estimating the surface tension of a cell (Evans and
Yeung, 1989; Zhelev et al., 1994). Using a pipette of small
caliber compared to the droplet, the value ofDP is slowly
increased in small steps to the point where a further pressure
step will cause continuous flow (this yieldsDPcrit). Finally,
the surface tension is obtained according to the formulag '
0.5DPcrit/(1/Rp 2 1/Rc). In general this approach is accurate
to within a few percent, even ifRp is as large as 0.5Rc.
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Dimensional analysis

Suppose that we introduce nondimensional variables:t 5
tDP/m, U 5 z/Rc, r 5 r/Rc, p 5 (p 2 Pex)/DP, v 5
(mv)/(RcDP). After the usual algebra, it is apparent that the
dimensionless version of Eqs. 1a, 1b, 2a, 2b, 2c, and 2d
involves only two groups. These are the nondimensional
pipette radius,

Rp ;
Rp

Rc
, (4a)

and a form of the “capillary” number,

Ca ;
DP

DPcrit
. (4b)

Other nondimensional quantities referred to in the text are
as follows: +p 5 Lp/Rc, +̇p 5 (mL̇p)/(RcDP), Rmax 5
Rmax/Rc, 9asp 5 Vasp/Rc

3, 4̇ 5 (mQ̇)/(Rc
3DP), and !̇ 5

(mȦ)/(Rc
2DP).

Under physiological conditionsRp usually has a value of
;0.5, and in general 0, Rp , 1. Taking standard esti-
mates,g ' 3 3 1022 dynes/cm;Rp ' 3 3 1024 cm; and
DP ' 2 3 1014 dynes/cm2, we find the capillary number
for a neutrophil being sucked through a human capillary to
be on the order of 100.

Energy conservation

If we take the dot product of the velocity field and Eq. 1b,
integrate the result over the regionV, and apply the diver-
gence theorem, we obtain

0 5 E
V

0.5m~¹v 1 ~¹v!T!;~~¹v 1 ~¹v!T! 2 pI !dV

2 E
G

v z ~m~¹v 1 ~¹v!T! 2 pI ! z n dG. (5a)

Substituting the incompressibility condition and the bound-
ary conditions, this result can be rewritten in the form

DPQ̇5 E
V

mF dV 1 gȦ, (5b)

where

Q̇ ; E
GfinøGcin

v z n dG 5 2E
GfexøGcex

v z n dG (5c)

is the volume flux into the pipette,

F ; 0.5~¹v 1 ~¹v!T!;~¹v 1 ~¹v!T! (5d)

is the rate of irreversible conversion of kinetic energy to
heat, and

Ȧ ; E
G

2kv z n dG (5e)

is the rate of change of the droplet surface area.
The interpretation of the terms in Eq. 5b is straightfor-

ward; the product ofDP and Q̇ on the left gives the total
power being supplied by the suction pressure. The product
of g andȦ is the amount of this supply expended to create
new surface area. Finally, the volume integral gives the
amount of power being dissipated irreversibly as heat be-
cause of the fluid viscosity. Notice that the power used to
produce changes in the kinetic energy of the droplet is
neglected because of the assumption of creeping flow.

Approximate rheometric theories

After some rearrangement, Eq. 5b can be recast in the form

m 5
DPQ̇2 gȦ

*VF dV
. (6)

It will be noticed that three factors in the equation,DP, Q̇,
and Ȧ, are directly observable (at least in principle). A
fourth factor (the surface tensiong) can be derived from Eq.
3d as described previously. The remaining barrier to a
practical experimental method for deriving the viscosity of
a very small liquid droplet consists of the unknown dissi-
pation integral in the denominator on the right of Eq. 6. To
overcome this obstacle, it is first convenient to express the
dissipation integral in nondimensional terms:

M~t, Ca, Rp! [ Q̇22Rp
3 E

V

F dV. (7)

Because the aspirated volume is a monotonic function of
time, we may with full generality also regardM as being
given in terms of9asp, Ca, andRp.

For practical viscosity determinations it is necessary to
tabulate numerical values of the dissipation factorM or to
estimate such values by some analytic theory. The simplest
existing scheme of the latter type, introduced by Needham
and Hochmuth (1990), assumes that dissipation occurs only
in the unaspirated portion of the droplet in the region
bounded by two hemispheres. The inner hemisphere is
assumed to have a radius equal to the pipette radiusRp, and
an outer hemisphere is assigned a radiusRmax (this last is
used simply as a convenient measure of size of the unaspi-
rated portion of the droplet). For values ofr in the interval
[Rp, Rmax], Needham and Hochmuth assume the velocity
field to be strictly radial,vr 5 2Q̇/(2pr2). Applying Eq. 5d,
this means thatF(r) 5 3Q̇2/(p2r6). Finally, the dissipation
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integral in Eq. 6 becomes

E
V

F dV <
3Q̇2

p2 E
Rp

Rmax 1

r6 2pr2dr 5
2Q̇2

p S 1

Rp
3 2

1

Rmax
3 D. (8)

Comparison with Eq. 7 then shows that in the case of the
Needham-Hochmuth model,

M .
2

pS1 2
Rp

3

Rmax
3 D. (9)

Because much of the dissipation is ignored in the approxi-
mations leading to Eq. 9, the final result should be regarded
as a lower bound on the actual value ofM. Nevertheless, Eq.
9 suggests that the functionM should be largely indepen-
dent of the capillary number and of time (except to the
extent that these parameters influenceRp

3/Rmax
3 ). Further-

more, when the ratioRp
3/Rmax

3 is much less than 1, Eq. 9
suggests that even this minor complexity is irrelevant (e.g.,
during the initial phases of aspiration for narrow pipettes).
Thus the Needham-Hochmuth model implies that for prac-
tical purposes of measuring viscosities, one may regardM
as a constant with value on the order of 2/p. Yeung and
Evans (1989) used a more sophisticated model (but still
with a number of approximations). The final results also
suggested thatM should be a constant (but with a value of
;2 instead of 2/p). We will subsequently present actual
numerical computations of the factorM.

If M(9asp, Ca, Rp) has been tabulated, then combining
Eqs. 6 and 7,

m 5
~DP 2 gȦ/Q̇!Rp

3

M~9asp, Ca, Rp!Q̇
. (10a)

Equation 10a is exact but somewhat cumbersome, if exper-
imental data are reported in terms ofL̇p. In these cases it is
helpful to make further approximations:Q̇ ' pRp

2L̇p and
Ȧ/Q̇ ' 2(1/Rp 2 1/Rmax). The end result (valid ifLp . Rp)
is as follows:

m <
DP 2 gȦ/Q̇

pML̇p/Rp

(10b)

<
DPRp 2 2g~1 2 Rp/Rmax!

pML̇p

. (10c)

Numerical methodology

The computations underlying this study were carried out
using a low Reynolds number hydrodynamics transport
code based on the Galerkin finite-element method (Hughes,
1987; Fletcher, 1984). This program was developed in re-
cent years specifically for investigating the solutions of field
theoretic formulations of the cytoskeletal mechanics and
chemistry of biological cells, with particular emphasis on
amoeboid cells (Dembo, 1994a,b; He and Dembo, 1997).

Many of its important features are not needed to analyze the
simple computation of slippery droplet aspiration that is of
immediate concern, although these additional features
would be needed to treat the more complex situations men-
tioned in the Introduction. Descriptions of the features of
this code and specifics relating to its application in the
present computations are given in Appendix A.

RESULTS

As discussed previously, the dynamics of aspiration of a
slippery and incompressible Newtonian droplet with con-
stant surface tension can be fully characterized by only two
nondimensional groups. These are the capillary number,Ca,
and the dimensionless radius,Rp (see Eqs. 4a and 4b). In
the current study our basic strategy for analysis of the model
is to takeRp [ {0.3, 0.5, 0.7} andCa [ {0.5, 0.9, 1.25, 2,
5, 10,`} and to exhaustively examine the complete dynam-
ics of the aspiration for all 21 combinations of (Rp, Ca).

Spatial dynamics of aspiration

Figs. 2 and 3 illustrate the geometrical effects of decreasing
surface tension while holding all other factors constant
(after scaling, decreasing surface tension corresponds to
increasing capillary number). First and foremost, one should
note that when the capillary number is small (Fig. 2a), the
droplet merely progresses through a series of quasistatic
forms as the proportions of aspirated and unaspirated liquid
slowly change in time. At any given instant the shape is
close to the shape of minimum surface area. Thus, for
example, the exterior free surface (Gfex) can be approxi-
mated by a spherical cap with a base equal to the pipette
radius. A similar cap exists in the interior of the pipette
(Gfin), and, depending on the amount of aspirated fluid, there
can be a cylindrical segment that is in firm contact with the
interior surface of the pipette (Gcin). At a low capillary
number, surface tension is sufficient to balance the suction
pressure, and the droplet does not make contact with the
exterior surface of the pipette (i.e.,Gcex is empty).

At infinite capillary number (Fig. 2b) surface tension is
negligible, and the droplet geometry is not influenced by a
tendency toward minimal surface area. In addition, the
viscous and pressure stresses acting on the exterior of the
pipette are the only factors available to balance the suction
pressure. Hence there is a pronounced “flattening” of the
droplet against the outer wall of the pipette (i.e.,Gcex is no
longer empty), and the curvatures of the free surfaces (Gfex

and Gfin) are the result of the flow kinematics only. Thus
these curvatures are generally much smaller than would
pertain at low capillary number.

An interesting feature of aspiration at low surface tension
is the development of a slight cervix just interior to the
pipette opening (seeinset of Fig. 2 b). This leaves a gap
between the droplet surface and the interior wall of the
pipette. The manifoldGfin then consists of two disconnected

114 Biophysical Journal Volume 76 January 1999



parts (the surface of the cervix and the rounded surface at
the apex of the droplet). Intuitively one might expect a
propensity of this cervix to deepen and pinch off in a
fashion similar to what happens in a dripping faucet. Re-
markably, however, we find that the saddle-like free surface
of the cervix is stable regardless of pipette radius and
regardless of capillary number. This stability is mediated by
a precarious balance between the viscous stresses, the hy-
drodynamic pressure, and the negative suction pressure
prevailing in the pipette lumen. The uncertain nature of the
droplet stability at high capillary number would lead one to
predict rupture (or at least tethering) for even a very slight
leakage of the exterior ambient fluid in the lubrication space
between the droplet and the pipette. It is also possible that
the cervix would not develop at all if the external fluid were
assigned a nonzero viscosity. Numerical calculations to test
these possibilities will be the subject of a future study.

At low capillary number (Fig. 3a), all regions of fluid on
the exterior of the pipette move along streamlines that
converge toward the pipette nozzle (forU , 0 ther-velocity
is negative and theU-velocity is positive and increasing; see
Fig. 3, c and e, respectively). At the axis (r 5 0) the
streamline has perfect axial orientation and does not change
direction. TheU-velocity on this streamline goes through a
maximum just inside the pipette entrance and then decreases
to an asymptotic value (forr 5 0, the apicalU-velocity is
;10% smaller than the value at the pipette opening). The
streamline passing along the wall of the pipette (r 5 Rp)
bends through a very sharp angle at the pipette opening and

then becomes perfectly aligned with the axis. Particles mov-
ing along this streamline have lowU-velocity at the pipette
entrance and then monotonically accelerate toward a max-
imum value asU increases. At intermediate values ofr the
streamlines bend at the pipette opening. The angle of turn-
ing is such that they actually overshoot a perfect axial
orientation by a small angle (hence ther-velocity becomes
positive forU . 0). Ther-velocity continues to increase and
reaches a maximum a short distance inside the pipette. The
r-velocity then decreases asymptotically toward zero for
very large values ofU. Within the quasihemispherical apex
of the droplet there are some additional flow disturbances
due to the slow microscopic changes in the shape of the free
surface as the distance from the pipette opening changes.

At high capillary number (Fig. 3b) the flow follows a
general pattern similar to the one described above, but there
are two exceptional features. First, not all fluid particles on
the exterior of the pipette fall on streamlines that eventually
move into the nozzle (this is due to the “flattening” of the
droplet). Second, the streamline passing closest to the inte-
rior wall of the pipette does not have perfect axial orienta-
tion after the pipette entrance. Rather, ther-velocity along
this streamline is negative up to the deepest point of the
cervix (see Fig. 3d). It then becomes positive (similar to the
pattern of streamlines at intermediate values of the radius).

The main features of the pressure field for an aspirating
Newtonian fluid are demonstrated by the contours of Fig. 3
a andb. These features include a ring of high pressure just
exterior to the nozzle as well as a ring of very low pressure

FIGURE 2 Overlay plot illustrating changes in the shape of a Newtonian droplet during aspiration as a function of capillary number. (a) Ca 5 2. (b) Ca 5
`. Fora, b, and the inset, the degree of aspiration is (1) 0%, (2) 15%, (3) 30%, (4) 45%, and (5) 60% forRp 5 0.5. (a) At low capillary number, aspiration
of the droplet proceeds through a series of quasistatic states. The unaspirated portion of the droplet maintains the geometry of a spherical cap, whereas the
aspirated portion has the geometry of a cylinder with a hemispherical cap of radiusRp. (b) At high capillary number, there is a pronounced “flattening”
of the exterior portion of the droplet against the outer surfaces of the pipette. Also predicted is a decrease in the curvature of the surfaceGfin. A further
prediction is the existence of a small stable gap between the droplet surface and the interior wall of the pipette. This gap, as well as the “flattening,” can
be further observed in the inset.
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FIGURE 3 Stream functions, pressure contours, and velocity contours forCa 5 2 (a, c, ande) andCa 5 ` (b, d, andf) at Rp 5 0.5 and+p 5 1.12.
(a) Pressure contours and stream functions forCa 5 2. (b) Pressure contours and stream functions forCa 5 `. (c) r-velocity contours forCa 5 2. (d)
r-velocity contours forCa 5 `. (e) U-velocity contours forCa 5 2. (f) U-velocity contours forCa 5 `. It should be noted that in a two-dimensional view,
streamlines are closer together where the highest fluid velocity occurs. In this calculation, the region of greatest volume flux is along the axis of rotation.
However, as plotted, the streamlines are further apart along the axis of rotation. This distortion in the plot occurs because of radial corrections because the
calculation is axisymmetrical and not two-dimensional.
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just interior to the nozzle of the pipette (this is the location
of the cervix in the case of high capillary numbers). The
pressure gradient near the leading edge of the droplet ap-
proaches zero (as expected for simple plug flow). The
pressure extremes near the nozzle and the associated radial
meandering of the streamlines are both kinematically nec-
essary for creation of the new surface area (see Appendix D
for further discussion of surface kinematics during droplet
aspiration).

The final stages of droplet aspiration are not particularly
remarkable when the capillary number is small (Fig. 4a).
The shape of the droplet is still very close to the shape of
minimum area, but the resistance to aspiration approaches
zero because there is less and less need to deform the fluid
or to produce new surface area. This leads to a singularity in
the velocity of aspiration. In contrast, when the capillary
number is very large, the final stage of aspiration is char-

acterized by an invagination ofGfex at the axis (called a
reentrant jet). This happens because there is no penalty for
the generation of surface area and because the droplet is
very flattened so that a bigger pressure gradient impels the
motion of fluid at the trailing pole verses the wings (some-
thing very similar happens during the final stages of the
draining of a bathtub).

Fig. 4 b displays some stages in the formation of the
reentrant jet under the condition (Rp, Ca) 5 (0.5,`). In this
figure, several of the previously discussed geometrical con-
sequences of a low surface tension are evident (e.g., the
development ofGcex and the cervix). An interesting obser-
vation is thatGcex continues to increase as aspiration pro-
ceeds until the beginning of the formation of the reentrant
jet. Once the jet appears,Gcex decreases, but at a slow rate.
A ring-like body of fluid thus becomes trapped by the
exterior of the pipette as the main body of the droplet moves
inward. A thin collar of fluid is all that is connecting this
exterior ring with the main body of the droplet. Moreover,
as the bulk of the droplet moves into the pipette, this collar
becomes increasingly thinner. On this basis we feel confi-
dent in concluding that for the conditions of Fig. 4b droplet
rupture will ultimately occur. We observed similar dynam-
ics under the condition of (Rp, Ca) 5 (0.3,`). However,
these were the only cases for which we observed rupture.
For (Rp, Ca) 5 (0.7,`) a reentrant jet formed, but we saw
no evidence that growth of this jet would be sufficient to
cause rupture. During all other computations (in which the
capillary number was finite), no reentrant jet formed and
there was no evidence of droplet rupture through this
mechanism.

Temporal dynamics of aspiration

Very commonly, the dynamics of aspiration are analyzed by
plotting the length of the projection of the droplet into the
pipette (+p) versus time (t) (Fig. 5). In the current formu-
lation, when the capillary number is less than 1, the pressure
is not sufficient to overcome the surface tension. Thus+p

increases rapidly at first but then slows down until a stable
equilibrium is reached. In accord with the law of Laplace,
the asymptotic value of+p/Rp is less than 1 ifCa is less
than 1. At capillary numbers greater than 1 the droplet
moves progressively into the pipette for as long as we can
follow. Thus no stable equilibrium exists. Initially the
curves of+p versust are concave downward. Then when
+p/Rp becomes greater than 1, the curves are approximately
linear. Finally, they go through a point of inflection and
become concave upward. The slope of the curves then
accelerates steadily.

The kinematics of aspiration are further exemplified by
examining a plot of the time derivative of+p (see Fig. 6).
Note that the rate of aspiration approaches a vertical asymp-
tote as the time approaches zero, as well as at the point of
complete aspiration. Between these limits there is a unique
stage at which the rate of aspiration reaches its minimum

FIGURE 4 Overlay plot illustrating progressive changes in the shape of
a Newtonian droplet as a function of time during the final phase of
aspiration. (a) Ca 5 2, (b) Ca 5 ` under the condition ofRp 5 0.5. For
a andb, the volume aspirated for each outline is as follows: (1) 60%, (2)
70%, (3) 75%, and (4) 80%. For curvea5, the aspirated volume is 90%,
whereas the aspirated volume forb5 is 82% because of the formation of the
reentrant jet. Ina, the final stages of aspiration, at low capillary number,
progress through quasistatic equilibrium points, as was observed during the
earlier stages. Inb, however, the computation predicts the existence of a
reentrant jet that grows explosively and would eventually lead to lysis in
small pipettes.
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value. This minimum and the conditions associated with
this minimum are important experimental observable quan-
tities that can be used as the basis for experimental tests to
distinguish between Newtonian and non-Newtonian models

for the fluid in a microscopic droplet (this will be elaborated
upon in subsequent publications).

To understand the reasons for the rapid changes in aspi-
ration velocity during the initial stages, one must realize that
the rim of the pipette is exerting a reaction force on the
surfaceGcex so as to exactly counterbalance the integrated
suction force exerted over the manifoldGfin. The area of
Gcex initially consists only of a single mesh node, and as a
result the reaction force approaches that of a concentrated
ring of point forces. The theoretical entry velocity for con-
centrated forces of this nature is infinite (sort of like entry
velocity for an infinitely sharp cooky cutter pushed with a
finite force). Because of the finite resolution of the compu-
tational mesh, the initial pattern of reaction forces exerted
by the pipette is slightly smeared out, and thus the initial
entry velocity (see Fig. 7) as computed numerically is a very
slight underestimate.

ForRp equal to 0.3 and 0.5 (Fig. 5,a andb, respectively),
the greater the capillary number, the greater the rate of
aspiration. Intuitively this means that increasing the surface
tension of the droplet always slows down droplet entry (all
other factors being equal). Surprisingly, however, we find
that this simple rule is not always true. In particular, it is
violated whenRp is equal to 0.7 (compare the curves for
Ca 5 5 (filled triangles) and 10 (open triangles) in Fig. 5c).
This counterintuitive result comes about because surface
tension has two rather different effects on the progress of
droplet aspiration. First, surface tension causes a resistance
to dilation of the surface on the interior of the pipette, thus
retarding entry.

The secondary effect of surface tension is more subtle
and is only apparent late in the aspiration process. Here, as
the exterior volume becomes smaller, the surface tension
squeezes the exterior boundary, preventing distortion and
flattening and providing an additional impetus for droplet
entry. Simultaneously there is a decrease in viscous dissi-
pation because the fluid in a compact rounded droplet has to

FIGURE 5 Three plots of+p versust for (a) Rp 5 0.3, (b) Rp 5 0.5,
and (c) Rp 5 0.7. Ina, b, andc, each curve represents a specific capillary
number as follows:Ca 5 0.5 (■), Ca 5 0.9 (h), Ca 5 1.25 (F), Ca 5 2
(E), Ca 5 5 (Œ), Ca 5 10 (‚), Ca 5 ` (1). As can be observed ina, b,
andc, for Ca , 1, the aspiration pressure is not great enough to overcome
the surface tension, and thus aspiration stops and a stable equilibrium is
reached. Furthermore, in all cases, the rate of aspiration varies with
capillary number, and for the cases ina and b, the higher the capillary
number, the greater the rate of aspiration. Inc, for certain capillary
numbers, the surface tension actually assists the droplet in entering the
pipette by preventing excessive flattening, and thus the direct relationship
of aspiration rate with pressure is not observed.

FIGURE 6 Plot of+̇p versust for Rp 5 0.5, Ca 5 10. The rate of
aspiration approaches a vertical asymptote as the time approaches zero and
as the point of complete aspiration is approached. Between these limits the
rate of change of+p is approximately constant.
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be transported over shorter distances and accelerated
through smaller angles as it is aspirated. Our calculations
demonstrate that on net balance, if the pipette is wide and if

the aspiration pressure is within a specific range, then these
secondary kinematic benefits outweigh the primary penalty.

Calculation of viscosity

The Needham-Hochmuth (N-H) and Yeung-Evans (Y-E)
models are approximate treatments of pipette hydrodynam-
ics that have been extensively used for estimating cell
viscosities from aspiration data (see Approximate Rheomet-
ric Theories; Needham and Hochmuth, 1990; Yeung and
Evans, 1989). Both of these models assume that the exterior
of the droplet is a spherical cap that changes only via
self-similar shrinkage as its volume is aspirated. They also
neglect dissipation inside the pipette and near the pipette
nozzle. Using these kinematic assumptions, the models go
on to derive functional relationships connecting the quantity
F [ (DP 2 gȦ/Q̇)/(mL̇p/Rp) and the quantityRp/Rmax. For
example, in the N-H approach the result of the analysis
takes the form

F~DP, g, Ȧ, Q̇, m, L̇p, Rp! . 2S1 2
Rp

3

Rmax
3 D. (11)

The expression on the right of this equation is slightly
different in the case of the Y-E analysis, but in either case
a viscosity calculation becomes feasible because all invoked
quantities exceptm are experimentally observable.

Fig. 8 shows the results of a direct test for the existence
of some simple formula of the sort given by Eq. 11. The
open symbols give computed values ofF for three different
pipette radii atCa 5 2 (each data point corresponds to a
different stage of aspiration). Similar results for aspiration at
Ca 5 10 are shown by closed symbols. The solid and dashed
curves show the relevant theoretical predictions of the N-H
and Y-E models, respectively.

We conclude that under many conditions there is in fact
a strong semiquantitative correlation between the values of
F and values ofRp/Rmax. It is also evident, however, that
this relationship is not strictly functional (i.e.,F depends on
hidden factors and can undergo very significant changes
without any corresponding change inRp/Rmax). The hidden
factors influencingF are most pronounced at high capillary
numbers and at small degrees of aspiration (i.e., when the
exterior shape of the droplet is nonspherical or when it is
deflating in volume, primarily via processes of flattening
and indentation). Even under circumstances where the ex-
terior geometry of the droplet deflates in a similar fashion
(low capillary number and intermediate levels of aspira-
tion), both the Y-E and the N-H formulas systematically
underestimate the numerically computed values ofF. This,
we believe, is because the underlying models do not com-
pletely account for dissipation inside the pipette and near
the pipette nozzle.

To determine the viscosity of a small droplet of Newto-
nian fluid with improved accuracy it is desirable to use a
methodology that avoids restrictive kinematic assumptions
and is grounded in the concept of heat dissipation as exactly

FIGURE 7 Initial entry phase for+p versust curves for (a) Rp 5 0.3,
(b) Rp 5 0.5, and (c) Rp 5 0.7. As in Fig. 5, each curve represents a
specific capillary number as follows:Ca 5 0.5 (■), Ca 5 0.9 (h), Ca 5
1.25 (F), Ca 5 2 (E), Ca 5 5 (Œ), Ca 5 10 (‚), Ca 5 ` (1). Fora, b, and
c, the initial entry phase slope is not as steep as experiments show it to be.
Rather than initially being infinite, this velocity is finite and decreasing to
a constant value. The initial entry value only depends on geometry (5
+p(0)) and is constant regardless of capillary number.
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as possible. Ideally, this means use of Eq. 10a in conjunc-
tion with tables giving the dissipation factorM for relevant
values of the independent variables+asp, Rp, andCa. For
convenience, reference tables of the necessary sort are pro-
vided in Appendix B of this paper, and a step-by-step
account of a typical viscosity calculation is given in Appen-
dix C.

The ratioȦ/Q̇ is a measure of the production of droplet
surface area per unit change in aspirated volume. This ratio
appears in Eqs. 10a, 10b, and 11; and in principle, it is a
function of droplet geometry and motion that should be
directly observed when utilizing these equations to compute
viscosities. It is particularly important to derive accurate
values ofȦ/Q̇ if the capillary number is low, because this is
when the corrections for surface tension are most signifi-
cant. Nevertheless, because direct observations ofȦ/Q̇ are
experimentally difficult, it is tempting to replace this quan-
tity with something that is more easily determined. In the
simplest such procedure (Evans and Yeung, 1989) the ratio
Ȧ/Q̇ is assigned a constant value based on the critical
condition (i.e.,Ȧ/Q̇ . DPcrit/g ' 2/Rp 2 2/Rc). A more
sophisticated approach is to expressȦ/Q̇ as a function of
Rmax (i.e., Ȧ/Q̇ . 2/Rp 2 2/Rmax).

Fig. 9 shows a direct comparison of these formulas
against our numerically computed values of!̇/4̇. We con-

clude that the assumptionȦ/Q̇ . DPcrit/g can result in large
errors for all experimental conditions and should be avoided
for purposes of viscosity determinations. On the other hand,
for small pipette radii and at low capillary numbers (Ca #
5), the formulaȦ/Q̇ . 2/Rp 2 2/Rmax gives very good
estimates of!̇/4̇, at least during the middle stages of
aspiration (see Fig. 9,a and b). This covers most of the
situations of interest, but one must still be careful, however,
not to blithely push this approximation too far. In particular,
it is not valid if Lp '

, Rp.

Mesh refinement

As with any computational study, one is concerned about
the amount of error associated with the various necessary
numerical approximations. The accuracy of the current
computations has been checked by repetition at different
levels of mesh refinement. Comparing plots of+p versust,
we are able to detect visible differences (order of 10%)
between calculations done using meshes with 272 elements
versus those with 800 elements. We found virtually no
difference between the results of calculations done with
meshes of 800 elements versus 3200 elements (i.e., differ-
ences of less than 1%). We did observe that there was

FIGURE 8 Test of the rheometric models of Needham-Hochmuth and Yeung-Evans. In this plot, the solid line represents the dissipation predicted by
the Needham-Hochmuth approximation (see Eq. 11), and the dashed line represents the Yeung-Evans approximation (withh 5 0.01). Data points show
our computed values of the nondimensional factor,F [ (DP 2 gȦ/Q̇)/(mL̇p/Rp), at various stages of aspiration. Open symbols indicateCa 5 2, and closed
symbols indicateCa 5 10. The shape of the symbol designates pipette radius (squares forRp 5 0.3, circles forRp 5 0.5, and triangles forRp 5 0.7).
The initial vertical rise for each combination ofCa andRp occurs becauseRmax remains essentially constant while the droplet is being indented by the
pipette.
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generally a greater amount of error associated with very
narrow pipettes because the deformation of the droplet is so
extreme and the mesh became greatly distorted. We also
found that error tended to increase asCa 3 1.0. This is
because the flow near the critical condition is driven on
minute pressure gradients and is influenced by very small

shape changes. The latter are difficult to compute because
they are superimposed on the dominant quasiequilibrium
pertaining between the surface forces and the pressure field.

DISCUSSION

Although idealized and simplistic, the slippery Newtonian
droplet model captures many of the features of the passive
neutrophil as it is being aspirated into a micropipette. At the
present time the following observations may be counted in
favor of the model.

1. Under normal conditions, complete aspiration of a
droplet is predicted. Thus the model is consistent with the
fact that leukocytes can be aspirated at very rapid rates and
at very high pressures without damage.

2. During the aspiration of passive leukocytes, there is
little evidence of friction between cells and the wall of the
pipette. Any sticking that does occur from time to time is
probably indicative of activation. This supports the bound-
ary conditions of the droplet model.

3. For small aspiration pressures, neutrophils behave in
accordance with the law of Laplace. This means that for a
given pipette radius neutrophils are characterized by a well-
defined critical pressure. If the suction pressure is below this
value, the cells flow inward until a static equilibrium is
reached. Above the critical pressure no equilibrium exists
and the cells flow completely into the pipette. Except for
very narrow pipettes (less than 10% of cell radius; see
below) the critical pressure depends on the cell radius and
the pipette radius exactly as predicted by the law of Laplace.
The static shapes of the cells after equilibration at subcriti-
cal aspiration pressures are also as predicted (i.e., curvatures
of the free surfaces are constants and Eq. 3d is obeyed).

4. If the suction pressure is suddenly reduced during the
middle stages of aspiration, then cells show very little
tendency to recoil toward their initial rounded shape. In-
stead, as long as the suction pressure is still above the
critical pressure, the cells continue to move inward (al-
though the rate may be different).

5. The geometrical shapes of neutrophils during aspira-
tion are consistent with the predictions of the droplet model.
In particular, if the pressure is only slightly greater than the
critical pressure, thenGfex is closely approximated by a
spherical cap with a base equal to the pipette radius. Like-
wise,Gfin is hemispherical. There is little detectable contact
with the pipette exterior. At high pressures neutrophils
flatten against the exterior of the pipette, and the curvature
of the interior free surface is markedly reduced (Needham
and Hochmuth, 1990).

6. If the suction pressure is steady, the kinetics of neu-
trophil aspiration are qualitatively consistent with the pre-
dictions of the droplet model. Thus the initial rate of entry
(as measured in terms ofL̇p) is virtually infinite. The rate of
aspiration slows down very quickly and becomes approxi-
mately constant. The phase of constant aspiration rate is
prolonged and continues until the radius of the unaspirated

FIGURE 9 Plot of!̇/4̇ versus9aspfor both numerically calculated (F)
and kinematically estimated (E) values of!̇/4̇ for (a) Ca 5 2, (b) Ca 5 10,
and (c) Ca 5 `. Also drawn on these plots is the line of constant!̇/4̇,
which is often assumed. Ina it is evident that the kinematic model
estimates the actual value of!̇/4̇ quite accurately, except at the very
beginning of the aspiration process (9asp, 9hemisphere). Also evident is the
fact that !̇/4̇ is not a constant value. Inb neither the assumption of
constant!̇/4̇ nor the kinematic model is an accurate estimate for the actual
value of !̇/4̇. Both methods result in a gross overestimate of the actual
value of!̇/4̇. In c, however, the kinematic model and the assumption of
constant!̇/4̇ are approximately the same and actually result in a slight
underestimate of the actual value of!̇/4̇, until the formation of the
reentrant jet, where the numerical value of!̇/4̇ asymptotically approaches
infinity. This result is due to the fact that the rate of volume aspiration is
approaching zero.
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material approaches the pipette radius. During the final
stages of aspirationL̇p increases and again approaches infinity.

7. According to some experiments, the value ofL̇p ob-
served during the middle range of the aspiration process is
approximately linear in the suction pressure (Evans and
Yeung, 1989; Needham and Hochmuth, 1990).

8. If cells are completely aspirated into a pipette, held for
;5 s in the final “cigar-like” shape, and then expelled, they
will spontaneously regain their original spherical shape.
Analysis of the rate of recovery of the original round shape
is quantitatively consistent with a model in which the sole
driving force comes from surface energy (Tran-Son-Tay et
al., 1991). Notably the recovery kinetics are not consistent
with models involving significant contributions of elastic
energy. The values of surface tension and viscosity deter-
mined from aspiration experiments are portable and can
quantitatively predict the kinetics of freely recovering neu-
trophils in these experiments.

We will now list several instances in which existing
experimental observations do not favor the droplet model:

1. During the initial stages of pipette aspiration, neutro-
phils flow rapidly, and only after some time does the stage
of slow steady aspiration begin. This is qualitatively con-
sistent with the kinetics predicted by the droplet model, but
the quantitative data are impossible to reconcile. In partic-
ular, the experimentally observed amplitude of the initial
rapid entry phase at high suction pressures (several pipette
diameters) is much larger than anything predicted by our
calculations (see Fig. 10 for comparison of the model with
experimental data).

2. There has been evidence presented indicating thatL̇p

is highly nonlinear in the aspiration pressure (Tsai et al.,
1993; Waugh and Tsai, 1994). In this case it was been
suggested that the cytoplasm of the neutrophil should be
represented as a power law fluid (also sometimes called a
shear thinning fluid or a pseudoplastic fluid).

3. If the neutrophil is aspirated very quickly and then
immediately expelled from the pipette, the recovery process
begins with brief initial “jump” or recoil toward the spher-
ical shape. If the cell is held inside the pipette for a few
seconds before being expelled, then this initial transient is
not observed (see item 8 above). This suggests that the
neutrophil has a fading elastic memory with a time constant
on the order of 1 s (Tran-Son-Tay et al., 1991).

4. When the neutrophil is aspirated into a very small
pipette (less than 30% of cell radius), aspiration continues
until all of the wrinkles and folds of the lipid membrane are
pulled smooth. Shortly past this point lysis occurs if any
further aspiration is attempted (Evans and Yeung, 1989). In
the droplet model, this hard limit on the total surface dila-
tion does not occur (see further analysis in Appendix D).

5. If a neutrophil is partially aspirated into a narrow
pipette, then the cell may appear to reach a new equilibrium
state even while there is still excess surface area available.
If the suction pressure is then rapidly stepped to a very high
level before being returned to the equilibrium level, one
observes in-phase increases and decreases ofLp (Zhelev and

Hochmuth, 1994). These are similar to the changes one
would expect for an elastic object, and they cannot be
accounted for by the droplet model. One may speculate that
large changes in the material properties of the neutrophil
can be induced by stretch activation of receptors on the
plasma membrane.

6. Zhelev and co-workers (1994) have shown that in very
small pipettes the static equilibrium of the neutrophil is not
exactly described by the law of Laplace. The discrepancies
can be accounted for by including a finite thickness of the
cortical layer responsible for generating the apparent sur-
face tension. Some bending rigidity of the cell surface may
also be indicated.

7. For very narrow pipettes (0.4mm) and for very high
suction pressures a necking instability is induced during
aspiration experiments (Zhelev and Hochmuth, 1995). We
have shown that this kind of instability is not consistent with
the droplet model. It may be possible, however, to repro-
duce the observed behavior by allowing for flow in the
small gap separating the cell and the pipette.

FIGURE 10 Plot ofLp/Rp versust, comparing model predictions and
data (from figure 8 of Tsai et al., 1993) for (a) complete course of
aspiration and (b) initial entry phase. The viscosity was adjusted to obtain
the best fit with experiment, whereas other parameters were fixed as
described in the original publication:DP 5 4900 dynes/cm2, m 5 925
dynesz s/cm2, g 5 0.035 dynes/cm,Rc 5 4 mm, andRp 5 2 mm. It is
evident that the initial phase of neutrophil aspiration is faster and has a
larger amplitude than one would expect for a slippery droplet.
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Clearly the droplet model has to be improved, but even in
its simplest form it does provide a reliable account of the
main mechanical features of the neutrophil. The two funda-
mental parameters of the model (i.e., the cell viscosity and
the cell surface tension) are therefore of extreme interest,
and many ongoing studies are aimed at elucidating the
molecular basis of these coefficients.

Unfortunately, an analysis of the current literature indi-
cates that in the case of the cytoplasmic viscosity all values
now available have been derived using ad hoc and highly
inaccurate procedures and assumptions. If applied to an
ideal Newtonian droplet, the viscosity values obtained using
these approaches would yield correct order-of-magnitude
estimates, but they would be subject to systematic errors.
For example, large changes in apparent viscosity could be
completely caused by differences in pipette diameter, in
aspiration pressure, or in surface tension. To reliably correct
for such factors we would suggest use of a rheometric
procedure based on Eqs. 10a, 10b, or 10c in conjunction
with our numerically computed values of the dissipation
factor (see Appendices B and C). This is the most utilitarian
outcome of our present calculations.

Our calculations have also revealed two qualitative fea-
tures of the droplet model that could serve as the basis for
further experimental tests of its validity. In particular, we
find that at very high suction pressures a reentrant jet should
develop during the final stages of aspiration. We also find
that at high capillary numbers a small stable cervix should
develop just inside the pipette opening.

APPENDIX A: NUMERICAL METHODS

Data structure

Fig. 11 shows a typical finite-element mesh defining the regionV, both in
the initial condition (Fig. 11a) and after some degree of aspiration (Fig.
11b). Notice that the mesh interior consists of the union of nonoverlapping
quadrilateralsiQ 5 1, . . . , nQ, and that the mesh boundary comprises
straight line segments or edgesiL 5 1, . . . , nL. The vertices nodes that
define the corners of the quadrilaterals and/or the end points of the edges
are iN 5 1, . . . , nN. Each of the quadrilaterals is specified by pointers
INQ 5 (iN1, iN2, iN3, iN4) that give the indices of the four vertex nodes of
the quadrilateral. In a similar fashion, each of the line segments or edges of
the boundary is specified by pointersINL 5 (iN1, iN2) that give the indices
of the two vertex nodes of the edge.

The ordering of the nodes inINL is assumed to be such that an observer
standing in the interior of the mesh will see the line segment fromiN1 to iN2

as a step in a counterclockwise traversal of the mesh boundary. The
ordering of the nodes inINQ is assumed to be such that an observer standing
in the interior of the quadrilateral will see the four line segmentsiN13 iN2,
iN23 iN3, iN33 iN4, iN43 iN1 as consecutive steps in a counterclockwise
traversal of the quadrilateral boundary.

To host the dynamical equations, each of the vertex nodes is associated
with a vector of quantities that defines the position of the node and, by the
values of the velocity, the pressure and such other dynamical fields as may
be of interest. Thus for the present computation the node vector for the
node with indexiN has the structureUiN

5 (r, z, vr, vz, p, . . .). Each of the
line segments or edges of the boundary is also characterized by a vector of
dynamical variables,UiL

5 (r, . . .). Each line segment of the mesh bound-
ary is further characterized by a pointer that indicates the type of the active
boundary condition on this segment. Thus in the present application this
boundary condition pointer could be directed toward any one of the four
physical boundary typesGfex, Gcex, Gfin, or Gcin. Because we assume

rotational symmetry, the boundary condition pointer could also be directed
at a special “logical” boundary condition,Gzax, corresponding to the axis of
cylindrical coordinates.

Computational cycle

The magnitude of the time step to be attempted at any point in a compu-
tation is determined by making conservative a priori estimates of the rates

FIGURE 11 Typical mesh of quadrilateral elements used in these com-
putations. (a) Initial round mesh withiN 5 897, iL 5 192, andiQ 5 800.
(b) Same mesh as after partial aspiration. The mesh adapts from the round
configuration to the aspirated shape strictly by changes in the placement of
the vertex nodes. No changes in the connectivity on the mesh nodes are
necessary. In controls to test numerical convergence (see Results) we have
occasionally used a simpler mesh (272 elements) and a more complex
mesh (3200 elements). Note that the computation is axisymmetrical, so that
in reality the mesh encompasses only the right side of this figure. For
purposes of graphical display the computational domain is redrawn in
mirror reflection so as to give the final impression of what one would see
in a sagittal section.
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at which dynamical variables are changing. In the current case the limiting
factor on the time step comes from the Courant condition. (In the present
study we take dt equal to the time required for the fluid to cause a
displacement equal to 1% of an element diameter.) The advance of the
dynamical fields over such a small time step of this magnitude is divided
into individual operations, which are ultimately superimposed or assem-
bled to obtain a final result (essentially this results in a forward Euler
integration).

The splitting of operations that we employ matches most of the ele-
mentary steps with basic physical processes: chemical reaction, convective
mass transport, diffusive mass transport, momentum transport, and bound-
ary kinematics. There is also an operation that has no physical significance,
namely mesh rezoning.

Interior rezoning

The paramount aim of the mesh rezone operation is to adjust the placement
of the vertex nodes so as to ensure that all elements of the mesh are convex.
In performing this function, physically essential attributes of the mesh must
remain inviolate. This means that rezoning amounts to a constrained
optimization of nodal positions in which some nodes are completely
constrained (“fixed” nodes), other nodes are constrained to slide along the
surfaceG (“boundary” nodes), and still other nodes are completely free.

In the current application, nodes that fall on the interface between
different boundary segments are fixed as far as interior rezoning is con-
cerned. Thus, for example, if the droplet touches the inside of the pipette,
then the boundaryGcin is not empty and there will be at least one boundary
node that lies at the junction of segmentsGfin andGcin. Such a node would
be held stationary during interior rezoning. As another example, the node
at the nozzle of the pipette is always fixed, because by definition it lies at
the junction ofGfin ø Gcin andGfex ø Gcex. The nodes at the north and south
poles of the cell are also examples of fixed nodes.

Nodes that lie on the mesh boundary but are otherwise undistinguished are
examples of sliding nodes. The interior rezone operation repositions such
nodes by sliding them back and forth so as to maintain an equal spacing. Nodes
that are strictly in the interior of the mesh are examples of free nodes. The
interior rezoner adjusts the placement of such nodes so as to optimize a
measure of the convexity of the mesh quadrilaterals (the Winslow functional).
The general theory of mesh generation and the details of the Winslow func-
tional are reviewed in a recent textbook (Knupp and Steinberg, 1994).

Boundary rezoning

Once during each computational cycle the boundary rezoner determines the
total length of the segmentsGfex, Gcex, Gfin, Gcin, andGzax, and computes the
number of line elements comprising each of these segments. If a check
reveals that the average length of edges in a particular segment is too large
or too small, then the boundary rezoner takes further steps. First two
elements of the segment with the greatest density are fused together. This
creates a “ghost” element (i.e., an element with zero arc length). The ghost
in the element topology is then progressively shifted clockwise or coun-
terclockwise until it finds the largest segment on the boundary segment
with the least resolution. This target segment is divided, with half of its arc
length and the associated surface fields donated to revitalize the ghost. The
boundary condition pointer for the ghost element is set to the same value
as that of the target segment.

Diffusion and chemical reaction

The diffusion-reaction operator changes the node vectors according to what
occurs if all processes except chemical reaction and diffusion are ignored
during a small time interval. A diffusion constant is specified for each
component of the node vector, as is a time derivative resulting from
processes of chemical reaction. If these are zero at all nodes, the operation
is terminated. The chemistry time step is taken using a first-order Runge-
Kutta scheme, and a diffusion time step is taken using a Crank-Nicolson

procedure. Note that the diffusion-reaction operator is not used for the
computation of droplet aspiration; nevertheless it is essential in most other
computations and is therefore included here for completeness.

Advection of mass

The advection operator does two things. First, it decides the final mesh
geometry, choosing the position of each node so as to optimally follow the
evolving shape of the droplet. The operator next takes a fully Lagrangian time
step of the linear convection equation, dilating and translating the mesh
together with all associated physical quantities. The result is stored in tempo-
rary arrays. Last, quantities are interpolated from the temporary mesh onto the
final mesh coordinates. This general approach is sometimes called the arbitrary
Lagrange-Euler (ALE) procedure. In the current computation the mesh nodes
onGfex ø Gfin (inclusive of the north and south poles) are moved according to
the local fluid velocity, and mesh nodes onGcex ø Gcin are moved only
according to the tangential fluid velocity. The node at the nozzle is held fixed
(i.e., fully Eulerian). Nodes in the interior and on thez axis are also fully
Lagrangian. Volumetric fields and surface fields (when present) are interpo-
lated from the temporary mesh onto this final mesh, using a mass- and
shape-preserving upwind scheme (Rash and Williamson, 1990).

Contact dynamics

The “contact” operator is concerned with the kinematics of changing
boundary conditions as the droplet interacts with the pipette. This operator
computes the position of the midpoint of all boundary elements. When an
unconstrained surface element comes into contact with the wall of the
pipette, the boundary condition pointer of this surface element is changed
to reflect the appropriate constraint on the normal velocity.

Solution of the Stokes equations

The essential idea of our strategy is to consider the following the perturbed
version of the Stokes equations:

¹ z ~v 2 e¹p! 5 0 (A1)

and

¹ z ~m~¹v 1 ~¹v!T! 2 pI ! 5 0. (A2)

Notice that as the parametere3 0, these modified equation will come
arbitrarily close to the true Stokes equation. This proposed perturbation,
however, is of the “singular” type, because the small parameter multiplies
a term that involves the highest order derivatives of the pressure. As a
result of this singular nature we are free to specify a “numerical” boundary
condition on the pressure. This we do in the natural way,

¹p z n 5 0. (A3)

All of the other boundary conditions on the stresses and velocities in our
perturbed version of the Stokes equations will be enforced just as in the
original problem, Eqs. 2a, 2b, 2c, and 2d.

The optimal choice fore will occur when the error in the velocity due
to choice of nonzeroe (i.e., the perturbation caused by adding terms of
2(ei¹pi)) is on the same order as the mesh interpolation error of the
velocity field. Clearly once this degree of accuracy has been achieved,
further attempts to enforce incompressibility in a numerical calculation will
be both wasteful and futile, because it is impossible to compute¹ z v with
the requisite accuracy. Starting from this argument, some simple error
estimates then suffice to demonstrate that for bilinear quadrilateral finite
elements with characteristic radiush, an optimal approximation occurs if
we takee ; h2/m. In actual practice we have found that solutions to the
modified Stokes equations depend very weakly one. Thus essentially
identical results are obtained fore as low as 0.1h2/m or as high as 2h2/m.
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Note also that if there are substantial variations in the mesh resolution, then
e can be regarded as a function of position.

The great advantage of introducing Eqs. A1 and A2 lies the fact that
these can be discretized via the standard Galerkin procedure, using simple
continuous-pressure, continuous-velocity bilinear quadrilateral elements (i.e.,
four pressure nodes and four velocity nodes per element). This can be done
despite the fact that such elements would violate the Babuska-Brezzi condition
if applied to the exact Stokes equations. Thus, no special reduced integrations
or nonconforming shape functions or penalty methods are necessary.

A final advantage is that the large linear system that results from the
direct discretization of Eqs. A1 and A2 can be efficiently solved on the
basis of a simple iterative method that has proved to be completely reliable
(see, for example, Dembo, 1994a,b). This iteration is an adaptation of the
Uzawa method (Temam, 1979).

If the pair (p, v) is an existing approximation of the solution of the
modified Stokes equations, then we obtain an improved approximation,
denoted (p̂, v̂), in three steps. Step one consists of regarding the pressure as
known and obtaining the new estimate of the velocity field by solving

0 5 ¹ z ~m~¹v̂ 1 ~¹v̂!T! 2 Ip!, in V, (A4)

with standard boundary conditions, Eqs. 2a, 2b, 2c, and 2d.
Step two consists of regarding the velocity as known and then obtaining

an improved estimate of the pressure as the solution of a elliptic boundary
value problem,

1

m
~p̂ 2 p! 5 ¹e¹p̂ 2 ¹ z v. (A5)

Remember thate 5 h2/m is the perturbation parameter discussed previ-
ously and that the new pressure is required to satisfy the boundary condi-
tion given in Eq. A3.

The final step of the iterative cycle is the check for convergence. In the
current calculations we have utilized the criterion

Pd ;
max~up̂ 2 pu!

~max~p̂! 1 min~p̂!!
# 1026. (A6)

Tests indicate this degree of convergence to be effective yet fairly
inexpensive.

APPENDIX B: TABLES OF THE
DISSIPATION FACTOR

Values of the nondimensional dissipation factor (see Eq. 7) for various
choices of the independent parameters (9asp, Rp, andCa) appear in Tables
B1–B3. Quantities in parentheses are coefficients of variation (standard
error expressed as percentage of estimated value). The dominant error in
determining theM factor comes from the difficulty of taking numerical
derivatives in time. Thus the errors reported for computations tabulated in
this appendix are generally on the order of a few percent but are larger at
the very start and end of aspiration because the time derivatives are
changing rapidly. See Appendix C for a sample calculation in which these
tables are used to obtain the viscosity of a neutrophil.

APPENDIX C: EXAMPLE CALCULATION

Step 1: Parameters obtained directly from
experimental measurements

In this example, the following values were obtained from the literature
(Figure 3a of Needham and Hochmuth, 1990):

DP 5 10,175 dynes/cm2

DPcrit 5 175 dynes/cm2

Vcell 5 2.773 10210 cm3

Rp 5 2 3 1024 cm

L̇p 5 5 3 1024 cm/s

Lp 5 1.133 1023 cm

Step 2: Calculation of other relevant data from
information already obtained

Rc 5 S3Vcell

4p D1/3

5 4.043 1024 cm

g 5
DPcrit

2 S 1

Rp
2

1

Rc
D 5 0.035 dynes/cm

Vasp5 pRp
2Lp 2

p

3
Rp

3 5 1.343 10210 cm3

Rmax < S3~Vcell 2 Vasp!

4p D1/3

5 3.243 1024 cm

Step 3: Computation of nondimensional
parameters and variables from slippery droplet
model

Rp 5 0.5

Ca 5 59

9asp5
Vasp

Rc
3 5 2.03

TABLE B1 Rp 5 0.3

9asp Ca 5 1.25 Ca 5 2 Ca 5 5 Ca 5 10 Ca 5 `

0.010 0.00 0.00 0.00 0.00 0.00
0.029 1.64 (4) 1.43 (6) 1.32 (6) 1.33 (8) 1.34 (9)
0.057 1.72 (7) 1.62 (7) 1.54 (6) 1.54 (5) 1.54 (5)
0.116 1.70 (7) 1.68 (5) 1.72 (5) 1.70 (5) 1.70 (4)
0.270 1.61 (2) 1.73 (1) 1.73 (1) 1.72 (1) 1.72 (1)
0.720 1.55 (2) 1.68 (1) 1.68 (1) 1.70 (1) 1.72 (1)
1.000 1.51 (2) 1.63 (1) 1.63 (1) 1.65 (1) 1.69 (1)
1.200 1.50 (3) 1.57 (3) 1.59 (1) 1.62 (1) 1.66 (1)
1.400 1.47 (3) 1.54 (4) 1.57 (1) 1.59 (1) 1.63 (1)
1.600 1.38 (4) 1.52 (4) 1.55 (1) 1.57 (1) 1.61 (1)
1.800 1.41 (1) 1.53 (3) 1.55 (1) 1.55 (1) 1.60 (1)
2.000 1.40 (2) 1.44 (3) 1.54 (1) 1.56 (1) 1.59 (2)
2.200 1.39 (3) 1.44 (2) 1.56 (1) 1.57 (1) 1.50 (9)
2.400 1.39 (3) 1.44 (2) 1.55 (1) 1.58 (1) 1.37 (16)
2.600 1.38 (2) 1.44 (3) 1.59 (1) 1.59 (1) 1.22 (27)
2.800 1.41 (3) 1.46 (3) 1.63 (1) 1.64 (1) N/A
3.000 1.37 (3) 1.46 (3) 1.70 (1) 1.68 (1) N/A
3.200 1.32 (2) 1.40 (4) 1.65 (1) 1.68 (1) N/A
3.400 1.18 (2) 1.29 (4) 1.60 (2) 1.65 (1) N/A
3.600 0.97 (5) 1.08 (6) 1.55 (7) 1.63 (1) N/A
3.800 0.57 (39) 0.57 (17) 1.28 (7) 1.44 (2) N/A
4.000 N/A N/A N/A 1.07 (4) N/A
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M can then be read from Appendix B, Table B2 (row:9asp5 2.00, column:
Ca 5 `):

M 5 1.52

Step 4: Computation of viscosity using Eq. 10c

m 5

10175p 2 3 1024 2 2 p 0.035
p @1 2 2 3 1024/3.243 1024#

p p 1.52p 5 3 1024

5 841 poise5 84.1 Pazs

This value of the viscosity is;40% lower than the viscosity reported by
Needham and Hochmuth for this particular cell. The discrepancy comes
about mainly because of differences in the value of the dissipation func-
tional.

APPENDIX D: SURFACE KINEMATICS

Theory

It is evident that during aspiration, the wrinkled plasma membrane of a
white cell is required to slide back and forth relative to the interior and to
undergo various changes in folding. Little is known about the mechanical
consequences or importance of these complicated gyrations, but at mini-
mum it is necessary to suppose that the membrane will never, at any point,
be stretched past the point of rupture. Furthermore, using very narrow
micropipettes, Evans and Yeung (1989) have determined that this point
occurs when the fractional surface dilation of the white cell reaches a value
of 2.1 (area just before membrane rupture versus area of a smooth sphere
with equal volume). This rather harsh constraint on the mechanics of real
cells is quite blithely ignored by the slippery droplet model. In particular,
the droplet surface is theoretically allowed to undergo any amount of area
dilation or compression. Furthermore, despite such local dilations and
compressions, the tension of the droplet surface will remain constant. To
check the plausibility of these simplifications it is of interest, during
calculations, to keep track of the dynamics of the droplet surface.

The weakest possible form of a surface constraint in cell mechanics
consists of a global or overall constraint. Dynamically such a “weak”
constraint corresponds to the assumption of a free-slip interaction between
the plasma membrane and the cell interior. Because of the easy sliding of
the membrane relative to the interior, any small local gradients in the
amount of surface wrinkling can instantly be compensated by lateral
sliding and redistribution of the membrane folds. Thus, to a good approx-
imation, the wrinkles remain uniformly distributed over the cell surface,
and a violation of the area constraint can occur only if and when the total
surface area of the droplet exceeds 2.1 times the initial area. Such viola-
tions are trivial to check by direct inspection.

The “strong” or local form of the area constraint on cell mechanics
postulates a no-slip interaction between the plasma membrane and the
interior. Operationally this means that the fractional area dilation during
aspiration must be less than 2.1 at every point on the surface. To check the
consistency of the slippery droplet model versus this extreme requirement,
it is necessary to introduce a special surface field:r [ cm2 of actual
membrane bilayer per cm2 of “projected” surface area. Values ofr much
greater than 1 imply a highly wrinkled or ruffled membrane;r exactly
equal to 1 implies a completely smooth membrane. Because lipid bilayers
must maintain an approximately constant ratio of surface area to mass,
values ofr less than 1 can occur only after failure or rupture of the plasma
membrane.

The measurements of Evans and Yeung (discussed above) imply that
r 5 2.1 in the starting condition when the cell has its spherical shape.
Assuming a no-slip constraint between the membrane and the interior, the
subsequent time evolution ofr is governed by a continuity equation,

Dtr 5 2r¹s z v, (D1)

whereDt is the substantial derivative for a Lagrangian observer moving
with a point on the droplet surface, and¹s z v is the rate of surface dilation.

Results

As the calculation progresses, the excess area density becomes redistrib-
uted along the exterior of the cell, as seen in Fig. 12. In this case, segments
with r . 1 (thick solid histogram boundary) still have some excess
membrane stored in the form of wrinkles. Segments of the boundary with
r , 1 (open histogram boundary) correspond to portions where the bilayer
has been dilated past the point of rupture. It is clear from these results that
the slippery droplet model is not consistent with the strong or local form of
the surface area constraint. In fact (with the exception of some cases at low
capillary number and with wide pipettes), the strong constraint predicts
lysis at early stages of aspiration in the majority of our calculations. In all
cases where lysis is predicted, the initial rupture was located just interior to
the nozzle. This means that new droplet surface area is being created just

TABLE B2 Rp 5 0.5

9asp Ca 5 1.25 Ca 5 2 Ca 5 5 Ca 5 10 Ca 5 `

0.054 0.00 0.00 0.00 0.00 0.00
0.135 1.33 (4) 1.20 (6) 1.14 (6) 1.17 (8) 1.18 (8)
0.270 1.34 (9) 1.41 (8) 1.46 (6) 1.45 (5) 1.46 (5)
0.540 1.29 (11) 1.35 (5) 1.60 (6) 1.60 (5) 1.59 (4)
0.720 1.17 (3) 1.33 (2) 1.55 (1) 1.56 (1) 1.57 (1)
1.000 1.13 (4) 1.29 (2) 1.55 (1) 1.58 (1) 1.58 (1)
1.200 1.10 (4) 1.27 (3) 1.54 (1) 1.57 (1) 1.58 (1)
1.400 1.07 (3) 1.23 (3) 1.53 (1) 1.57 (1) 1.58 (1)
1.600 1.05 (3) 1.21 (2) 1.51 (1) 1.55 (1) 1.57 (1)
1.800 1.02 (3) 1.17 (3) 1.50 (1) 1.54 (1) 1.55 (1)
2.000 0.98 (3) 1.14 (3) 1.47 (1) 1.53 (1) 1.52 (1)
2.200 0.94 (3) 1.10 (3) 1.44 (1) 1.51 (1) 1.48 (2)
2.400 0.89 (3) 1.05 (4) 1.42 (1) 1.49 (1) 1.43 (3)
2.600 0.85 (3) 0.99 (4) 1.39 (1) 1.46 (1) 1.33 (6)
2.800 0.79 (4) 0.97 (3) 1.34 (2) 1.43 (1) 1.19 (10)
3.000 0.72 (5) 0.87 (5) 1.33 (1) 1.40 (1) 1.06 (15)
3.200 0.63 (7) 0.76 (6) 1.27 (3) 1.34 (1) 0.60 (14)
3.400 0.50 (12) 0.63 (7) 1.17 (4) 1.27 (1) N/A
3.600 0.31 (18) 0.42 (8) 0.92 (11) 1.15 (3) N/A
3.800 N/A N/A 0.34 (6) 0.90 (7) N/A
4.000 N/A N/A N/A 0.56 (12) N/A

TABLE B3 Rp 5 0.7

9asp Ca 5 1.25 Ca 5 2 Ca 5 5 Ca 5 10 Ca 5 `

0.232 0.00 0.00 0.00 0.00 0.00
0.363 0.86 (4) 0.78 (7) 0.80 (7) 0.87 (7) 0.93 (8)
0.728 0.75 (6) 0.85 (2) 1.16 (4) 1.19 (2) 1.23 (2)
1.049 0.73 (11) 0.83 (2) 1.17 (2) 1.30 (4) 1.34 (1)
1.200 0.69 (6) 0.80 (2) 1.17 (2) 1.32 (1) 1.36 (2)
1.400 0.65 (6) 0.77 (2) 1.16 (2) 1.33 (1) 1.38 (1)
1.600 0.62 (3) 0.75 (2) 1.13 (3) 1.33 (1) 1.38 (1)
1.800 0.58 (2) 0.70 (2) 1.07 (3) 1.33 (1) 1.37 (1)
2.000 0.53 (2) 0.66 (3) 1.00 (4) 1.30 (1) 1.35 (1)
2.200 0.50 (2) 0.64 (3) 0.92 (4) 1.27 (1) 1.33 (1)
2.400 0.45 (2) 0.56 (4) 0.86 (4) 1.24 (1) 1.33 (6)
2.600 0.39 (5) 0.49 (5) 0.79 (4) 1.20 (1) 1.24 (3)
2.800 0.33 (5) 0.41 (5) 0.70 (6) 1.15 (1) 1.16 (2)
3.000 N/A 0.32 (10) 0.51 (8) 1.05 (5) 1.08 (3)
3.200 N/A N/A N/A 0.90 (8) 0.98 (10)
3.400 N/A N/A N/A 0.43 (10) 0.85 (4)
3.600 N/A N/A N/A N/A 0.67 (6)
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after entrance into the pipette, and this is where the ruffles of the membrane
are pulled taut most rapidly.

We conclude that the plasma membrane of the neutrophil cannot be
strongly coupled to the interior cytoskeleton during aspiration. On the
contrary, the observed behavior of the neutrophil implies that the mem-
brane must be able to slip easily with respect to the viscous medium in the
interior. In some experiments involving aspiration at high pressure, this
slippage must occur very quickly (within fractions of a second). These
properties imply that the plasma membrane has little effect on the macro-
scopic mechanics of aspiration up to the point at which the so-called weak
form of the area constraint comes into play.

This work was supported by National Institutes of Health grant AI21002.

Computations were conducted using the SGI/Cray Origin 2000 facility of
the Boston University Scientific Computing Center.
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