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ABSTRACT Cocaine block of human cardiac (hH1) and rat skeletal (m1) muscle sodium channels was examined under
whole-cell voltage clamp in transiently transfected HEK293t cells. Low affinity block of resting m1 and hH1 channels at 2180
mV was the same, and high affinity block of inactivated channels at 270 mV was the same. Cocaine block of hH1 channels
was greater than block of m1 channels at voltages between 2120 mV and 290 mV, suggesting that greater steady-state
inactivation of hH1 channels in this voltage range makes them more susceptible to cocaine block. We induced shifts in the
voltage dependence of steady-state inactivation at m1 and hH1 channels by constructing m1/hH1 channel chimeras or by
coexpressing the wild-type channels with the rat brain b1 subunit. In contrast to several previous reports, coexpression of the
rat brain b1 subunit with m1 or hH1 produced large positive shifts in steady-state inactivation. Shifts in the voltage
dependence of steady-state inactivation elicited linear shifts in steady-state cocaine block, yet these manipulations did not
affect the cocaine affinity of resting or inactivated channels. These data, as well as simulations used to predict block, indicate
that state-dependent cocaine block depends on both steady-state inactivation and channel activation, although inactivation
appears to have the predominant role.

INTRODUCTION

Sodium channels are voltage-sensitive membrane proteins
that produce the action potentials in excitable tissues such as
nerve, skeletal muscle, and cardiac muscle. With sufficient
depolarization from the resting potential, sodium channels
activate, open, and allow sodium ion flux. Within a few
milliseconds of opening, the channels inactivate and return
to a nonconducting state (Hodgkin and Huxley, 1952). The
general structure of the sodium channel isoforms from dif-
ferent excitable tissues appears to be conserved (Catterall,
1995; Fozzard and Hanck, 1996). Sodium channela sub-
units consist of four homologous domains (D1–D4), and
each domain contains six transmembrane segments (S1–
S6). The arrangement of the four domain regions in the
membrane forms a pore for conducting sodium ions.

Although the structures of the different tissue isoforms of
sodium channel are generally similar, there are marked
differences among the isoforms in kinetic behavior and
pharmacology. Compared to skeletal muscle sodium chan-
nels, cardiac sodium channels activate and inactivate at
more negative membrane potentials and have a slower time
constant of macroscopic current decay when expressed in
mammalian cells (Wang et al., 1996a; Wright et al., 1997).
Pharmacological differences between cardiac and skeletal
muscle sodium channels include a relatively greater sensi-

tivity of the cardiac muscle isoform to Cd21 ions and a
lower sensitivity to tetrodotoxin (Frelin et al., 1986). While
the residues responsible for Cd21 and tetrodotoxin block
have been delineated (Tomaselli et al., 1995), sodium chan-
nel block by local anesthetics is less clearly understood
because channel affinity profoundly varies depending on
channel state.

The two principal models used to explain the state-de-
pendent modulation of receptor affinity are the Modulated
Receptor hypothesis (Hille, 1977) and the Guarded Recep-
tor hypothesis (Starmer et al., 1984). In Hille’s (1977)
modulated receptor scheme, the inactivation particle (h
gate) accounted for the state-dependent alterations in recep-
tor affinity. In contrast, Starmer et al. (1984) attributed
state-dependent alterations in receptor affinity to the acti-
vation particle (m gate). A clear determination of which
mechanism is responsible for receptor modulation might
help explain why some local anesthetics, such as cocaine or
lidocaine, strongly affect cardiac physiology at concentra-
tions that have little obvious effect on skeletal muscle
physiology.

The purpose of the present study was to examine the
mechanisms that influence channel affinity and state-depen-
dent cocaine block of skeletal muscle and cardiac sodium
channels. Two previous studies suggested that the anes-
thetic receptor in cardiac sodium channels has a higher
affinity for lidocaine than does the receptor in skeletal
muscle sodium channels, and that this difference in receptor
affinity accounts for the difference in lidocaine sensitivity
between cardiac and skeletal muscle tissue (Nuss et al.,
1995b; Wang et al., 1996b). In contrast, we have recently
shown that mammalian cardiac (hH1) and skeletal muscle
sodium channels (m1) have very similar affinities for co-
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caine and for lidocaine (Wright et al., 1997). At intermedi-
ate voltages (2120 mV to 290 mV), however, cocaine
blocked hH1 channels with much greater potency, suggest-
ing that the modulation of receptor affinity differs at the two
isoforms. Although we lacked direct evidence to support our
hypothesis, we suggested that cocaine blocked a larger
proportion of hH1 channels thanm1 channels at intermedi-
ate voltages because of greater steady-state inactivation of
the hH1 isoform (Wright et al., 1997). To test this hypoth-
esis, we induced shifts in steady-state inactivation by cre-
ating m1/hH1 channel chimeras and also by coexpressing
the rat brainb1 subunit with thea subunits of hH1 orm1.
In stark contrast to data from other expression systems
(Isom et al., 1992, 1995; Nuss et al., 1995a), we found that
b1 subunit coexpression induced strong positive shifts in
the steady-state inactivation of both hH1 andm1 channels.
When we plotted the midpoint voltages of steady-state
cocaine block as a function of the midpoint voltages of
either steady-state activation or inactivation, we found that
the relationship between block and steady-state inactivation
was linear, and that block was better correlated with steady-
state inactivation than with activation. In simulations of
block, steady-state cocaine block of each channel could be
fairly well predicted by using the steady-state inactivation
curve of each channel and theKd values of resting and
inactivated channels. The fit by the model was further
improved by imposing an equilibrium shift in the steady-
state inactivation curve. These data and the model suggested
that the modulation of local anesthetic receptor affinity
depends heavily on steady-state inactivation and perhaps to
some extent on channel activation resulting from the cou-
pling between inactivation and activation. Some of the
presented data have appeared in an abstract (Wright et al.,
1998).

MATERIALS AND METHODS

Solutions and chemicals

The extracellular solution used to perfuse HEK cells contained (in mM): 65
NaCl, 85 choline chloride, 2 CaCl2, and 10 HEPES (titrated with tetra-
methyl ammonium hydroxide to pH 7.4). The pipette solution contained (in
mM) 100 NaF, 30 NaCl, 10 EGTA, and 10 HEPES (titrated with cesium
hydroxide to pH 7.2). Cocaine hydrochloride was purchased from
Mallinckrodt, Inc. (St. Louis, MO), and was stored at220°C as a 200 mM
solution in distilled water. Final anesthetic concentrations were obtained by
serial dilution from a 10 mM stock solution prepared in external bathing
solution.

Construction of m1/hH1 channel chimeras

For m1(1–3)hH1(4), site-directed mutagenesis (Wang and Wang, 1997) was
used to create aClaI site at positions 3862–3867 of them1-cDNA1/AMP
vector (the translation initiation site was at11n) by converting C into T at
position 3867n. Them1-ClaI-3862 was further modified intom1-ClaI-ClaI
by introducing anotherClaI site in the 39 polylinker. This was achieved by
the digestion ofm1-ClaI-3862 with SalI, followed by a blunting reaction
and ligation to theClaI linker. hH1-ClaI was created by mutating the
ATTGAC (4416–4421n) in the hH1 clone (Gellens et al., 1992) into aClaI
site: ATCGAT. The translation initiation site in the hH1 clone is at position

11n. Them1(1–3)hH1(4) channel was cloned by ligating the largem1 ClaI
fragment (domains 1–3) to the small hH1ClaI fragment (domain 3 and 4
cytoplasmic linker and domain 4).

The chimera,m1(1)hH1(2–4), was created by using theBsiWI site (at
positions 1328–1333) ofm1-cDNA1/AMP. This restriction site inm1 is
located at the 39 end junction of the domain 1 S6 segment. Because hH1
lacks thisBsiWI site, we performed site-directed mutagenesis at the 39 end
junction of the domain 1 S6 segment of hH1 (at positions 1252–1257) to
create the clone hH1-BsiWI (hH1 also has aBsiWI restriction site in the 39
polylinker). Three-way ligation was used to join DNA fragments: 1.7
Kb-HindIII- BsiWI from m1-cDNA1/AMP, 4 Kb-BsiWI from hH1-BsiWI,
and 5 Kb-HindIII- BsiWI from hH1-BsiWI. The orientations of
m1(1–3)hH1(4), m1(1)hH1(2–4), and of two other channel chimeras
(hH1(1–3)m1(4) and hH1(1)m1(2–4)) were determined by restriction mapping
and sequencing. Introduction of the restriction sites for chimera formation
did not produce point mutations in either them1 or the hH1 portion of
channel chimeras.

Channel expression in HEK 293t cells

The methods used for maintaining transformed human embryonic kidney
(HEK 293t) cells and for transiently expressingm1 (Trimmer et al., 1989)
and hH1 (Gellens et al., 1992) were described in a previous paper (Wright
et al., 1997). For transient expression of thea subunits of cloned channels
in HEK cells, we prepared the following DNA solution (Cannon and
Strittmatter, 1993): 1mg CD8 (cell surface antigen) and 2–10mg sodium
channel cDNA clone in the pcDNA1/amp vector (Invitrogen, San Diego,
CA) were prepared in 250 mM CaCl2 and added to a test tube containing
0.36 ml Hanks’ balanced salt (23) solution (in mM: 274 NaCl, 40 HEPES,
12 dextrose, 10 KCl, 1.4 Na2HPO4, pH 7.05). After a 20-min incubation at
22°C, the DNA solution was added to a cell culture (in a TI-25 flask) that
was 30–50% confluent. After 15 h at 37°C, the transfected cells were
replated onto 35-mm culture dishes (which also served as recording cham-
bers) containing 2 ml fresh DMEM supplemented with taurine (1%),
penicillin/streptomycin (1%), and heat-inactivated fetal bovine serum
(10%). For coexpression of the rat brainb1 subunit (Isom et al., 1992) with
m1 or hH1 a subunits, saturating levels (.10-fold molar excess) ofb1
cDNA were used to ensure that the resulting macroscopic currents were
produced by channels consisting of botha andb1 subunits.

Electrophysiology procedures and data analysis

Whole-cell voltage clamp (Hamill et al., 1981) of HEK cells was used to
study macroscopic sodium currents at room temperature (236 2°C).
Electrode resistances ranged from 0.4 to 1.0 MV. Command voltages were
programmed by pCLAMP software and delivered by a List EPC7 voltage
clamp. Data were sampled at 50 kHz and were filtered at 5 kHz. After
gigaohm seal formation and establishment of whole-cell voltage clamp, the
cells were always dialyzed for 25–30 min before acquiring data. Time-
dependent shifts in the midpoint voltage of sodium channel availability
during our experiments (;30–60 min after membrane rupture) would have
been;5–7 mV (Wang et al., 1996a). The holding potential for all exper-
iments was2140 mV. Most of the capacitative current was canceled by the
EPC7 circuitry. The remaining capacitative artifact and the leakage current
were subtracted by the P/24 method. The P/24 method was not used for
studies of use-dependent cocaine block. Voltage errors at130 mV were
#5 mV after 30–50% compensation. Least-squares curve fitting was
performed with Microcal Origin software. Depending on the experiment,
data were fitted by an empirical Boltzmann function {1/[11 exp((V0.5 2
V)/k)]}, where V0.5 is the midpoint voltage of the function andk is the
slope factor (in mV/e-fold change in current); by a single exponential
function {y0 1 A1*[12exp(2x/t1)]}; or by the sum of two exponential
functions {y0 1 A1*[12exp(2x/t1)] 1 A2*[12exp(2x/t2)]}. Data are
presented as mean6 SE.
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RESULTS

Role of domain regions in sodium channel
activation and inactivation

Previous studies indicated that steady-state inactivation of
m1/hH1 channel chimeras differed from the steady-state
inactivation of the wild-type isoforms (Makita et al., 1996;
Chahine et al., 1996; Benzinger et al., 1997). Our goal was
to induce voltage-dependent shifts in steady-state channel
activation or inactivation in an attempt to determine how
shifts in channel kinetics might affect steady-state cocaine
block. Fig. 1A shows current records obtained from the two
wild-type sodium channels,m1 and hH1, and from two
channel chimeras. Them1 panel shows the four domains
(D1–D4) of the sodium channela subunit, the charged (1)
S4 segments in each domain, and the amino and carboxyl
termini. The channel chimera,m1(1–3)hH1(4), contained do-
mains 1–3 from them1 a subunit and domain 4 from the
hH1 a subunit, whereasm1(1)hH1(2–4) contained domain 1
from m1 and domains 2–4 from hH1. Despite repeated
attempts, two other channel chimeras, hH1(1)m1(2–4) and
hH1(1–3)m1(4), failed to express current. To evoke the cur-
rents shown in Fig. 1A, we delivered 10-ms step depolar-
izations from a holding potential of2140 mV. The inward
currents form1, m1(1–3)hH1(4), andm1(1)hH1(2–4) channels
peaked at230 mV, whereas the peak inward current for
hH1 channels occurred at240 mV. The time dependence of
macroscopic current decay for bothm1(1–3)hH1(4) and
m1(1)hH1(2–4) channels clearly resembled the decay of hH1
currents, which decayed more slowly than them1 current.
At 130 mV, m1 current decayed with a time constant of
0.286 0.01 ms (n 5 7). In contrast, hH1,m1(1–3)hH1(4), and
m1(1)hH1(2–4) currents decayed with time constants of
0.49 6 0.03 ms (n 5 6), 0.466 0.02 ms (n 5 11), and
0.416 0.01 ms (n 5 13), respectively.

PartsB andC in Fig. 1 show the normalized membrane
conductance and steady-state inactivation curves, respec-
tively, for m1(1–3)hH1(4) andm1(1)hH1(2–4) channels. These
data were fitted with an empirical Boltzmann function (solid
lines) to determine the midpoint voltage (V0.5) and the slope
factor (k). For comparison, the fitted Boltzmann functions
(dotted lines) for hH1 andm1 channels (Wright et al., 1997)
are also shown in partsB and C. The activation (i.e., the
conductance-voltage relationship) of bothm1(1–3)hH1(4) and
m1(1)hH1(2–4) channels more closely resembled the activa-
tion of m1 channels (Fig. 1B). The V0.5 value of channel
activation for hH1 channels was significantly (p , 0.05;
t-test) more negative than were the V0.5 values of activation
for m1, m1(1–3)hH1(4), or m1(1)hH1(2–4) channels, whereas
the V0.5 values of activation for m1(1–3)hH1(4) or
m1(1)hH1(2–4) were not significantly different (p . 0.05)
from that ofm1 (Table 1).

We examined the steady-state inactivation properties of
these four sodium channel isoforms by using a standardh`

pulse protocol. We delivered 100 ms conditioning pulses of
various amplitudes and measured the available sodium cur-

rent during a test pulse to130 mV (Fig. 1C, inset). The plot
in Fig. 1 C shows the averaged data for the channel chime-
ras and the solid lines represent the fits by a Boltzmann
function. The dotted lines are the fits to the averaged hH1
andm1 data. The V0.5 values of steady-state inactivation of
m1(1–3)hH1(4) and m1(1)hH1(2–4) channels fell between the
V0.5 values of inactivation for hH1 andm1, with m1(1–3)hH1(4)

more closely resemblingm1 andm1(1)hH1(2–4)more closely
resembling hH1 (Table 1). Consistent with a previous report
that used the oocyte expression system to examine inacti-
vation (Makita et al., 1996), the data in Fig. 1C suggest that
all four domain regions contribute, perhapsequally, to the
voltage dependence of steady-state inactivation.

Cocaine block of m1, hH1, and chimeras

As described above, chimera formation had distinct effects
on channel activation and steady-state inactivation. The V0.5

values of activation for both channel chimeras resembled
that of m1, but the V0.5 values of steady-state inactivation
for the chimeras were intermediate to those ofm1 and hH1.
We compared the steady-state cocaine block of the four
channels to perhaps distinguish whether the inactivation
phenotype or the activation phenotype has the more prom-
inent role in determining steady-state cocaine block. Co-
caine binds to the channels with a stoichiometry of 1:1, so
we measured 30mM cocaine block of the channels over a
110 mV range of conditioning voltages. By using this ap-
proach, we were able to examine block of resting channels
at the most negative conditioning voltages, block of inacti-
vated channels at the least negative voltages, and block of
varying proportions of resting and inactivated channels at
intermediate voltages. The pulse protocol (Fig. 1D, inset)
consisted of a 10-s conditioning pulse ranging from2180
mV to 270 mV followed by a 100-ms interval at the
holding potential and a subsequent test pulse to130 mV.
As previously described (Wright et al., 1997), a condition-
ing pulse of 10 s was necessary and sufficient for cocaine
block to reach steady state at all of the channels in the study
(n 5 2–3 cells; data not shown). A 100-ms interval inserted
between the conditioning pulse and the test pulse allowed
drug-free channels to recover from fast inactivation. To
normalize the data at each conditioning voltage, we divided
the peak current amplitude at the test pulse in the presence
of cocaine by the peak current amplitude elicited by the test
pulse in control saline. At strongly negative conditioning
pulses, 30mM cocaine blocked;10% of the resting
m1(1–3)hH1(4) andm1(1)hH1(2–4) channels, which was simi-
lar to the block of restingm1 and hH1 channels. When the
channel chimeras were inactivated by a 10-s conditioning
pulse to270 mV, 30mM cocaine blocked;75–80% of the
channels, which was similar to the block of inactivatedm1
and hH1 channels. As with the wild-type channels, 300mM
cocaine blocked;55% of the resting channels and;97%
of the inactivated channels (Wright et al., 1997). At2180
mV, 300 mM cocaine blocked 55.56 1.7% (n 5 5) of
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FIGURE 1 Activation, steady-state inactivation, and cocaine block ofm1, hH1, andm1/hH1 channel chimeras. (A) The sodium channela subunit
structures and associated currents recorded from the two wild-type sodium channel isoforms,m1 and hH1, and from twom1/hH1 channel chimeras,
m1(1–3)hH1(4) andm1(1)hH1(2–4), are shown. In them1 panel, the domain regions, the charged (1) voltage sensing regions, and the amino and carboxyl
termini are labeled. The channel chimera,m1(1–3)hH1(4), consisted of domains 1–3 fromm1 and the interdomain linker between domains 3 and 4 and domain
4 from hH1, whereasm1(1)hH1(2–4) consisted of domain 1 fromm1 and domains 2–4 from hH1. The currents were evoked by 10-ms pulses from2140
mV to voltages ranging from2100 mV to 150 mV. The peak inward current and its corresponding voltage are labeled. (B) Normalized membrane
conductance (gm) plotted versus the amplitude of the 10-ms voltage step;gm was determined from the equationgm 5 INa/(Em 2 ENa), and the plot was
fitted with a standard Boltzmann function. For clarity, only the fits to them1 and hH1 data are shown. Form1, the average midpoint voltage (V0.5) and
slope (k) of the function were232.86 2.8 mV and 9.36 1.5 mV, respectively. V0.5 andk were:248.06 1.8 mV and 9.46 0.9 mV, respectively, for
hH1; 227.86 1.2 mV and 9.86 0.3 mV, respectively, form1(1–3)hH1(4); and232.46 0.6 mV and 9.76 0.6 mV, respectively, form1(1)hH1(2–4). (C)
Normalized sodium current availability function (h`) for the four channels. The pulse protocol is shown in the inset. The dotted lines are the fits to the
averagedm1 or hH1 data, as labeled. The average V0.5 values (50% availability) andk values for the fitted Boltzmann functions were:278.56 1.0 mV
and 6.16 0.3 mV, respectively form1; 294.16 1.4 mV and 7.76 0.1 mV, respectively, for hH1;282.26 1.0 mV and 6.56 0.2 mV, respectively,
for m1(1–3)hH1(4); and290.76 1.0 mV and 6.16 0.1 mV, respectively, form1(1)hH1(2–4). (D) Steady-state cocaine block of the four channels. The pulse
protocol is shown in the inset. The filled symbols are the averaged data form1(1–3)hH1(4) and m1(1)hH1(2–4) measured in control saline. A Boltzmann
function was used to fit the data obtained in the presence of 30mm cocaine. The dotted lines are the fits to the averagedm1 or hH1 data, and the open
symbols and solid lines are the averaged data and fits to the channel chimera data. The average V0.5 andk values for the fitted functions were:292.16
0.8 mV and 5.06 0.2 mV, respectively form1; 2115.46 1.2 mV and 6.16 0.2 mV, respectively, for hH1;296.7 6 0.7 mV and 5.56 0.2 mV,
respectively, form1(1–3)hH1(4); and2106.16 0.9 mV and 7.66 0.2 mV, respectively, form1(1)hH1(2–4).
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resting m1(1–3)hH1(4) channels and 57.66 1.0% (n 5 6)
of restingm1(1)hH1(2–4) channels. After a 10-s condition-
ing pulse to270 mV, 300mM cocaine blocked 96.46
1.0% (n 5 5) and 98.26 2.8% (n 5 6) of inactivated
m1(1–3)hH1(4) and m1(1)hH1(2–4) channels, respectively.
There was no significant difference (p . 0.05) in block
between the two chimeras; nor was there a difference be-
tween the block of the chimeras and block of the wild-type
channels. At intermediate voltages, where there was a mix-
ture of resting and inactivated channels, the relative differ-
ences in 30mM cocaine block among the four channels
(Fig. 1 D) generally resembled the differences among the
channels in steady-state inactivation (Fig. 1C). Note that
cocaine block of them1(1–3)hH1(4) chimera, which has do-
main 4 from hH1 and thus the putative local anesthetic
receptor for hH1 (Ragsdale et al., 1994), more closely
resembled cocaine block ofm1 channels. The differences in
steady-state inactivation therefore provided a reasonable
correlation for the observed differences in steady-state co-
caine block.

Effects of b1 subunit coexpression on channel
kinetics and cocaine block

In other expression systems, coexpression of the rat brain
b1 subunit with thea subunit of sodium channels most
often shifted channel kinetics toward more negative volt-
ages. InXenopusoocytes, coexpression of theb1 subunit
with thea subunits of rat brain IIA (Isom et al., 1992) orm1
(Nuss et al., 1995a) sodium channels increased current
amplitude, speeded the rate of current decay, and shifted the
voltage dependence of steady-state inactivation to more
negative voltages. In Chinese hamster cells,b1 subunit
coexpression with the rat brain IIaa subunit caused nega-
tive shifts in both activation and inactivation, but did not
obviously affect the rate of current decay (Isom et al., 1995).
Furthermore, in the oocyte expression systemb1 subunit
coexpression with hH1 channels reduced the resting affinity
for lidocaine by twofold (Makielski et al., 1996).

Our first objective was to determine what effect, if any,
b1 subunit coexpression had on the channel kinetics ofm1
or hH1 when expressed in HEK cells. Althoughb1 coex-
pression withm1 and hH1 in HEK cells increased current

amplitude as in other expression systems, there were sur-
prisingly different effects on channel activation and inacti-
vation. The V0.5 values of activation form1-b1 and hH1-b1
were 2 mV and 5 mV, respectively, more positive than the
V0.5 values of activation for thea subunits alone (Fig. 2A).
Compared to the V0.5 values of activation form1 and hH1a
subunits, the positive shift was modest (m1 versusm1-b1,
p . 0.05; hH1 versus hH1-b1, p 5 0.05). b1 subunit
coexpression had virtually no effect on the time constant of
macroscopic current decay during depolarizations to be-
tween 0 and150 mV (Fig. 2B). Coexpression of theb1
subunit withm1 and hH1 channels induced strong positive
shifts in the V0.5 values of steady-state inactivation, as
compared to expression of thea subunits alone (Fig. 2C).
For m1-b1 and hH1-b1, the V0.5 values of inactivation
were, respectively, 10 mV (p , 0.05) and 13 mV (p , 0.05)
more positive than the V0.5 values ofm1 and hH1 (Table 1).

Becauseb subunit coexpression withm1 and hH1 elicited
strong positive shifts in steady-state inactivation and modest
shifts in channel activation, we examined whether theb1
subunit altered the relationship between the conditioning
voltage and cocaine block. Consistent with the effect on
steady-state inactivation,b1 subunit coexpression withm1
and hH1 induced strong positive shifts in the V0.5 values of
cocaine block. (Fig. 2D). We changed the voltage range
over which we examined cocaine block by 20 mV in the
positive direction. Because the change in pulse protocol
elicited more slow inactivation fromm1-b1 channels than
from hH1-b1 channels, we normalized the block at each
conditioning voltage by dividing the amplitude of the test
current evoked in 30mM cocaine by the amplitude of the
test current evoked in control saline. The V0.5 values of
steady-state cocaine block atm1-b1 and at hH1-b1 were 12
mV and 15 mV, respectively, more positive than the V0.5

values of cocaine block atm1 and hH1. Compared to block
of the a subunits ofm1 and hH1, coexpression of theb1
subunit did not significantly (p . 0.05) alter the percentages
of resting or inactivated channels blocked by either 30mM
(Fig. 2 D) or 300 mM cocaine. At 2160 mV, 300mM
cocaine blocked 54.56 1.5% (n 5 4) of restingm1-b1
channels and 54.96 2.3% (n 5 4) of resting hH1-b1
channels. After a 10-s conditioning pulse to260 mV, 300
mM cocaine blocked 98.06 1.0% (n 5 4) and 97.16 0.3%

TABLE 1 V0.5 values of steady-state activation, inactivation, and cocaine block

Channel
Activation V0.5

(mV)
Inactivation V0.5

(mV)
Cocaine V0.5

(mV)

m1 232.86 2.8# (7) 278.56 1.0# (8) 292.16 0.8# (7)
hH1 248.06 1.8* (6) 294.16 1.4* (9) 2115.46 1.2* (6)
m1(1)hH1(2–4) 232.46 0.6# (13) 290.76 1.0* (14) 2106.16 0.9*# (15)
m1(1–3)hH1(4) 227.86 1.2# (11) 282.26 1.0*# (14) 296.76 0.7*# (8)
m1-b1 231.16 0.8# (6) 269.06 0.6*# (8) 279.86 0.7*# (8)
hH1-b1 243.36 1.0*§ (6) 281.26 1.7# (6) 2100.46 1.4*# (6)

The V0.5 values obtained for the channel chimeras and for thea subunits coexpressed with theb1 subunit were compared to those of the wild-typea
subunits,m1 and hH1.
*#P , 0.05 (Student’st-test) compared toml or hH1, respectively.
§P 5 0.05 compared to hH1. Numbers in parentheses indicate the number of cells.
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(n 5 4) of inactivatedm1-b1 and hH1-b1 channels, respec-
tively. Thus, coexpression of theb1 subunit withm1 or hH1
did not alter the cocaine affinities of either resting or inac-
tivated channels. For the six sodium channels listed in Table
1, we plotted the V0.5 values of cocaine block as a function
of their respective V0.5 values of activation and inactivation
(Fig. 3). Regression analyses showed that the voltage de-
pendence of steady-state cocaine block was better correlated
with the voltage dependence of steady-state inactivation
(R 5 0.98) than with channel activation (R 5 0.66).

Comparison of block recovery and use-
dependent block at m1 and hH1 channels

While the steady-state interactions between cocaine and
cardiac sodium channels appear to be important in cocaine-
induced cardiotoxicity, other interactions between cocaine
and cardiac sodium channels may augment the cardiotoxic

effects of cocaine. The fact that cardiac excitability is rhyth-
mic and that cardiac cells spend more time than other
sodium channel isoforms in the inactivated state suggests
that the recovery time course from inactivated channel
block and/or use-dependent block of cardiac sodium chan-
nels by local anesthetics may influence the net effects of
cocaine. We therefore examined the recovery time course
from cocaine block or in the extent of use-dependent block.

To determine the unbinding rate of cocaine from inacti-
vatedm1 and hH1 channels, we delivered a 10-s condition-
ing pulse to270 mV and measured the time-dependent
recovery of current at2140 mV (Fig. 4,inset). The data
obtained in control saline (filled symbols) showed that, in
addition to eliciting fast inactivation, the conditioning pulse
produced a slight amount of slow inactivation of bothm1
and hH1 channels. For bothm1 and hH1, the recovery from
inactivation was best fitted by the sum of two exponentials.
In control saline, the fast time constant of recovery was

FIGURE 2 Effects of rat brainb1 subunit coexpression onm1 and hH1 channel kinetics and cocaine block. (A) Normalized conductance of thea subunits
of m1 and hH1 channels with and without coexpression of theb1 subunit. The average V0.5 andk values of the fitted Boltzmann functions to them1-b1
data were231.16 0.8 mV and 7.16 0.2 mV, respectively, and these values for hH1-b1 were243.36 1.0 mV and 9.26 0.7 mV, respectively. (B) Time
constants of macroscopic current decay plotted versus the amplitude of 10-ms depolarizations. (C) Normalized sodium current availability (h`) function
plotted versus the amplitude of the 100-ms conditioning pulse. Coexpression of theb1 subunit withm1 or hH1 channels produced rightward shifts in the
voltage dependence of channel inactivation. The average V0.5 andk values of the Boltzmann function fitted to them1-b1 data were269.06 0.7 mV and
4.96 0.2 mV, respectively, and these values for hH1-b1 were281.26 1.7 mV and 6.86 0.2 mV, respectively. (D) Steady-state cocaine block. The filled
symbols are the averaged data form1-b1 and hH1-b1 measured in control saline. The open symbols and solid lines are the averaged data and Boltzmann
fits to them1-b1 and hH1-b1 data, and the dotted lines are the fits to the averaged data fromm1 and hH1a subunits expressed alone (as in Fig. 1D). The
average V0.5 andk values of them1-b1 data were279.86 0.7 mV and 5.16 0.4 mV, respectively, and these values for hH1-b1 were2100.46 1.4 mV
and 6.26 0.3 mV, respectively.
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1.06 0.1 ms (n 5 5) for m1 channels and was 6.36 0.4 ms
(n 5 6) for hH1 channels. These recovery rates were similar
to the recovery rates form1 (1.56 0.1 ms;n 5 5) and hH1
(4.36 0.7 ms;n 5 6) after delivery of a 10-ms conditioning
pulse to 130 mV. In control saline (see Fig. 6,filled
symbols), the fast phase of recovery from inactivation for
m1 and hH1 channels comprised 81.26 1.3% and 87.96
1.9%, respectively, of the fractional amplitudes of recovery.
The slow time constants of recovery form1 and hH1 chan-
nels were 279.16 40.5 ms and 724.96 190.0 ms (p 5
0.07), respectively.

The recovery from 30mM cocaine block also was best
described as the sum of two exponentials. The fractional
amplitudes of the fast time constants of recovery from
cocaine block ofm1 and hH1 channels were 26.36 1.4%
and 27.56 1.4% (p . 0.05), respectively. As with recovery
from lidocaine block (Wright et al., 1997), we assumed that
the fast time constants of recovery in the presence of 30mM
cocaine represented the recovery of drug-free channels and
that the fractional amplitude of block at the conclusion of
the fast phase of recovery represented block of inactivated
channels. The fast time constants of recovery form1 and
hH1 were 2.06 0.2 ms and 11.56 1.5 ms, respectively.
This slowing of the fast time constant of recovery in the
presence of cocaine also occurs in the presence of lidocaine
and its quaternary derivatives (Yeh and Tanguy, 1985) and
suggests that local anesthetics might affect the recovery
from inactivation at “drug-free” channels by binding to
them at various time points of the recovery phase. The time
constant of recovery from cocaine block was similar for the
two channels and required several seconds. The time con-
stants of recovery from 30mM cocaine block ofm1 and hH1
channels were 6.56 0.4 s (n 5 5) and 6.86 0.5 s (n 5 6;
p . 0.5), respectively. These values were consistent with
the time constant of cocaine unbinding from ventricular
myocyte sodium channels (Crumb and Clarkson, 1990).

We compared use-dependent cocaine block ofm1 and
hH1 channels using 1 and 2 Hz stimulation rates (Fig. 5) but
found no difference between the channels in the extent of
use-dependent block. Cells were held at2140 mV and
received 25 ms pulses to130 mV. Little use-dependent
decrease inm1 or hH1 sodium current occurred during 1- or
2-Hz stimulation in control saline, whereas repetitive pulses
delivered in 30mM cocaine produced potent use-dependent
block. Use-dependent block ofm1 and hH1 channels by 30
mM cocaine was fitted by a single exponential function. The
percentages of steady-state block at 1- and 2-Hz stimulation
were 39.46 1.8% and 50.16 1.6%, respectively, form1
channels and were 41.56 1.7% and 53.26 1.3%, respec-
tively, for hH1 channels. The difference in the percentage of
steady-state block betweenm1 and hH1 at either 1- or 2-Hz
stimulation was not statistically significant (p . 0.05).
Although increasing the duration of the depolarization
would have increased the percentage of block at steady
state, the relative similarities in use-dependent block ofm1
and hH1 channels would not likely have changed. When we
delivered a single conditioning pulse to130 mV for 300 ms
followed by a 100-ms interval at the holding potential and a
test pulse to130 mV, cocaine blocked a similar percentage
of m1 channels (29.76 2.0%; n 5 7) and hH1 channels
(24.6 6 1.0%; n 5 5; p . 0.05). Although there were no
significant differences betweenm1 and hH1 in the time
course of recovery from block or in use-dependent block,

FIGURE 3 Dependence of cocaine block on channel kinetics. The V0.5

values of 30mM cocaine block ofm1, hH1,m1(1)hH1(2–4), m1(1–3)hH1(4),
m1-b1, and hH1-b1 channels were plotted versus the V0.5 values of
steady-state inactivation and activation of the channels. The error bars for
thex-axis correspond to the standard errors of the averaged V0.5 values of
inactivation or activation. Linear regression analyses of the plots showed
that the V0.5 values of cocaine block were better correlated with the V0.5

values of steady-state inactivation (R 5 0.98) than with the V0.5 values of
steady state activation (R 5 0.66).

FIGURE 4 Recovery from cocaine block of inactivated channels. From
a holding potential of2140 mV,m1 (squares) and hH1 (circles) channels
were stepped to270 mV for 10 s. After a variable recovery interval at
2140 mV, the channels were stepped to130 mV to measure the available
current. The recovery time courses in control saline (filled symbols) and in
30 mM cocaine (open symbols) were best fitted by the sum of two
exponentials. In control saline,m1 channels recovered with fast and slow
time constants of 1.06 0.1 ms and 279.16 40.5 ms, respectively, and the
fractional amplitude of the fast time constant comprised 81.26 1.3% of the
recovery; hH1 channels had fast and slow time constants of 6.36 0.4 ms
and 724.96 190.0 ms, respectively, and the fractional amplitude of the fast
time constant was 87.96 1.9% of the recovery. In 30mM cocaine,m1
channels recovered with fast and slow time constants of 2.06 0.2 ms and
6.5 6 0.4 s, respectively, and the fractional amplitude of the fast time
constant was 26.36 1.4% of the recovery; hH1 channels recovered with
fast and slow time constants of 11.56 1.5 ms and 6.86 0.5 s, respectively,
and the fractional amplitude of the fast time constant was 27.56 1.4% of
the recovery.
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the extremely slow nature of the recovery from block (Fig.
4) and the extent of use-dependent block (Fig. 5) at hH1
channels suggest that these two parameters, in conjunction
with the rhythmic cardiac action potential, may play signif-
icant roles in cocaine-induced cardiotoxicity.

Simulation of cocaine block using a modulated
receptor model

In a previous report we attributed the differences in steady-
state cocaine block betweenm1 and hH1 to the differences
in their steady-state inactivation curves (Wright et al.,
1997). The data in the present study appear to support our
claim because the V0.5 values of steady-state cocaine block
were better correlated with the V0.5 values of steady-state
inactivation than with the V0.5 values of activation. Further-

more, the shifts in steady-state inactivation did not alter the
affinities of resting and inactivated channels. To determine
whether we could predict the voltage dependence of cocaine
block, we used the steady-state inactivation data from each
channel, as well as theKR andKI values to simulate steady-
state cocaine block. For the simulation, we first determined
the apparentKd using theh` curve of each channel. That is,

1/Kapp5 h/KR 1 ~1 2 h!/KI (1)

whereKapp is the apparentKd, and KR and KI are theKd

values at resting and inactivated channels, respectively. The
parametersh and 12 h are the fractional distributions of
resting and inactivated channels, respectively, at a given
conditioning voltage (Bean et al., 1983). We used 250mM
as theKR value and 9mM as theKI value. Note that in Eq.
1 the fraction of inactivated channels (12 h) has a larger
influence on the apparentKd than does the fraction of
available channels (h), and thus imposes a leftward shift on
the simulation. For example, at the conditioning voltage
whereh 5 0.9 and 12 h 5 0.1, the apparentKd is 68mM;
when bothh and 12 h 5 0.5, the apparentKd is 17 mM.
Fig. 6 A shows theKapp curves form1 and hH1 channels.

We then used theKapp values from Eq. 1 and the Lang-
muir isotherm (Hille, 1992) to predict the percentage of
available channels at a given cocaine concentration:

INa 5 Kapp/~@LA # 1 Kapp!, or (2)

INa 5 1/@1 1 ~@LA #/Kapp!# (3)

whereINa is the peak current measured during the test pulse
and [LA] is the cocaine concentration.

We applied the simulation tom1 and hH1 channels and
used the 30mM and 300mM cocaine data from Wright et al.
(1997) to see how well the model fit the data. The solid lines
in Figs. 6B andC) are the results of the simulation using
Eqs. 1 and 3, and the symbols are the percentages of
available channels in 30mM cocaine (filled symbols) and in
300 mM cocaine (open symbols). The simulation predicted
steady-state cocaine block ofm1 channels within a few
millivolts at the midpoint of block (Fig. 6B), whereas
steady-state cocaine block of hH1 channels was several
millivolts more negative than predicted by the simulation
(Fig. 6 C). Scheme A in Diagram 1 depicts the simplified
model (Bean et al., 1983) that uses Eqs. 1 and 3 to predict
cocaine block. Thus, even though Eq. 1 imposed a signifi-
cant leftward shift on theKappvalue, the simulation failed to
account for an equilibrium shift toward the inactivated and
blocked state. One of the defining characteristics of a mod-
ulated receptor (Hille, 1977) is that local anesthetic shifts
the equilibrium from the resting and drug-bound state (R*)
toward the inactivated and drug-bound state (I*) as depicted
in Scheme B. The difference between the amount of block
predicted by the initial simulation (Scheme A) and the
actual amount of block may be indicative of an equilibrium
shift in theR* 7 I* portion of Scheme B (Courtney, 1975).
Note that we could not directly measure this equilibrium

FIGURE 5 Use-dependent cocaine block ofm1 and hH1 channels. Sixty
pulses to130 mV were delivered tom1 channels (A) and to hH1 channels
(B) at stimulation frequencies of 1 and 2 Hz. In control saline (filled
symbols in A and B), the pulse protocol did not elicit use-dependent
decreases in current amplitude at either 1 or 2 Hz. The development of
use-dependent block in 30mM cocaine was best fitted by a single expo-
nential function. (A) Use-dependent cocaine block ofm1 channels devel-
oped with a time constant of 4.16 0.3 pulses and reached steady state at
39.4 6 1.8% block during 1 Hz stimulation, and had a time constant of
4.9 6 0.2 pulses and reached steady state at 50.16 1.6% block during 2
Hz stimulation. (B) Use-dependent cocaine block of hH1 channels devel-
oped with a time constant of 4.56 0.3 pulses and reached steady state at
41.5 6 1.7% block during 1 Hz stimulation, and had a time constant of
5.4 6 0.3 pulses and reached steady state at 53.26 1.3% block during 2
Hz stimulation.
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shift because channels in theR* and I* states do not con-
duct. To account for the additional equilibrium shift at the
drug-bound states and to improve the fit by the model, we
adjusted theh` curves ofm1 and hH1 channels by trial and
error. Adjusting theh` curves ofm1 and hH1 channels by
24.5 mV and210 mV, respectively, improved how well the
model predicted cocaine block (dotted linesin Fig. 6,B andC).

We also used the model to simulate 30mM cocaine block
of the channel chimeras,m1-b1 channels, and hH1-b1 chan-
nels (Fig. 7). The solid lines in Fig. 7,A–D show the
predicted results using Eqs. 1 and 3 for 30mM cocaine
block of m1(1–3)hH1(4), m1(1)hH1(2–4), m1-b1, and hH1-b1
channels. Introducing equilibrium shifts of25 mV and26
mV, respectively, to theh` curves of m1(1–3)hH1(4) and
m1(1)hH1(2–4) channels improved the prediction (Fig. 7,A
andB, dotted lines). As with m1 and hH1 channels, applying
equilibrium shifts of 24.5 mV and210 mV to the h`

curves ofm1-b1 and hH1-b1 channels, respectively, im-
proved the prediction by the model (Fig. 7,C andD, dotted
lines). Fig. 8 plots the average V0.5 values of cocaine block
versus the average V0.5 values of steady-state inactivation.
Each symbol corresponds to the averaged data from one of
the isoforms in the study (see Fig. 8 legend). The cross
symbol directly above each data point is the corresponding
V0.5 value of cocaine block as predicted by the simple
model (Scheme A). The simulation results in Figs. 6–8
show that the equilibrium shift was larger for hH1 and
hH1-b1 channels than for any of the other channels, sug-
gesting that a larger equilibrium shift fromR* to I* at the
hH1 isoform may be an important factor in cocaine-induced
cardiotoxicity (see Discussion).

DISCUSSION

In a previous paper (Wright et al., 1997), we showed that
mammalian isoforms of cardiac and skeletal muscle sodium
channel had similar resting and inactivated affinities for
cocaine and lidocaine. This was in contrast to other studies
(Nuss et al., 1995b; Wang et al., 1996b) which suggested
that the sodium channels in cardiac tissue have a greater
affinity for lidocaine compared to other sodium channel
isoforms, and that this greater affinity might explain why
cardiac tissue is relatively more sensitive than skeletal mus-
cle to certain local anesthetics. We suggested that the dif-
ferences in steady-state inactivation between hH1 channels
andm1 channels may in part explain the cardiotoxic effects
of cocaine.

In the present study we further addressed state-dependent
cocaine block ofm1 and hH1 sodium channels by focusing
on the mechanisms responsible for the greater cocaine block
of the hH1 isoform at intermediate voltages. First, we used
shifts in the steady-state inactivation ofm1 and hH1 chan-
nels as a tool for investigating steady-state cocaine block.
We induced shifts in steady-state inactivation by creating
m1/hH1 channel chimeras and also by coexpressing the rat

FIGURE 6 Simulations of cocaine block ofm1 and hH1 sodium chan-
nels. (A) Plot of the apparentKd versus the conditioning voltage using Eq.
1. (B) and (C) The solid lines show the predictions of cocaine block ofm1
and hH1 channels using Eqs. 1 and 3. The filled symbols are the actual
percentages of block by 30mM cocaine, and the open symbols are the
percentages of block by 300mM cocaine. The dotted lines are the improved
fits to the data after imposing shifts of24.5 mV and210 mV on theh`

curves ofm1 and hH1, respectively. See text for details.

Diagram 1
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brain b1 subunit with thea subunits ofm1 or hH1. The
shifts in the midpoint voltage of steady-state inactivation
produced by these methods elicited directionally similar
shifts in the midpoint voltage of cocaine block. Second,
unlike several previous studies conducted with other expres-
sion systems,b1 subunit coexpression with them1 or hH1
a subunits in HEK cells shifted the voltage dependence of
steady-state inactivation to more positive voltages, rather
than toward more negative voltages, and did not affect the
time constant of macroscopic current decay. In addition,
coexpression of theb1 subunit did not alter the cocaine
affinities of either resting or inactivated channels. And third,
we used theh` curves, theKd values at resting and inacti-
vated channels, and the Langmuir isotherm to simulate
steady-state cocaine block.

Effects of channel chimera structure and b1
subunit coexpression on channel kinetics

We found it interesting that channel activation for both
m1(1–3)hH1(4) and m1(1)hH1(2–4) resembled the activation

kinetics of m1 channels. Becausem1(1)hH1(2–4) contains
only domain 1 fromm1 channels, it would be tempting to
speculate that domain 1 is the crucial domain for determin-
ing channel activation. However, Chahine et al. (1996) and
Benzinger et al. (1997) have also shown that the activation
of several differentm1/hH1 channel chimeras each resem-
bled the activation ofm1. Recently, Mitrovic et al. (1998)
used cysteine point mutation within D2S4 and subsequent
treatment with a cysteine modifying agent to demonstrate
that domain 2 plays a significant role in channel activation.
The findings by Mitrovic et al. (1998) and the data in Fig.
1 B argue against the hypothesis (Marcotte et al., 1997) that
activation begins by outward movement of the S4 segment
containing the most charged residues (domain 4) and con-
cludes with the outward movement of the S4 segment with
the fewest charged residues (domain 1). If this type of
sequential movement of S4 segments occurred, then the
activation phenotype ofm1(1)hH1(2–4) should have resem-
bled the activation of hH1 channels rather thanm1 channels.
These data suggest that channel activation is much more
complex than can be deduced from the number of charged

FIGURE 7 Simulations of cocaine block of channel chimeras and channels coexpressed with theb1 subunit. As described in Fig. 6, the apparentKd at
each channel was first determined using Eq. 1. (A–D) The solid lines show the predictions of cocaine block by 30mM cocaine, and the dotted lines show
the improved fits after imposing negative shifts in theh` curves. The shifts form1(1–3)hH1(4), m1(1)hH1(2–4), m1-b1, and hH1-b1 channels were25 mV,
26 mV, 24.5 mV, and210 mV, respectively.
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residues in the S4 segments. One possible explanation for
the discrepancy between our channel chimera data and the
apparent importance of domain 2 in activation (Mitrovic et
al., 1998) may be that domain regions from them1 isoform
dominate the activation phenotype of channel chimeras
constructed fromm1 and hH1.

The steady-state inactivation data obtained form1, hH1,
and the channel chimeras indicate that the four domain
regions have an evenly distributed role in determining the
h` phenotype (Fig. 1C). The V0.5 of steady-state inactiva-
tion for m1(1)hH1(2–4) channels was;4 mV less negative
than that of hH1, and the V0.5 of inactivation form1(1–3)hH1(4)

channels was;4 mV more negative than that ofm1. In
another chimera study (Benzinger et al., 1997), the effects
of a single domain substitution on steady-state inactivation
phenotype seemed less clear because the V0.5 values of
steady-state inactivation for all chimeras were actually less
negative than that ofm1. Although we were unable to test
this phenomenon further using comparable channel chime-
ras (hH1(1)m1(2–4) and hH1(1–3)m1(4)), the present data sug-
gest that each domain contributes, perhaps equally, to the
steady-state inactivation phenotype.

The shifts in the voltage dependence of activation and/or
steady-state inactivation after coexpression of sodium chan-
nel a subunits with the rat brainb1 subunit appear to vary
depending on the expression system and perhaps also on the
sodium channel isoform. Coexpression of theb1 subunit
shifted the activation and inactivation kinetics of rat brain
sodium channels to more negative voltages inXenopus
oocytes (Isom et al., 1992) and in Chinese hamster cells
(Isom et al., 1995).b1 subunit coexpression withm1 chan-

nels in oocytes also elicited a negative shift in the voltage
dependence of steady-state inactivation (Nuss et al., 1995a).
In oocytes, the effect ofb1 subunit coexpression with
cardiac sodium channels varies from no shift in the steady-
state inactivation of hH1 channels (Nuss et al., 1995b) or rat
heart sodium channels (rH1; Qu et al., 1995) to one report
of a modest but significant positive shift for hH1 channels
(Makielski et al., 1996). In contrast to these studies, we
found that coexpression of theb1 subunit with sodium
channela subunits in HEK cells markedly shifted steady-
state inactivation (Fig. 2C) of m1 and hH1 channels in the
positive direction by;10 mV and;13 mV, respectively.
We cannot presently explain the variable effects ofb1
subunit coexpression on sodium channel kinetics. One pos-
sibility may be that cellular processes such as protein phos-
phorylation (see Cukierman, 1996 for review), which can
affect channel kinetics, differ among different expression
systems. Alternatively, the time-dependent negative shift in
steady-state inactivation (Wang et al., 1996a) may be re-
duced or eliminated byb1 subunit coexpression.

The positive voltage shifts in steady-state inactivation
produced byb1 subunit coexpression withm1 and hH1
resulted in directionally similar shifts in cocaine block (Fig.
2 D). The average V0.5 values of cocaine block form1-b1
and hH1-b1 were 12.3 mV and 15.0 mV, respectively, more
positive than the V0.5 values of cocaine block for thea
subunits ofm1 and hH1. Also important,b1 subunit coex-
pression did not affect the cocaine affinities of either resting
or inactivated channels. In contrast,b1 subunit coexpres-
sion with hH1 channels in the oocyte expression system
decreased the affinity of resting channels for lidocaine by
;2-fold (Makielski et al., 1996); a result most likely due to
a small (3–7 mV) positive shift in steady-state inactivation.

Steady-state cocaine block, the modulated
receptor model, and cocaine-induced
cardiotoxicity

The data in Figs. 1–3 indicated that shifts in the voltage
dependence of steady-state inactivation induced linear shifts
in the voltage dependence of steady-state cocaine block.
The simple model (Scheme A in Diagram 1; Bean et al.,
1983), which used theh` curve and theKd values at resting
and inactivated channels, gave a fairly accurate prediction
of steady-state cocaine block atm1 channels (V0.5 within
;5 mV), but gave a somewhat less accurate prediction at
hH1 channels (V0.5 within ;10 mV). Even though the V0.5

values of cocaine block were shifted by;210 mV com-
pared to the V0.5 values of steady-state inactivation, the
simple model failed to account for the entire equilibrium
shift because it did not include the transitions between the
R* and I* states (Scheme B). Thus, the difference between
m1 and hH1 channels in the size of the underestimated
equilibrium shift may reflect the difference in the amount of
cocaine-induced leftward shift inh`, which in our case
becomes evident in the V0.5 value of steady-state cocaine

FIGURE 8 Plot of V0.5 values of cocaine block versus the V0.5 values of
steady-state inactivation for the six channels in the study. As in Fig. 3, the
solid line is the regression line through the plot of average V0.5 values of
cocaine block versus the average V0.5values of steady-state inactivation. In
this figure, the individual channels are distinguished by a symbol (filled
square, m1; open square, m1-b1; filled circle, hH1; open circle, hH1-b1;
open triangle, m1(1–3)hH1(4); and open diamond, m1(1)hH1(2–4)). The
crosses are the predicted V0.5 values of cocaine block using Eqs. 1 and 3
and the dotted line is the regression through the points. The cross symbol
located directly above each data point corresponds to the predicted
V0.5 value of cocaine block for that particular channel. As discussed in the
text, the predicted values for hH1 channels and hH1-b1 channels had the
largest deviations from the measured data (filled circle and open circle,
respectively).
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block. For example, the V0.5 values of steady-state inacti-
vation atm1 and hH1-b1 channels were similar at279 mV
and 281 mV, respectively, but the V0.5 value of cocaine
block was;8 mV more negative for hH1-b1 channels than
for m1 channels. Indeed, these data suggest that the 15 mV
difference between the V0.5 values of steady-state inactiva-
tion atm1 and hH1 (Wright et al., 1997), as well as a larger
cocaine-induced shift in theh` curve of hH1 channels
contribute to cocaine-induced cardiotoxicity.

Although steady-state inactivation appears to play the
major role in determining steady-state cocaine block, chan-
nel activation could be one of the factors responsible for the
magnitude of the underestimation inh` shift. Compare the
V0.5 value of steady-state inactivation to the V0.5 value of
cocaine block for each channel (Table 1), and note the
interesting quantitative difference betweenm1 and hH1. For
m1 channels the difference between the V0.5 value of co-
caine block and the V0.5 value of steady-state inactivation
was;14 mV and for hH1 channels the difference was;19
mV. These differences were essentially the same atm1-b1
and hH1-b1 channels. For both of the channel chimeras, the
difference between the V0.5 value of steady-state cocaine
block and the V0.5 value of steady-state inactivation was
;15 mV. When we adjusted theh` curves to improve the fit
by the simple model, the shift in theh` curve that best
improved the fit to the cocaine data fromm1 and m1-b1
channels was24.5 mV, whereas the adjustment for hH1
and hH1-b1 channels was210 mV. Form1(1)hH1(2–4) and
m1(1–3)hH1(4), the adjustments were 5 and 6 mV, respec-
tively, which more closely resembled the adjustment re-
quired form1 channels. The fact thatm1 channels and the
channel chimeras had the same activation phenotype and
required similar adjustments inh` to improve the fit by the
simple model suggests that channel activation may affect
the magnitude of the underestimated shift. As the condition-
ing voltage becomes less negative, hH1 channels enter
preopen or preactivated states, which may influence the
equilibrium shift fromR* to I*. However, at them1 isoform
and at the chimeras, channel activation begins at voltages
;15 mV more positive than at the hH1 isoform, so these
channels would therefore not enter the preactivated states at
the same voltages. This possible role for activation in the
equilibrium shift of theh` curve is consistent with previous
suggestions that activation is important in local anesthetic
action (Starmer et al., 1984; Yeh and Tanguy, 1985).

The notion that state-dependent differences between car-
diac and skeletal muscle sodium channels influence local
anesthetic action in cardiac tissue has been previously re-
ported for single batrachotoxin-modified sodium channels
(Zamponi et al., 1993; Zamponi and French, 1993). In
native channels, the antiarrhythmic properties of lidocaine
and the cardiotoxic properties of cocaine most likely result
from steady-state interactions with inactivated sodium chan-
nels at the diastolic membrane potential, as well as from
use-dependent interactions with activated and inactivated
channels during the cardiac action potential. Here, we
present an additional mechanism wherein cocaine induces a

larger shift in theh` curve at cardiac sodium channels than
at skeletal muscle sodium channels. This additional shift in
h` may arise from the coupling between channel activation
and inactivation (O’Leary et al., 1995), both of which pro-
ceed at significantly more negative potentials in the cardiac
isoform.
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Hille, B. 1977. Local anesthetics: hydrophilic and hydrophobic pathways
for the drug-receptor reaction.J. Gen. Physiol.69:497–515.

Hille, B. 1992. Ionic Channels of Excitable Membranes, 2nd ed. Sinauer
Associates, Inc., Sunderland, MA.

Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description of
membrane current and its application to conduction and excitation in
nerve.J. Physiol. (Lond.).117:500–544.

Isom, L. L., K. S. De Jongh, D. E. Patton, B. F. X. Reber, J. Offord, H.
Charbonneau, K. Walsh, A. L. Goldin, and W. A. Catterall. 1992.
Primary structure and functional expression of theb1 subunit of the rat
brain sodium channel.Science. 256:839–842.

Isom, L. L., T. Scheuer, A. B. Brownstein, D. S. Ragsdale, B. J. Murphy,
and W. A. Catterall. 1995. Functional co-expression of theb1 and type
IIA a subunits of sodium channels in a mammalian cell line.J. Biol.
Chem.270:3306–3312.

244 Biophysical Journal Volume 76 January 1999



Makielski, J. C., J. T. Limheris, S. Y. Chang, Z. Fan, and J. W. Kyle. 1996.
Coexpression ofb1 with cardiac sodium channela subunits in oocytes
decreases lidocaine block.Mol. Pharmacol.49:30–39.

Makita, N., P. B. Bennett, Jr., and A. L. George, Jr. 1996. Multiple domains
contribute to the distinct inactivation properties of human heart and
skeletal muscle Na1 channels.Circ. Res.78:244–252.

Marcotte, P., L.-Q. Chen, R. G. Kallen, and M. Chahine. 1997. Effects of
Tityus serrulatusscorpion toxing on voltage-gated Na1 channels.Circ.
Res.80:363–369.

Mitrovic, N., A. L. George, and R. Horn. 1998. Independent versus coupled
inactivation in sodium channels: role of the domain 2 S4 segment.
J. Gen. Physiol.111:451–462.

Nuss, H. B., N. Chiamvimonvat, M. T. Perez-Garcia, G. F. Tomaselli, and
E. Marbán. 1995a. Functional association of theb1 subunit with human
cardiac (hH1) and rat skeletal muscle (m1) sodium channela subunits
expressed inXenopusoocytes.J. Gen. Physiol.106:1171–1191.

Nuss, H. B., G. F. Tomaselli, and E. Marba´n. 1995b. Cardiac sodium
channels (hH1) are intrinsically more sensitive to block by lidocaine
than are skeletal muscle (m1) channels.J. Gen. Physiol.106:1193–1209.

O’Leary, M. E., L.-Q. Chen, R. G. Kallen, and R. Horn. 1995. A molecular
link between activation and inactivation of sodium channels.J. Gen.
Physiol.106:641–658.

Qu, Y. S., L. L. Isom, R. E. Westenbroek, J. C. Rogers, T. N. Tanada, K. A.
McCormick, T. Scheuer, and W. A. Catterall. 1995. Modulation of
cardiac Na1 channel expression inXenopusoocytes byb1 subunits.
J. Biol. Chem.270:25696–25701.

Ragsdale, D. S., J. C. McPhee, T. Scheuer, and W. A. Catterall. 1994.
Molecular determinants of state-dependent block of Na1 channels by
local anesthetics.Science. 265:1724–1728.

Starmer, C. F., A. O. Grant, and H. C. Strauss. 1984. Mechanisms of
use-dependent block of sodium channels in excitable membranes by
local anesthetics.Biophys. J.46:15–27.

Tomaselli, G. F., N. Chiamvimonvat, H. B. Nuss, J. R. Balser, M. T.
Perez-Garcia, R. H. Xu, D. W. Orias, P. H. Backx, and E. Marba´n. 1995.

A mutation in the pore of the sodium channel alters gating.Biophys. J.
68:1814–1827.

Trimmer, J. S., S. S. Cooperman, S. A. Tomiko, J. Zhou, S. M. Crean,
M. B. Boyle, R. G. Kallen, Z. Sheng, R. L. Barchi, F. J. Sigworth, R. H.
Goodman, W. S. Agnew, and G. Mandel. 1989. Primary structure and
functional expression of a mammalian skeletal muscle sodium channel.
Neuron. 3:33–49.

Wang, D. W., A. L. George, Jr., and P. B. Bennett. 1996a. Comparison of
heterologously expressed human cardiac and skeletal muscle sodium
channels.Biophys. J.70:238–245.

Wang, D. W., L. Nie, A. L. George, Jr., and P. B. Bennett. 1996b. Distinct
local anesthetic affinities in Na1 channel subtypes.Biophys. J.70:
1700–1708.

Wang, S.-Y., and G. K. Wang. 1997. A mutation in segment I-S6 alters
slow inactivation of sodium channels.Biophys. J.72:1633–1640.

Wright, S. N., S.-Y. Wang, R. G. Kallen, and G. K. Wang. 1997. Differ-
ences in steady-state inactivation between sodium channel isoforms
affect local anesthetic binding affinity.Biophys. J.73:779–788.

Wright, S. N., S.-Y. Wang, Y.-F. Xiao, and G. K. Wang. 1998. Relation-
ships between steady-state inactivation, cocaine binding, and cocaine
affinity at voltage-gated sodium channels.Biophys. J. (Abstr).312.

Yeh, J. Z., and J. Tanguy. 1985. Sodium channel activation gate modulates
slow recovery from use-dependent block by local anesthetics in squid
giant axons.Biophys. J.47:685–694.

Zamponi, G. W., D. D. Doyle, and R. J. French. 1993. State-dependent
block underlies tissue specificity of lidocaine action on batrachotoxin-
activated cardiac sodium channels.Biophys. J.65:91–100.

Zamponi, G. W., and R. J. French. 1993. Dissecting lidocaine action:
diethylamide and phenol mimic separate modes of lidocaine block of
sodium channels from heart and skeletal muscle.Biophys. J.65:
2339–2347.

Wright et al. Cocaine Block of Sodium Channels 245


