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ABSTRACT We model theoretically the effect of localized forces on a fluid membrane anchored to a uniform elastic medium.
We use this as a simple model for the plasma membrane of a cell. The atomic force microscope (AFM) has been used to apply
such forces, but large membrane perturbations occurring in vivo are also treated within the same framework. Inclusions of this
nature may include cell junctions, filipodia, caveolae, and similar membrane invaginations. The breakdown of linear elastic
response, as observed by AFM, is predicted to occur for forces as small as 10 pN. We estimate the position of this crossover
and the subsequent nonlinear behavior and make encouraging quantitative comparison with experiments. Intrinsic membrane
inclusions interact through their overlapping strain fields. For similar, point force-like inclusions at large separations, this yields
an attractive potential that scales like the inverse of their separation. For membranes that are intrinsically stiff or under tension,
the binding force between inclusions can depend on the properties of the membrane and may be large enough to induce
aggregation of inclusions, as observed experimentally. For inclusions that fix the magnitude of the membrane deformation,
rather than the applied force, we demonstrate the possibility of metastable states, corresponding to finite separations. Finally,
we discuss briefly the case in which inclusions couple to the membrane in more complex ways, such as via a torque (twist).
In such cases, the interaction scales like a higher power of the separation, depends on the orientation of the inclusions, and
can have either sign.

INTRODUCTION

Biological membranes play many essential roles in nature
and are found in all animal and plant cells (Alberts et al.,
1994; Darnell et al., 1990). The cytoplasmic membrane is
connected to a network made up of the microtubules, the
microfilaments, and the intermediate filaments in a complex
way that is still not fully understood. This network may
often dominate the rheological, or mechanical, behavior of
the cell (Thoumine and Ott, 1997; Janmey et al., 1991,
1994; Mackintosh et al., 1995). The plasma membrane itself
has both an intrinsic rigidity and an osmotically driven
surface tension (Sheetz and Dai, 1996). It is therefore sur-
prising that, to our knowledge, there have been no theoret-
ical studies of the deformation of such membranes coupled
to elastic media other than one, somewhat different study
that appeared after submission of the present work (Boul-
bitch, 1998). Quantitative measurements of the cellular re-
sponse may best be performed by direct experimental
probes (Evans et al., 1995), such as the atomic force mi-
croscope (AFM), in which the forces exerted on micro-
scopic tip(s) in contact with a surface can be measured with
accuracy. Indeed, several such experiments have been con-
ducted on intact cells (A-Hassan et al., 1998; Haydon et al.,
1996; Henderson 1994; Kasas et al., 1993; Radmacher et al.,
1996). We will show that our theoretical predictions are in

both qualitative and quantitative agreement with some of
these measurements.

We also envisage a theoretical model for the interactions
between intrinsic membrane inclusions that distort the
membrane. Forces may be applied to the membrane by
inclusions involved in either 1) cell adhesion, such as gap
and spot junctions (desmosomes), 2) cytoskeletal changes,
such as filipodia formation (Henderson et al., 1992; Sheetz
et al., 1992), or 3) membrane invaginations, such as clath-
rin-coated pits and caveolae (Rothberg et al., 1992), which
are, in turn, thought to be caused by aggregating membrane
proteins (Schekman and Orci, 1996). Aggregation of these
inclusions sometimes occurs, implying the existence of at-
tractive forces. For example, the numerous actin filaments
in filipodia localize (aggregate) so as to distort the plasma
membrane. Furthermore, small aggregates of gap junctions
and caveolae are often observed. There are many possible
origins for the attractive forces acting between these inclu-
sions. One may be the mechanical distortion of the cell
surface and interior, as studied here, although specific mo-
lecular interactions may often be important.

In recent years, numerous studies of intrinsic membrane
inclusions have been undertaken by scientists interested in
their physics (Huang, 1986; Shen et al., 1993; Dan et al.,
1993, 1994; Nallet et al., 1994; Palmer et al., 1994; Bruin-
sma et al., 1994; Netz and Pincus, 1995; Bar-Ziv et al.,
1995; Aranda-Espinoza et al., 1996; Nicot et al., 1996;
Turner and Sens, 1997, 1998; Sens et al., 1997; Goulian et
al., 1993). Many of these have been motivated, at least in
part, by similarities with biological membranes. However,
any discussion of bulk elastic effects has been omitted in
these articles. This omission provides further motivation for
the present work.
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We seek a model both for the elastic response of the
membrane to localized deformation and for the interactions
between inclusions such as those described above. These
will be mediated by the elastic deformation of both the
membrane and the elastic medium to which it is anchored.
Such interactions may dramatically effect both aggregation
and diffusion processes. Interacting diffusant particles will
exhibit anomalous diffusion, perhaps similar to that exhib-
ited by neural cell adhesion molecules, which are corraled
(Simson et al., 1998). A picture of some highly idealized
inclusions is given in Fig. 1.

In what follows we treat the medium as infinite, homo-
geneous, and purely elastic. Anchored to this medium is a
fluid membrane bearing inclusions. We need not be specific

as to the nature of these inclusions; they are initially as-
sumed merely to exert fixed normal forces on the mem-
brane. We subsequently study the case where the inclusions
fix the magnitude of the local membrane deformation. We
neglect dynamic effects associated with cytoskeletal reor-
ganization, leading to viscoelastic response. We believe that
this approach is reasonable on short enough time scales (see
Discussion and Conclusions). In any case, it is a natural
starting point and may be achieved directly in well con-
trolled artificial systems involving cross-linked polymer
gels.

Our main results are as follows. 1) For a single, localized,
force linear response breaks down when the applied force
exceeds a critical value. This value scales linearly with the
bulk elastic modulus and with the square of the largest of
several microscopic cutoff lengths. 2) Well above this cross-
over the force is predicted to exhibit a quadratic dependence
on the displacement. 3) Two inclusions that exert fixed
normal forces on the membrane in the same direction (either
up or down) attract one another. 4) The total binding energy
of two inclusions brought together from infinity will depend
on the properties of the membrane for sufficiently stiff
membranes. 5) For large separations, the interaction poten-
tial is dominated by elastic stresses in the bulk medium and
scales like 1/r. 6) Our results are relatively insensitive to the
choice of fixed-deformation or fixed-force boundary condi-
tions only in the far-field limit and may be quite different
for smaller separations. 7) Fixed-deformation boundary
conditions, which may be appropriate for certain inclusions,
can give rise to metastable states at finite separation. 8) For
inclusions that induce curvature in the membrane, the lead-
ing order moment of the force distribution is the quadrupole
and the interaction potential scales like 1/r5.

This paper is organized as follows. First, we present a
theoretical model for weak distortions to a membrane an-
chored to an elastic medium. Next, we study the effects of
inclusions that exert fixed localized normal forces on these
membranes. Focusing on the case of a single inclusion, we
compare our predictions to experiment. We consider also
the case of fixed deformation boundary conditions. Finally,
we discuss the significance of our results and some of the
limitations of our highly idealized model. An appendix is
also included in which we discuss how to extend the results
to more complex inclusions by identifying an analogy be-
tween the total force exerted by the inclusion and electro-
static charge. In this analogy, the dipole, quadrupole, and
higher-order moments correspond, as usual, to ascending
moments of the force (charge) distribution.

WEAK DEFORMATIONS OF THE
ANCHORED MEMBRANE

To describe the effect of localized inclusions we first con-
struct the Hamiltonian for a general, weak deformation. We
review the classical result for a semi-infinite elastic medium
and then introduce a fluid membrane to obtain the Hamil-
tonian for the combined system.

FIGURE 1 Schematic plot of three types of inclusions. These may
represent either external probes, e.g., an AFM tip, or intrinsic inclusions,
e.g., membrane invaginations, gap junctions, etc. In each case, the over-
lapping strain fields give rise to an interaction between any two inclusions.
The thick shaded line represents the membrane(s) and the network of thin
black lines the strained elastic medium. Three different types of inclusions
are shown althoughb andc are discussed only in the appendix. (a) Those
that exert a finite normal force. In the limit where the membranes are
negligible, this system has the classical analogue of two ballbearings lying
on a rubber slab. (b) Those that exert a finite local torque but no average
normal force (a “dipole”). (c) Those that induce a finite local curvature but
no average normal force or tilt (a “quadrupole”). In botha and b the
inclusions are shown anchored to a second slab, which balances the normal
forces and torques, respectively.
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Consider first a bare semi-infinite elastic medium con-
fined toz. 0. By bare we mean a medium that does not yet
support a membrane or any other structure. In what follows
we will model the deformation of this medium by linear
elastic theory (Landau and Lifshitz, 1981). This involves
assuming that the medium is uniform, i.e., homogenous and
isotropic, and that the applied deformation is sufficiently
weak so that the response is linear. Thus, Hooke’s law
(restoring force is proportional to deformation) is assumed
to hold when suitably generalized to a three dimensional
(3-D) medium. In 3-D, a scalar extension, such as would
describe a spring, is no longer adequate and one must use
instead the strain tensor

hij 5
1

2S­hi

­xj
1

­hj

­xi
D (1)

wherehi is theith component of the vector displacement of
a point in the material andxi is its ith Cartesian coordinate.
The appropriate version of Hooke’s law is a linear relation
between the stress tensorsij and the strain tensor

sij 5
E

1 1 sShij 1
s

1 2 2s
hkkdijD, (2)

whereE is Young’s modulus ands Poisson’s ratio for the
elastic medium. The use of the same symbol (s) for both
Poisson’s ratio and the stress tensor is unfortunate but
conventional. Confusion should not arise as Poisson’s ratio
is a scalar whereas the stress is a second-rank tensor, bear-
ing two additional indices.

At equilibrium, the internal stresses (forces) in every
volume element must balance exactly:

­sij

­xj
5 0 (3)

Solving this equation for the deformationu of the surface of
the semi-infinite medium in thez-direction due to a normal
force f (per unit area) applied at this surface we find
(Landau and Lifshitz, 1981)

u~r ! 5 E d2r 9~G~r 2 r 9!f~r 9! (4)

where r and r 9 are vectors in thex-y plane. The far-field
deformation due to a normal force is well described by the
following Green’s function:

G~r ! 5
1

2p%

1

ur u (5)

The similarity between this expression and the Coulomb
potential for point charges immediately invites an analogy
with electrostatics. Heref plays the role of charge andu of
the electrostatic potential. However,% is not a permittivity

but a rescaled elastic modulus given by

% 5
E

2~1 2 s2!
(6)

By analogy with electrostatics or otherwise it is straight-
forward to show that the total elastic potential energy of
deformation is

Uel 5
1

2EE d2rd2r 9f~r !f~r 9!G~r 2 r 9! (7)

It will often prove convenient to rewrite this in Fourier
space defined by the transform

u~r ! 5 E d2q
~2p!2 uqe

iqr (8a)

and its inverse

uq 5 E d2ru~r !e2iqr (8b)

In this space, Eq. 4 becomes

uq 5 Gqfq (9)

For such a semi-infinite elastic mediumGq 5 1/(%q) with
q [ uqu throughout. Writing Eq. 7 as a function ofu in
reciprocal space we obtain the energy of the deformed
elastic medium

Uel 5
1

2E d2q
~2p!2 %ququ2q (10)

Equipped with this result we now turn to the problem of a
thin fluid membrane anchored to the surface of a semi-
infinite elastic medium. An important simplifying feature of
the problem is that such a fluid membrane transmits only
normal stresses.

We consider first an isolated membrane with surface
tensiong and intrinsic bending rigidityk. The deformation
energy of the membrane is

Umemb5 E d2rFk

2
~¹\

2u!2 1
g

2
~¹\u!2G

5
1

2E d2q
~2p!2 @kq4 1 gq2#uqu2q ,

(11)

where¹\ is the gradient operator in thex-y plane.
The total energy of deformation of the membrane and the

elastic substrate is merelyUdef 5 Uel 1 Umemb:

Udef 5
1

2E d2q
~2p!2

uqu2q

Gq
, (12)
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with the Greens function in the presence of the membrane
now given inq-space by

Gq 5
1

%q 1 gq2 1 kq4 (13)

Of course, the membrane modifies the real space response
functionG(r ) too. This is now given by the inverse Fourier
transform of Eq. 13. The Greens function Eq. 5 is recovered
in the limit g, k3 0. Relationships of the form of Eqs. 10,
11, and 12 are often encountered in statistical mechanics
although here we are interested in deformations that are
much larger than thermal fluctuations. Hence our identifi-
cation of a potential energy rather than a free energy.

Effect of membrane inclusions

To understand the behavior of localized inclusions the field
f(r ) can be thought of either as the force per area due to
some distribution of inclusions or, alternatively, as a La-
grange field chosen to impose some unspecified boundary
condition on the distortion fieldu(r ). These interpretations
correspond to the two boundary conditions, fixed force and
fixed deformation, considered below, although in both cases
we introduce the membrane-inclusion coupling into the
energy as follows

F 5
1

2EE d2rd2r 9u~r !u~r 9!&~r 2 r 9! 2 E d2ru~r !f~r !,

(14)

where &(r ) is the Fourier transform of 1/Gq. Minimizing
this in q-space by completing the square we have

F 5 2
1

2E d2q
~2p!2Gqfqf2q , (15)

which gives the total energy as a function of the fieldf. The
(positive) total energy of deformation can be shown to be
Udef 5 2F with the minus sign indicating thatf is driving
the deformation. The relationshipUdef 5 2F is character-
istic of elastic response; it holds for a Hookean spring
extended by a constant force.

For the purposes of calculating the two-body interaction
potential we will writef(r 9) 5 c(r 9) 1 c(r 2 r 9) wherer is
the vector separating the two inclusions andc(r 9) is the
force density distribution for a single inclusion centered at
the origin. In the far-field limit we will see that the inter-
action potential between two inclusions, as well as the
deformation energy of a single one, will depend only on the
total force co 5 *d2r 9c(r 9). In the fixed-deformation
boundary conditions, the fieldc, and henceco, will further
depend implicitly onr . This is necessary to fix the magni-
tude of the deformation for all separations. In the fixed-
force boundary conditions,co is taken to be a fixed con-
stant, with no implicitr-dependence. This is the essence of
the difference between these two natural choices of bound-

ary condition. Both choices turn out to give similar inter-
action potentials when the inclusions are identical, with
merely a different numerical prefactor.

FIXED-FORCE BOUNDARY CONDITIONS

In this section we consider two inclusions, separated byr,
exerting fixed localized normal forces on the membrane.
From Eq. 15 we have

F 5 2 E d2q
~2p!2 Gq~1 1 eiqr!cqc2q , (16)

which is made up of the sum of a constant term, correspond-
ing to a self energy per inclusion,

F~s! 5 2
1

2E d2q
~2p!2 Gqcqc2q , (17)

and anr -dependent term giving the two-body interaction
potential per inclusion,

f~r ! 5 2
1

2E d2q
~2p!2 Gqe

iqrcqc2q

5 2
1

2E d2r 9 E d2r 0G~r 2 r 9 2 r 0!c~r 9!c~r 0!

(18)

Thus, the self energy is related to the interaction potential by
the following equivalence:

F~s! 5 f~r 3 0! (19)

For separationsr .. b, whereb is a microscopic length of
the order of the lateral size of an inclusion, the inclusions
can be thought of as point particles. (This gives the domi-
nant far-field term for finiteco (but see the Appendix for a
discussion of higher-order effects). Here we simply notice
c6q ' co for q ,, b21 and vanishes in the largeq limit.
The lengthb is equal to the lateral size of the inclusion up
to a shape-dependent prefactor of order unity. In what
follows we will furthermore assume thatb is larger than the
characteristic cytoskeleton mesh sizej.) Hence,

f~r ! 5 21⁄2 co
2G~r ! for r .. b (20)

Substitutingx 5 qr, the real space Greens functionG(r ) is
given by

G~r ! 5
1

2p%r E
0

` Jo~x!dx

1 1 1⁄2~x/xg! 1 1⁄2~x/xk!
3, (21)

whereJo(x) is the Bessel function of the first kind of order
0, xg 5 r/lg andxk 5 r/lk, with the two characteristic lengths
given by

lg 5 g/% and lk 5 ~k/%!1/3 (22)
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A plot of the interaction potential Eq. 20 is shown in Fig. 2.
In the limit of large particle separationsr .. lg, lk, the
interaction potential per particle becomes simply

f~r ! 5 2
co

2

4p%r
(23)

For separations that are less thanlg or lk, the potential
crosses over to

f~r ! 5 5 2
co

2

4p%lg
log~lg/r! if lg .. lk andr ,, lg

2
co

2

6Î3%lk

if lk .. lg andr ,, lk,

(24)

where we have assumed that the intrinsic size of the inclu-
sion is smaller than these new length scales; if not, then it is,
rather,b that appears as the natural short length cutoff, e.g.,
for Eq. 23. The logarithmic term appearing in Eq. 24 is
never large. (The apparent logarithmic singularity asr 3 0
will be the cutoff either by the appearance of higher-order
terms in the Hamiltonian, which start to become important
on length scalesr & co/g, or by the effect of the bending
rigidity at r . lk, or by additional short-range forces,
ultimately including steric contact.) Note the similarity of
Eq. 23 with the usual result for the electrostatic potential
(per inclusion) between two charges of magnitudeco. This
result indicates that for large enough separations the defor-
mation of the bulk elastic medium dominates the interactions.

The above arguments hold for inclusions that are suffi-
ciently far apart for linear elasticity theory to remain ade-
quate. Specifically, we do not accurately take account of
any strains in the elastic medium (or gradient at the surface)
greater than or of the order of unity. It can be shown that

these strains are always smaller than unity far enough away
from an inclusionr * l%, where

l% 5 Îco/% (25)

Beyond this length the elastic response of a single inclusion
is well known and corresponds to the Hertz model (Hertz,
1881). However, the effect of the breakdown of linearity for
r & l% is to fundamentally modify the elastic response, as
we will show below. In the present work we consider only
the contribution of the far field to both the interactions and
self energy, neglecting any “core” corrections due to non-
linear or other short-ranged interactions. Crudely speaking,
we can think ofl% as being another short-length cutoff for
our theory in what follows. Hence we can obtain an estimate
of the self energyF(s), also equal to the change in energy
when a pair of inclusions is brought together from infinity,
by settingr 5 lbig in Eq. 23 wherelbig is the largest of the
lengthsb, l%, lg, or lk. From Eqs. 22–25 we find

F~s! . 5
2co

2%21b21 if b .. lg , lk , l%

2co
2g21 if lg .. lk , l% , b

2co
2k21/3%22/3 if lk .. lg , l% , b

2co
3/2%21/2 if l% .. lg , lk , b,

(26)

where the numerical prefactors depend on the precise way
in which we cut off at short length scales. In general, these
are difficult to estimate as they depend on the full nonlinear
Hamiltonian and/or other short-range interactions. (The
prefactor may be given precisely only in the third limit
(lk .. lg, l%, b). In this case, it is 1/(6=3). In both other
limits, it depends at least logarithmically on the precise
cutoff employed.) However, we will make a crude estimate
of the magnitude ofF(s) in the next section. At thermody-
namic equilibrium, inclusions that are free to move laterally
will form aggregates if this energy is much larger than the
entropic contributionkBTulog cu, wherec is the area fraction
of inclusions on the membrane. Whether such aggregation
occurs in vivo will also depend on other factors, e.g.,
whether the time scale for aggregation is less than that of the
reorganization of the cytoskeleton, as discussed in the Dis-
cussion and Conclusions.

Single inclusion

Before discussing the interactions between inclusions we
will examine the effect of a single inclusion. The single-
inclusion distortion fieldu is entirely determined by Eq. 9
and Eq. 13 withf 5 c. Thus, we are in a position to make
quantitative predictions for the deflection of the membrane
as a function of applied force. AFM measurements of the
deflection of the surface of human platelets already exist
(Radmacher et al., 1996), and later in this section we will
compare our predictions with these data. As discussed be-
low, the agreement is most encouraging.

The maximal normal deformation of the membrane near
an isolated inclusion, writtenu# , is related to the force

FIGURE 2 The absolute value off, the interaction potential between
two inclusions, as a function of their separationr as calculated numerically
from Eqs. 20 and 21. The parameters used arelg 5 200 nm,lk 5 30 nm,
co 5 20 pN, and% 5 1 kPa with b assumed negligible. The far-field
asymptotic 1/r behavior is clearly visible, as is the crossover aroundlg,
which is here the largest cutoff length. Using Eq. 28, the normal membrane
deflection is estimated to be;16 nm.
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applied on it according to the mechanical equilibrium
condition

­F~s!

­u#
5 co (27)

The self energyF(s) is given by Eq. 23 with an appropriate
small-length-scale cutoff, as discussed above. Thus, Eq. 27
is a first-order differential equation relating the forceco to
the displacementu# . Using the approximate cutoffr 5 lbig in
Eq. 23, we obtain

co 5 5
2p%bu# if b .. lg , lk , l%

2pgu# if lg .. lk , l% , b
2pk1/3%2/3u# if lk .. lg , l% , b
~4p/3!2%u#2 if l% .. lg , lk , b,

(28)

which represents a relationship between the force and the
membrane deflection. It should be emphasized that the
numerical prefactors are estimates arising from our treat-
ment and should be regarded as approximate. They are
included merely to facilitate the comparison with experi-
mental data presented later in this section.

The last of the results contained in Eq. 28 may seem the
most surprising. It says that the system no longer behaves in
a linear Hookean way ifl% is the largest cutoff length. Asl%
increases with the applied force according to Eq. 25,
whereas the other lengths remain constant, this behavior
will dominate at high forces. Thus, we predict a crossover
from linear variation ofco with u# to one that is quadratic in
u# whenl% $ l2 wherel2 is the largest ofb, lg, or lk. This can
be shown to occur for forces larger thancoc

or, equivalently,
displacements larger thanu#c given by

coc . %l2
2 u#c . l2 (29)

The origin of this crossover is the breakdown of linear
elasticity theory in the vicinity of the inclusion for such
large forces. Our approximate treatment of this breakdown
involves neglecting any distortion of this region beyond this
limit. This is probably reasonable provided higher-order
terms in the Hamiltonian give rise to a significant stiffening
of the material beyond this crossover and there is no me-
chanical failure of the material (cytoskeleton). A likely
lower estimate of the force might correspond to parameter
values of% ' 1 kPa andl2 ' 100 nm givingcoc

* 10 pN.
The energyF(s) as a function of deformation follows

trivially from Eq. 28:

F~s! . 5
2p%bu#2 if b .. lg , lk , l%

2pgu#2 if lg .. b, lk , l%

2pk1/3%2/3u#2 if lk .. b, lg , l%

2
~4p!2

3
%u#3 if l% .. b, lg , lk

(30)

The physical interpretation of these results is as follows: 1)
In systems wherelg .. b, lk, l% most of the deformation
energy comes from the work done in stretching the mem-
brane against surface tension. 2) In systems wherelk .. b,

lg, l% most of it comes from the work done in bending the
membrane. 3) In systems wherel% or b are largest the effect
of the membrane is negligible and most of the deformation
energy is the work done in elastically deforming the medium.

A conservative estimate ofF(s) for intrinsic membrane
inclusions might be obtained from Eq. 30 using% 5 1 kPa,
b 5 30 nm, andu# 5 10 nm. These values giveF(s) 5 10222

J 5 2.5 kBT, which are thermodynamically significant.

Comparison with experiment

As mentioned above, there exist several AFM measure-
ments of the surface of living cells. One of these studies
(Radmacher et al., 1996) represents perhaps the best data
available for our purposes. (See Fig. 6, p 560 in Radmacher
et al., 1996. When interpreting these data we use the average
force measured over several approaches and retractions at
low frequencies 0.2–20 Hz. These frequencies probably
represent time scales that are sufficiently short so that
effects associated with cytoskeleton reorganization may be
neglected, whereas at the same time being rather long com-
pared with the fluid relaxation timest . hlbig

2 /co ' 100
ms.) (See Fig. 3). In this experimental work an AFM tip is
pressed into the surface of a human platelet. As usual, the
force is measured optically via the displacement of an
extremely soft cantilever supporting the tip. These authors
report that their cantilever has a spring constantk 5 31
pN/nm and a physical tip size of the order ofb 5 50 nm.
Their data show an approximately linear regime, with the
cantilever deflectiond proportional to the vertical sample
displacement, followed by a regime where the deflection
shows a sudden and marked deviation from linear response
toward behavior approximately quadratic in the displace-

FIGURE 3 The AFM cantilever deflectiond plotted against the stage
heighth reported in Radmacher et al., 1996. The stage heighth is identified
with the membrane deflectionu# , and the displacementd is proportional to
the force with a Hooke’s constantk 5 31 pN/nm. The data points are
extracted by eye from the continuous trace data and fitted to a general
quadratic form (—). The curvaturemof this fit allows a second estimate of
the elastic modulus in good agreement with that obtained from linear
response, as discussed in the text. The quadratic form is a key prediction of
our model and fits the data well.
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ment. This is in qualitative agreement with the behavior
predicted by us.

We first estimate the elastic modulus of the material from
the slope of the linear portion of the force-versus-displace-
ment curve. The force exerted by the arm must balance that
of the membrane Eq. 28 according tokd 5 2p%bu# , where
we assumeb . lg, lk. (For k & 10kBT we find lk & 30 nm.
The surface tension has been reported to be in the range
1022 to 1021 pN/nm (Sheetz and Dai, 1996) givinglg '
10–100 nm.) Solving for% with u# 5 500 nm,b 5 50 nm,
d 5 7 nm, andk 5 31 pN/nm we find% 5 1.4 kPa, in good
agreement with the experimentally reported values of 1.5–4
kPa. This agreement is not surprising as the physics of the
linear regime has long been well understood. However, it
does verify that the approximate numerical prefactor in Eq.
28 is a rather good estimate. The force-versus-displacement
curve crosses over from linear to approximately quadratic at
u# ' 500 nm. Our estimate from Eq. 29 is that this should
occur whenu# . b, which indicates that the response should
already be significantly nonlinear at these strains. Although
our estimate is a little low, it is roughly of the right order of
magnitude and is encouraging given the crude nature of our
estimate. Perhaps more encouraging still is the existence of
the crossover and its approximately quadratic form.

Finally, we can make a second estimate of% by extract-
ing thecurvatureof the force-versus-displacement curve at
high forces (see Fig. 3). Above the crossover, the data are
well fitted by the expressiond 2 6 nm5 m(u# 2 460 nm)2,
yielding a curvature constantm 5 7.53 1024 nm21. Thus,
for large displacements the force balance becomes

kd5 kmu#2 5 ~4p/3!2%u#2f % 5 1.3 kPa, (31)

which is in excellent quantitative agreement with the esti-
mate obtained from linear response. This, together with the
nearly quadratic form above the crossover, represents the
best evidence in support of our model.

FIXED-DEFORMATION BOUNDARY CONDITIONS

In the preceding section, we considered only one type of
coupling between the inclusions and the membrane, i.e., that
of a normal force of fixed magnitude. This is merely one of
many possible choices. In some physical systems it may be
more appropriate to fix the normal deformation near each
inclusion as a boundary condition, i.e., require it to remain
fixed even as they are brought together. To impose this
boundary condition we should instead allow the force ex-
erted by the inclusions to vary with the inclusion separation
r in such a way as to correctly fix the deformation for all
values ofr. In this section, the case where the two inclusions
are different, i.e., they exert different forcesco

(1) and co
(2)

when separated to infinity, will prove to be nontrivial. (For
the case of fixed-force boundary conditions, it is merely the
product of the forcesco

(1) co
(2), which enters as a prefactor to

the interaction potential Eq. 20.)

After some algebra we find the interaction potential per
particle

f9~r! 5 2
1

2
co

~1!co
~2!G~r !31 2

1

2Sco
~1!

co
~2! 1

co
~2!

co
~1!DG~r!

G~0!

1 2 SG~r!

G~0!D
2 4, (32)

where the prime reminds us that we have employed fixed-
deformation boundary conditions. Comparison of Eq. 32
with Eq. 20 confirms that the product of the two forces
changes withr by the factor in Eq. 32 in square brackets,
thereby keeping the magnitude of the deformation near both
the inclusions constant.

In the far-field limit, the ratioG(r)/G(0)3 lbig/r3 0 and
Eq. 32 coincides with Eq. 23 up to correctionsO(lbig/r).
This tells us that the interactions in the far-field limit are
insensitive to the choice of boundary condition.

However, forco
(1) Þ co

(2) the interaction potentialf9(r)
exhibits a minimum for finite particle separationrmin. This
separation is significantly larger thanlbig only whenco

(1) ..
co

(2) (whereco
(1) . co

(2) without loss of generality) in which
limit it approaches

rmin 5 lbigco
~1!/co

~2! (33)

The interaction potential is locally quadratic about this
minimum with restoring force per unit lateral displacement
given by

­2f9

­r2 U
r5rmin

5
co

~2!2G~0!

2lbig
2FSco

~1!

co
~2!D2

2 1G (34)

and binding energy

f9~rmin! 5 21⁄4co
~2!2G~0! (35)

The self energy in this case is of no physical relevance. The
result of Eq. 35 differs from the results of the preceding
section only by a numerical prefactor of1⁄2.

In summary, we have found that there is only a small
difference between the two choices of boundary condition
for similar inclusions but that stable minima may appear in
the two-body interaction potential for different inclusions
under fixed-deformation boundary conditions.

DISCUSSION AND CONCLUSIONS

Our model is formulated in the limit of a uniform, infinite
elastic medium. However, biological systems are notori-
ously complex. For finite and/or heterogeneous media, our
results are accurate only over length scales smaller than the
size of the domain in which% is roughly constant. However,
it is plausible that the domain size of the cytoskeleton may
reach the scale of the cell. If the membrane were to reside
on a uniform elastic slab of finite thicknessD, our results
would remain valid for separationsr ,, D. In the other
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extreme, our theory will be appropriate for inclusion-in-
duced deformation on a lateral scale larger than some char-
acteristic mesh size for the cytoskeleton, which may be
&0.1mm. On length scales smaller than this, our continuum
approximation for the medium will start to break down.
Thus, there exists a regime of applicability of perhaps two
orders of magnitude or more.

We might hope to include some dynamic effects by
treating the medium as viscoelastic. Although some work
exists for surface waves on a viscoelastic medium (Pleiner
et al., 1988; Harden et al., 1991; Safran and Klein, 1993),
our results are probably sensitive to the nature of the bulk
network, and a full dynamic theory is, in any case, outside
the scope of the present work. However, we can say that we
do expect our results to be appropriate for systems in which
stress relaxes sufficiently slowly. Encouragingly, recent ex-
perimental work on the scale of a cell (Thoumine and Ott,
1997) determined a characteristic time of the order of 40 s.
For times much less than this, the cell appears to behave
elastically. This time may be two orders of magnitudes
larger than, e.g., the characteristic time for a typical mem-
brane protein to diffuse over the scale of a cell.

We have presented evidence that linear elastic theory is
inadequate to describe the response of a cell to forces in
excess of some critical value. For the data set discussed in
the text, this force was of the order of 200 pN but may be
as small as 10 pN for other systems. Above this crossover
we 1) predict that the force varies quadratically with the
displacement and 2) are able to make a second independent
prediction of% from the curvature of the quadratic form in
this regime. For the data set examined, a quadratic response
does seem to be closely followed, and both estimates of the
elastic modulus agree remarkably well. Together these ob-
servations represent the best evidence that our model cor-
rectly describes the response of the system up to and beyond
the breakdown of linear elasticity.

Finally, we may conclude as follows. By considering the
elastic lengthl% we have been able to model the response of
a membrane anchored to an elastic medium to applied
forces up to and beyond the breakdown of linear elasticity.
Such inclusions interact with one another with a far-field
potential scaling like 1/r provided that they exert some
mean force. For sufficiently stiff or taut membranes, their
response to applied forces depends on the properties of the
membrane. For inclusions that fix the magnitude of the
membrane deformation, rather than the applied force, we
have demonstrated the possibility of metastable states cor-
responding to inclusions at finite separation.
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APPENDIX

The inclusions considered in the main body of the text are all assumed to
exert localized normal forces on the membrane. As mentioned in the

Introduction, we may employ a multipole expansion, analogous to that of
classical electrostatic theory, to model more complex force distributions. A
thorough description of this technique exists in the context of inclusions in
a multi-layered lamellar phase (Turner and Sens, 1998). In the current
work, charge is analogous toco 5 * c(r 9)d2r 9, dipole moment top 5 * r 9
c(r 9)d2r 9, quadrupole moment to$ij 5 * r9ir9jc(r 9)d2r 9, etc.

Each of the moments ofc has a physical interpretation as follows. The
charge is merely the total force exerted on the membraneco. Thus, for
inclusions with a finite charge, the distribution of this charge enters as a
higher-order correction only for inclusions with sizes much smaller than
their separation. Inclusions with a finite dipole moment induce a tilt in the
membrane. This may be visualized by viewing a dipole as a point-upward
and a point-downward force separated by some small distance. A pure
dipole has no finite normal force (displacement). Finally, the quadrupole
moment acts to induce curvatures in the membrane but has no finite normal
force or torque (tilt). Inclusions in this class have an interaction potential
that varies like 1/r5, as argued below, but need not have a binding energy
that is qualitatively different from those that exert finite normal forces (or
torques). Such curvature-inducing inclusions have been studied in the
context of fluid membrane systems (Goulian et al., 1993). Although this
earlier work also predicts power-law interactions, it differs fundamentally
from the present work in that 1) there is no bulk elastic medium through
which interactions may be mediated and 2) it also includes a treatment of
fluctuations, appropriate for very soft systems, whereas we do not.

The interaction potential between higher-order poles is easily obtained
by analogy with electrostatics directly from Eq. 18. As the two inclusions
need not be identical, the first and second inclusions and their moments are
labeled 1 and 2, respectively. Thus, the interaction potential between two
point charge inclusions separated byr is f(r ) 5 21⁄2co

(1)co
(2) G(r ) ; 1/r;

between two point dipole inclusions, it isc(r ) 5 1⁄2pi
(1)pj

(2)¹i¹jG(r ) ; 1/r3;
and between two point quadrupoles, it isc(r ) 5 21⁄8$kl

(2)¹i¹j¹k¹lG(r ) ;
1/r5. Extensions to higher-order and mixed moments, e.g., dipole-quadru-
pole interactions, are straightforward. Thus, we are able to treat quite
general inclusions by calculating the moments of the fieldc. As we can
always invertu to find c we might proceed as follows. From experimental
evidence for the distortion field around an isolated inclusion, estimateu.
From this, extractc and calculate its moments to obtain the far-field
interaction potential and higher-order corrections to any order.
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