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ABSTRACT We model theoretically the effect of localized forces on a fluid membrane anchored to a uniform elastic medium.
We use this as a simple model for the plasma membrane of a cell. The atomic force microscope (AFM) has been used to apply
such forces, but large membrane perturbations occurring in vivo are also treated within the same framework. Inclusions of this
nature may include cell junctions, filipodia, caveolae, and similar membrane invaginations. The breakdown of linear elastic
response, as observed by AFM, is predicted to occur for forces as small as 10 pN. We estimate the position of this crossover
and the subsequent nonlinear behavior and make encouraging quantitative comparison with experiments. Intrinsic membrane
inclusions interact through their overlapping strain fields. For similar, point force-like inclusions at large separations, this yields
an attractive potential that scales like the inverse of their separation. For membranes that are intrinsically stiff or under tension,
the binding force between inclusions can depend on the properties of the membrane and may be large enough to induce
aggregation of inclusions, as observed experimentally. For inclusions that fix the magnitude of the membrane deformation,
rather than the applied force, we demonstrate the possibility of metastable states, corresponding to finite separations. Finally,
we discuss briefly the case in which inclusions couple to the membrane in more complex ways, such as via a torque (twist).
In such cases, the interaction scales like a higher power of the separation, depends on the orientation of the inclusions, and
can have either sign.

INTRODUCTION

Biological membranes play many essential roles in naturdoth qualitative and quantitative agreement with some of
and are found in all animal and plant cells (Alberts et al.,these measurements.

1994; Darnell et al., 1990). The cytoplasmic membrane is We also envisage a theoretical model for the interactions
connected to a network made up of the microtubules, théetween intrinsic membrane inclusions that distort the
microfilaments, and the intermediate filaments in a complexnembrane. Forces may be applied to the membrane by
way that is still not fully understood. This network may inclusions involved in either 1) cell adhesion, such as gap
often dominate the rheological, or mechanical, behavior ofind spot junctions (desmosomes), 2) cytoskeletal changes,
the cell (Thoumine and Ott, 1997; Janmey et al., 1991such as filipodia formation (Henderson et al., 1992; Sheetz
1994; Mackintosh et al., 1995). The plasma membrane itsekt al., 1992), or 3) membrane invaginations, such as clath-
has both an intrinsic rigidity and an osmotically driven rin-coated pits and caveolae (Rothberg et al., 1992), which
surface tension (Sheetz and Dai, 1996). It is therefore sur@re, in turn, thought to be caused by aggregating membrane
prising that, to our knowledge, there have been no theorefroteins (Schekman and Orci, 1996). Aggregation of these
ical studies of the deformation of such membranes coupleénclusions sometimes occurs, implying the existence of at-
to elastic media other than one, somewhat different studjractive forces. For example, the numerous actin filaments
that appeared after submission of the present work (Boulin filipodia localize (aggregate) so as to distort the plasma
bitch, 1998). Quantitative measurements of the cellular remembrane. Furthermore, small aggregates of gap junctions
sponse may best be performed by direct experimentsnd caveolae are often observed. There are many possible
probes (Evans et al., 1995), such as the atomic force miorigins for the attractive forces acting between these inclu-
croscope (AFM), in which the forces exerted on micro- sions. One may be the mechanical distortion of the cell
scopic tip(s) in contact with a surface can be measured witgurface and interior, as studied here, although specific mo-
accuracy. Indeed, several such experiments have been cdfeular interactions may often be important.

ducted on intact cells (A-Hassan et al., 1998; Haydon et al., In recent years, numerous studies of intrinsic membrane
1996: Henderson 1994: Kasas et al., 1993: Radmacher et aliclusions have been undertaken by scientists interested in

1996). We will show that our theoretical predictions are intheir physics (Huang, 1986; Shen et al., 1993; Dan et al.,
1993, 1994; Nallet et al., 1994; Palmer et al., 1994; Bruin-
sma et al.,, 1994; Netz and Pincus, 1995; Bar-Ziv et al.,
: — o 1995; Aranda-Espinoza et al., 1996; Nicot et al., 1996;
Tgegglved for publication 18 September 1997 and in final form 15 August]-umer and Sens, 1997, 1998: Sens et al., 1997: Goulian et
Address reprint requests to Dr. Matthew S. Turner, Rockefeller Universily,al" 1993): Many of th.ese .have. been motivated, at least in
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212-327-8544; E-mail: m.s.turner@warwick.ac.uk. any discussion of bulk elastic effects has been omitted in
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We seek a model both for the elastic response of thes to the nature of these inclusions; they are initially as-
membrane to localized deformation and for the interactionsumed merely to exert fixed normal forces on the mem-
between inclusions such as those described above. Thebeane. We subsequently study the case where the inclusions
will be mediated by the elastic deformation of both thefix the magnitude of the local membrane deformation. We
membrane and the elastic medium to which it is anchoredneglect dynamic effects associated with cytoskeletal reor-
Such interactions may dramatically effect both aggregatiomanization, leading to viscoelastic response. We believe that
and diffusion processes. Interacting diffusant particles willthis approach is reasonable on short enough time scales (see
exhibit anomalous diffusion, perhaps similar to that exhib-Discussion and Conclusions). In any case, it is a natural
ited by neural cell adhesion molecules, which are corraledtarting point and may be achieved directly in well con-
(Simson et al., 1998). A picture of some highly idealizedtrolled artificial systems involving cross-linked polymer
inclusions is given in Fig. 1. gels.

In what follows we treat the medium as infinite, homo-  Our main results are as follows. 1) For a single, localized,
geneous, and purely elastic. Anchored to this medium is #orce linear response breaks down when the applied force
fluid membrane bearing inclusions. We need not be specifiexceeds a critical value. This value scales linearly with the

bulk elastic modulus and with the square of the largest of

several microscopic cutoff lengths. 2) Well above this cross-
HHH over the force is predicted to exhibit a quadratic dependence

on the displacement. 3) Two inclusions that exert fixed
(a) normal forces on the membrane in the same direction (either
up or down) attract one another. 4) The total binding energy
of two inclusions brought together from infinity will depend
on the properties of the membrane for sufficiently stiff
H membranes. 5) For large separations, the interaction poten-
tial is dominated by elastic stresses in the bulk medium and
scales like I. 6) Our results are relatively insensitive to the
choice of fixed-deformation or fixed-force boundary condi-
tions only in the far-field limit and may be quite different

HHH for smaller separations. 7) Fixed-deformation boundary
;E( b) : condiFions_, which may be appropriate _fo_r certain in_clusions,
H can give rise to metastable states at finite separation. 8) For
inclusions that induce curvature in the membrane, the lead-
ing order moment of the force distribution is the quadrupole
and the interaction potential scales like®1/

] & This paper is organized as follows. First, we present a

theoretical model for weak distortions to a membrane an-

chored to an elastic medium. Next, we study the effects of

inclusions that exert fixed localized normal forces on these

membranes. Focusing on the case of a single inclusion, we

(C) compare our predictions to experiment. We consider also
2 the case of fixed deformation boundary conditions. Finally,

7} - H we discuss the significance of our results and some of the

- limitations of our highly idealized model. An appendix is

also included in which we discuss how to extend the results

to more complex inclusions by identifying an analogy be-

tween the total force exerted by the inclusion and electro-

FIGURE 1 Schematic plot of three types of inclusions. These mayStatic charge. In this analogy, the dipole, quadrupole, and

represent either external probes, e.g., an AFM tip, or intrinsic inclusionshigher-order moments correspond, as usual, to ascending

e.g., membrane invaginations, gap junctions, etc. In each case, the ovatnoments of the force (charge) distribution.

lapping strain fields give rise to an interaction between any two inclusions.

The thick shaded line represents the membrane(s) and the network of thin

black lines the strained elastic medium. Three different types of inclusiongqyEAK DEFORMATIONS OF THE

are shown although andc are discussed only in the appendia) Those ~ ANCHORED MEMBRANE

that exert a finite normal force. In the limit where the membranes are

negligible, this system has the classical analogue of two ballbearings lyind"o describe the effect of localized inclusions we first con-

on a rubber slabbj Those that exert a finite local torque but no average ctr,ct the Hamiltonian for a general, weak deformation. We

normal force (a “dipole”). €) Those that induce a finite local curvature but review the cl ical r It for mi-infinite elastic medium
no average normal force or tilt (a “quadrupole”). In bathand b the evie € classicalresuit for a semi- € elaslic mediu

inclusions are shown anchored to a second slab, which balances the norrrﬁlnc_I then introduce a fluid membrane to obtain the Hamil-
forces and torques, respectively. tonian for the combined system.
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Consider first a bare semi-infinite elastic medium con-but a rescaled elastic modulus given by
fined toz > 0. By bare we mean a medium that does not yet
support a membrane or any other structure. In what follows € = E (6)
we will model the deformation of this medium by linear 2(1- 0%
elastic theory (Landau and Lifshitz, 1981). This involves | ith el . herwise it i iah
assuming that the medium is uniform, i.e., homogenous angl By analogy with electrostatics or otherwise It Is straight-
isotropic, and that the applied deformation is sufficiently orward t_o show that the total elastic potential energy of
weak so that the response is linear. Thus, Hooke’s |avgleformat|on IS
(restoring force is proportional to deformation) is assumed
to hold when suitably generalized to a three dimensional U :1JJ dPr or ' F(r)f(r YG(r — 1) @)

. . el

(3-D) medium. In 3-D, a scalar extension, such as would 2
describe a spring, is no longer adequate and one must use

instead the strain tensor It will often prove convenient to rewrite this in Fourier
space defined by the transform
=5l ax * ax (1) dq
2 U = | G e (8a)

wheren; is theith component of the vector displacement of
a point in the material ang is itsith Cartesian coordinate. and its inverse
The appropriate version of Hooke’s law is a linear relation

between the stress tensey and the strain tensor u - f Prue ™ (8b)
=
_ E o
TiT 14 g\ T2 M) @ 1n this space, Eq. 4 becomes
whereE is Young’'s modulus and- Poisson’s ratio for the Ug = Gqfy 9

elastic medium. The use of the same symhg)l for both
Poisson’s ratio and the stress tensor is unfortunate byt _ lq| throughout. Writing Eq. 7 as a function of in
conventional. Confusion should not arise as Poisson’s rati?eciprocal space we obtain the energy of the deformed
is a scalar whereas the stress is a second-rank tensor, be@réstic medium
ing two additional indices.

At equilibrium, the internal stresses (forces) in every 1f &q

For such a semi-infinite elastic mediu@, = 1/(éq) with

volume element must balance exactly: U = > W%ququ_q (10)
a i . . .
% =0 (3) Equipped with this result we now turn to the problem of a
% thin fluid membrane anchored to the surface of a semi-

infinite elastic medium. An important simplifying feature of
the problem is that such a fluid membrane transmits only
normal stresses.

We consider first an isolated membrane with surface
tensiony and intrinsic bending rigiditik. The deformation
energy of the membrane is

Solving this equation for the deformatiorof the surface of
the semi-infinite medium in the-direction due to a normal
force f (per unit area) applied at this surface we find
(Landau and Lifshitz, 1981)

ur) = f d’r'(G(r — r")f(r") (4) Y
K

Unnemb = j dr {2 ViAw? + 5 (VU)Z]
wherer andr’ are vectors in the-y plane. The far-field (11)
deformation due to a normal force is well described by the 2
followi ’s function: _L| da * 2
ollowing Green'’s function: =5 W[Kq + Yo Juqu_q,

11 . . .
G(r) = %m (5) WwhereV, is the gradient operator in they plane.

The total energy of deformation of the membrane and the

Lo . . elastic substrate is mere =U, +U :
The similarity between this expression and the Coulomb Water = Ve memb

potential for point charges immediately invites an analogy 1( & wu
with electrostatics. Heréplays the role of charge andof Uger = = J 7q2 a9 (12)
the electrostatic potential. Howevét,is not a permittivity 2] @2m* G,
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with the Greens function in the presence of the membranary condition. Both choices turn out to give similar inter-
now given ing-space by action potentials when the inclusions are identical, with

1 merely a different numerical prefactor.

Ca= Zq+ ¥ + o
FIXED-FORCE BOUNDARY CONDITIONS
Of course, the membrane modifies the real space response

function G(r) too. This is now given by the inverse Fourier /" this section we consider two inclusions, separated,by
transform of Eq. 13. The Greens function Eq. 5 is recovere@*erting fixed localized normal forces on the membrane.
in the limit v, K — 0. Relationships of the form of Egs. 10, F'om EQ. 15 we have

11, and 12 are often encountered in statistical mechanics )

although here we are interested in deformations that are E= _f dq Gy(1 + ejqr)lpqlp_q, (16)

(13)

much larger than thermal fluctuations. Hence our identifi- (2m)?

cation of a potential energy rather than a free energy. o
which is made up of the sum of a constant term, correspond-

ing to a self energy per inclusion,
Effect of membrane inclusions

2

To understand the behavior of localized inclusions the field FO = 1 dg G (17)
. 2 (2 )2 qd’qd/fqa

f(r) can be thought of either as the force per area due to &

some distribution of inclusions or, alternatively, as a La-

grange field chosen to impose some unspecified boundagnd anr-dependent term giving the two-body interaction
condition on the distortion fieldi(r). These interpretations Potential per inclusion,

correspond to the two boundary conditions, fixed force and )
fixed deformation, considered below, although in both casea)(r) _ - dq G
we introduce the membrane-inclusion coupling into the 2 | (2m)> T Tt (18)

energy as follows

1
1 — _é f d2r/ j d2rHG(r —r' - r”)l!l(r,)lll(r")
F= > dZrd?r'u(r)u(r4(r —r’) — | d?ru(r)f(r),
(14)  Thus, the self energy is related to the interaction potential by

) ) o the following equivalence:
where4(r) is the Fourier transform of @,. Minimizing

this in g-space by completing the square we have F® = ¢(r — 0) (19)
1( dq For separations >=> b, whereb is a microscopic length of
F= —> J ﬁGqqu—q: (15) the order of the lateral size of an inclusion, the inclusions
(2m) can be thought of as point particles. (This gives the domi-

nant far-field term for finitey, (but see the Appendix for a

which gives the total energy as a function of the fildrhe . . . : . .
(positive) total energy of deformation can be shown to bedlscussmn of higher-order effects). Here we simply notice

g < < b? [ i imit.
Uger = —F with the minus sign indicating thdtis driving Waq = W fOr << b “and vanishes in the largglimit

. . - : The lengthb is equal to the lateral size of the inclusion up
the deformation. The relationshlye = —F is character- to a shape-dependent prefactor of order unity. In what

istic of elastic response; it holds for a Hookean SPINYto10ws we will furthermore assume thats larger than the

extended by a constant force. - :
. . .__characteristic cytoskeleton mesh sggHence,
For the purposes of calculating the two-body interaction y p

potential we will writef(r’) = y(r') + ¢(r — r') wherer is (r) = —¥242G(r) forr>>b (20)
the vector separating the two inclusions ap@’) is the

force density distribution for a single inclusion centered atSubstitutingx = qr, the real space Greens functi@fr) is
the origin. In the far-field limit we will see that the inter- given by

action potential between two inclusions, as well as the

deformation energy of a single one, will depend only on the

total force ¢, = [d’r'y(r'). In the fixed-deformation G(r) = 27ér f
boundary conditions, the field, and hences,, will further 0

depend implicitly orr. This is necessary to fix the magni- \yhereJ (x) is the Bessel function of the first kind of order
tude of the deformation for all separations. In the fixed-q y — /| "andx_ = r/l . with the two characteristic lengths
force boundary conditionsy, is taken to be a fixed con- gi’vgn by Y “ <

stant, with no implicitr-dependence. This is the essence of

the difference between these two natural choices of bound- l,=I€ and | = (k/€)¥® (22)

* Jo(X)dx
1+ Ya(x/x,) + Y2(xIx,)*

(21)
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A plot of the interaction potential Eqg. 20 is shown in Fig. 2. these strains are always smaller than unity far enough away
In the limit of large particle separations>> 1., |, the  from an inclusionr = I, where
interaction potential per particle becomes simply

p ls = o€ (25)
$(r) = _47r%r (23)  Beyond this length the elastic response of a single inclusion

is well known and corresponds to the Hertz model (Hertz,
For separations that are less thgnor I,, the potential 1881). However, the effect of the breakdown of linearity for

crosses over to r < lg is to fundamentally modify the elastic response, as
we will show below. In the present work we consider only

B s log(l,/r) if 1> |, andr << I, the contribution of the far fie‘I‘d to E)Oth the 'interactions and

4mél, self energy, neglecting any “core” corrections due to non-

¢(r) = I _ linear or other short-ranged interactions. Crudely speaking,
6,36, if 1, > 1, andr <1, we can think ofl, as being another short-length cutoff for

(24) our theory in what follows. Hence we can obtain an estimate
of the self energyF®, also equal to the change in energy
where we have assumed that the intrinsic size of the incluwhen a pair of inclusions is brought together from infinity,
sion is smaller than these new length scales; if not, then it i9y settingr = I, in Eq. 23 wherd,,, is the largest of the
rather,b that appears as the natural short length cutoff, e.glengthsb, Iy, |, or|,. From Egs. 22-25 we find
for Eq. 23. The logarithmic term appearing in Eq. 24 is

never large. (The apparent logarithmic singularity as 0 — Y& ! ?f b>=>1,, 11

will be the cutoff either by the appearance of higher-order FO eyt if1,>> 1, 1e, b (26)
terms in the Hamiltonian, which start to become important I S I | H P B P

on length scales < i/, or by the effect of the bending — e if e >>1,,1,,b,

rigidity at r = |, or by additional short-range forces,

ultimately including steric contact.) Note the similarity of Where the numerical prefactors depend on the precise way
Eq. 23 with the usual result for the electrostatic potentialn Which we cut off at short length scales. In general, these
(per inclusion) between two charges of magnitygeThis &€ dllffICL.J|t to estimate as they depend on the fuI_I nonlinear
result indicates that for large enough separations the defoffamiltonian and/or other short-range interactions. (The
mation of the bulk elastic medium dominates the interactionsPrefactor may be given precisely only in the third limit
The above arguments hold for inclusions that are suffi{l« = |, lz, b). In this case, it is 1/(§/§)- In both other

ciently far apart for linear elasticity theory to remain ade-limits, it depends at least logarithmically on the precise
quate. Specifically, we do not accurately take account ofutoff employed.) However, we will make a crude estimate
any strains in the elastic medium (or gradient at the surfacedf the magnitude of @ in the next section. At thermody-

will form aggregates if this energy is much larger than the

entropic contributiorksT|log c|, wherec is the area fraction

of inclusions on the membrane. Whether such aggregation
logiglo(r)|/kgT occurs in vivo will also depend on other factors, e.g.,
whether the time scale for aggregation is less than that of the
reorganization of the cytoskeleton, as discussed in the Dis-
cussion and Conclusions.

Single inclusion

Before discussing the interactions between inclusions we
will examine the effect of a single inclusion. The single-
inclusion distortion fieldu is entirely determined by Eq. 9
and Eq. 13 withf = . Thus, we are in a position to make
—0.st log;o /nm quantitative predictions for the deflection of the membrane
as a function of applied force. AFM measurements of the
FIGURE 2 The absolute value @b, the interaction potential between deflection of the surface of human platelets already exist
two inclusions, as a function of their separatioms calculated numerically  (Radmacher et al., 1996), and later in this section we will
from Eqs. 20 and 21. The parameters used gre 200 nm.l, = 30 nm,  compare our predictions with these data. As discussed be-
Yo = 20 .pN, and¥ = 1 kPa Wlthl? gssumeq negligible. The far-field low, the agreement is most encouraging.
asymptotic I/ behavior is clearly visible, as is the crossover aroupd ! . .
which is here the largest cutoff length. Using Eq. 28, the normal membrane 1€ maximal normal deformation of the membrane near
deflection is estimated to be16 nm. an isolated inclusion, writteru, is related to the force
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applied on it according to the mechanical equilibriuml,, I, most of it comes from the work done in bending the
condition membrane. 3) In systems whégeor b are largest the effect
of the membrane is negligible and most of the deformation
= U, (27)  energy is the work done in elastically deforming the medium.
A conservative estimate d&® for intrinsic membrane
inclusions might be obtained from Eq. 30 usiég= 1 kPa,
= 30 nm, andi = 10 nm. These values gi&® = 10”22
= 2.5kgT, which are thermodynamically significant.

9F®

au
The self energfF® is given by Eq. 23 with an appropriate
small-length-scale cutoff, as discussed above. Thus, Eg.
is a first-order differential equation relating the forggto

the displacemert. Using the approximate cutoff= I, in

Eq. 23, we obtain Comparison with experiment

2mébu ifb>1,,1l As mentioned above, there exist several AFM measure-

] 2myu if1,>> 11, b ,g) Ments of the surface of living cells. One of these studies

Yo =1 omelgzsy if Le>=>1, I, b (28) (Radmacher et al., 1996) represents perhaps the best data
(Aml3)?€w? if ly >>1,,1,,Db, available for our purposes. (See Fig. 6, p 560 in Radmacher

, , ) etal., 1996. When interpreting these data we use the average
which represents a relationship between the force and thgyce measured over several approaches and retractions at

membrane deflection. It should be emphasized that thg,, frequencies 0.2—20 Hz. These frequencies probably
numerical prefactors are estimates arising.from our treatfepresent time scales that are sufficiently short so that
ment and should be regarded as approximate. They aigtects associated with cytoskeleton reorganization may be
included merely to faC|I|tate.the comparison with experi- neglected, whereas at the same time being rather long com-
mental data presented later |n.th|s ;ec'uon. pared with the fluid relaxation times = nlgig/d/o ~ 100

The Iast.of the results contained in Eq. 28 may seem th(ﬁs') (See Fig. 3). In this experimental work an AFM tip is
most surprising. It says that the system no longer behaves ifessed into the surface of a human platelet. As usual, the
alinear Hookean way if; is the largest cutofflength. A$  f5rce is measured optically via the displacement of an
increases with the applied force according to Eq. 25gy¢remely soft cantilever supporting the tip. These authors
whereas the other lengths remain constant, this behaw%port that their cantilever has a spring constant 31
will dominate at high forces. Thus, we predict a CrossovemN/nm and a physical tip size of the orderkof= 50 nm.
from linear variation oﬁpo with U to one that is quad_ratic iN Their data show an approximately linear regime, with the
Uwhenly =1, wherel, is the largest ob, |, orl,. Thiscan  canilever deflectiord proportional to the vertical sample
be shown to occur for forces larger thég or, equivalently,  gisplacement, followed by a regime where the deflection
displacements larger than given by shows a sudden and marked deviation from linear response

|2 = toward behavior approximately quadratic in the displace-
Yo, =€l U=l (29)

The origin of this crossover is the breakdown of linear
elasticity theory in the vicinity of the inclusion for such

large forces. Our approximate treatment of this breakdowry, /nm
involves neglecting any distortion of this region beyond this
limit. This is probably reasonable provided higher-order
terms in the Hamiltonian give rise to a significant stiffening
of the material beyond this crossover and there is no me-
chanical failure of the material (cytoskeleton). A likely
lower estimate of the force might correspond to parameter 20f

40

30 ®

values ofé ~ 1 kPa and, ~ 100 nm givingys, = 10 pN. °
The energyF® as a function of deformation follows 10
trivially from Eq. 28: )
— ébR ifb>>1,1, ¢ 550 600 650 700
=, . h/nm
—ayu if 1,>>Db, I,
FO ={ —amkBE2R? if |, >> b, [y le (30) FIGURE 3 The AFM cantilever deflectiod plotted against the stage
(4)? o heighth reported in Radmacher et al., 1996. The stage héighidentified
3 e ifly>Db 1,1, with the membrane deflectialy and the displacementis proportional to

the force with a Hooke’s constaht = 31 pN/nm. The data points are

The physical interpretation of these results is as follows: 1)axtracted by eye from the continuous trace data and fitted to a general

. quadratic form (—). The curvatura of this fit allows a second estimate of
In systems Wherév = b, IK’ l‘f’o most of the deformation the elastic modulus in good agreement with that obtained from linear

energy comes from the quk done in stretching the meMsresponse, as discussed in the text. The quadratic form is a key prediction of
brane against surface tension. 2) In systems where- b, our model and fits the data well.
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ment. This is in qualitative agreement with the behavior After some algebra we find the interaction potential per

predicted by us. particle
We first estimate the elastic modulus of the material from W o
the slope of the linear portion of the force-versus-displace- 1 1o " Yo G(r)
ment curve. The force exerted by the arm must balance that 1 2\y2 " Y )G(0)
i 0 '(r) = =S¥ YdG(r) (32)
of the membrane Eq. 28 accordingkd = 2#¢€bu, where ¢ 2‘1’0 ¥s G(r))\2 '
we assumé > |, |, (Fork = 10kgT we find I, = 30 nm. - (G(O))

The surface tension has been reported to be in the range
107? to 10~ * pN/nm (Sheetz and Dai, 1996) giviig ~  where the prime reminds us that we have employed fixed-
10-100 nm.) Solving fo% with T = 500 nm,b = 50 nm,  deformation boundary conditions. Comparison of Eq. 32
d = 7nm, anck = 31 pN/nm we findé = 1.4 kPa, in good with Eq. 20 confirms that the product of the two forces
agreement with the experimentally reported values of 1.5—4hanges withr by the factor in Eg. 32 in square brackets,
kPa. This agreement is not surprising as the physics of théhereby keeping the magnitude of the deformation near both
linear regime has long been well understood. However, ithe inclusions constant.
does verify that the approximate numerical prefactor in Eq. In the far-field limit, the ratiaG(r)/G(0) — I,,,/r — 0 and
28 is a rather good estimate. The force-versus-displacemeg. 32 coincides with Eq. 23 up to correctio@ly/r).
curve crosses over from linear to approximately quadratic aThis tells us that the interactions in the far-field limit are
U ~ 500 nm. Our estimate from Eq. 29 is that this shouldinsensitive to the choice of boundary condition.
occur whertl = b, which indicates that the response should However, fory$? # ¢ the interaction potentiad’(r)
already be significantly nonlinear at these strains. Althoughexhibits a minimum for finite particle separatiop;,,. This
our estimate is a little low, it is roughly of the right order of separation is significantly larger thig, only wheny$ >
magnitude and is encouraging given the crude nature of oup® (wherey > {2 without loss of generality) in which
estimate. Perhaps more encouraging still is the existence dimit it approaches
the crossover and its approximately quadratic form.

Finally, we can make a second estimateéfafy extract- Fmin = Ioighh /457 (33)

ing thecurvatureof the force-versus-displacement curve atThe interaction potential is locally quadratic about this

high forces (see Fig. 3). Above the crossover, the data are; : : - :
th rest f nit lateral displacement
well fitted by the expressiod — 6 nm = m(U — 460 nm¥, inimum with resforing force per uni 'SP

yielding a curvature constam = 7.5 x 10 % nm™%. Thus, given by
for large displacements the force balance becomes 9%’ $22G(0)
7 = 34)
r2 @) 2 (
kd = kmi = (4m/3)*éu* > ¢ = 1.3kPa,  (31) i 2Ibig2[(i?2>> - 1}

which is in excellent quantitative agreement with the esti-5q binding energy
mate obtained from linear response. This, together with the
nearly quadratic form above the crossover, represents the &' (Fmin) = —Yap2?G(0) (35)

best evidence in support of our model. S ] .
The self energy in this case is of no physical relevance. The

result of Eq. 35 differs from the results of the preceding
section only by a numerical prefactor .
FIXED-DEFORMATION BOUNDARY CONDITIONS In summary, we have found that there is only a small
In the preceding Section, we considered On|y one type oﬂiﬁ:erence between the two choices of bOUndary condition
coupling between the inclusions and the membrane, i.e., th&@r similar inclusions but that stable minima may appear in
of a normal force of fixed magnitude_ This is mere|y one Ofthe tWO'bOdy interaction pOtential for different inclusions
many possible choices. In some physical systems it may bénder fixed-deformation boundary conditions.
more appropriate to fix the normal deformation near each
mclusmn as a boundary condition, i.e., require !t to remaing o ~SSION AND CONCLUSIONS
fixed even as they are brought together. To impose this
boundary condition we should instead allow the force ex-Our model is formulated in the limit of a uniform, infinite
erted by the inclusions to vary with the inclusion separatiorelastic medium. However, biological systems are notori-
r in such a way as to correctly fix the deformation for all ously complex. For finite and/or heterogeneous media, our
values ofr. In this section, the case where the two inclusionsresults are accurate only over length scales smaller than the
are different, i.e., they exert different forceé§” and 2  size of the domain in whic# is roughly constant. However,
when separated to infinity, will prove to be nontrivial. (For it is plausible that the domain size of the cytoskeleton may
the case of fixed-force boundary conditions, it is merely thereach the scale of the cell. If the membrane were to reside
product of the forceg( 2, which enters as a prefactor to on a uniform elastic slab of finite thickne&k our results
the interaction potential Eq. 20.) would remain valid for separations << D. In the other
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extreme, our theory will be appropriate for inclusion-in- Introduction, we may employ a multipole expansion, analogous to that of
duced deformation on a lateral scale larger than some chaglassical electrostatic theory, to model more complex force distributions. A
acteristic mesh size for the Cytoskeleton, which may béhorough description of this technique exists in the context of inclusions in
— . . a multi-layered lamellar phase (Turner and Sens, 1998). In the current
=0.1 pm. Qn length scales smaller than this, our continuum,,qc charge is analogous t, = J y(r')dr’, dipole moment tg = f r’
approximation for the medium will start to break down. y(r')dr’, quadrupole moment ta; = f rir/y(r)d’’, etc.

Thus, there exists a regime of applicability of perhaps two Each of the moments af has a physical interpretation as follows. The
orders of magnitude or more. charge is merely the total force exerted on the membuanelhus, for

We might hope to include some dynamic effects byir?clusions with a finite charge, the dis.tributio_n of_this charge enters as a
. . . . igher-order correction only for inclusions with sizes much smaller than
treating the medium as viscoelastic. Although some WorKheir separation. Inclusions with a finite dipole moment induce a tilt in the
exists for surface waves on a viscoelastic medium (Pleinemembrane. This may be visualized by viewing a dipole as a point-upward
et al., 1988; Harden et al., 1991; Safran and Klein, 1993)and a point-downward force separated by some small distance. A pure
our results are probably sensitive to the nature of the bullipole has no finite normal force (displacement). Finally, the quadrupole

network, and a full dynamic theory is, in any case, Outside;noment acts to mduce cur\{aturgs m_the membrane bgt has no finite normal
orce or torque (tilt). Inclusions in this class have an interaction potential

the scope of the present work. However, we can say that Wat varies like 1P, as argued below, but need not have a binding energy
do expect our results to be appropriate for systems in whiclhat is qualitatively different from those that exert finite normal forces (or
stress relaxes sufficiently slowly. Encouragingly, recent ex+orques). Such curvature-inducing inclusions have been studied in the
perimental work on the scale of a cell (Thoumine and Ot context of fluid membrane systems (Goulian et al., 1993). Although this
earlier work also predicts power-law interactions, it differs fundamentally

1997) determined a characteristic time of the order of 40 Sfrom the present work in that 1) there is no bulk elastic medium through

For times much less than this, the cell appears to bEhaV\ﬁnich interactions may be mediated and 2) it also includes a treatment of
elastically. This time may be two orders of magnitudesiuctuations, appropriate for very soft systems, whereas we do not.
larger than, e.g., the characteristic time for a typical mem- The interaction potential between higher-order poles is easily obtained
brane protein to diffuse over the scale of a cell. by analogy with electrostatics directly from Eq. 18. As the two inclusions

; ; : -need not be identical, the first and second inclusions and their moments are
. We have presentgd evidence that linear elastic theory !%beled 1 and 2, respectively. Thus, the interaction potential between two
inadequate to describe the response of a cell to forces IBbint charge inclusions separatedbis ¢(r) = —¥ayPy@ G(r) ~ Lr;
excess of some critical value. For the data set discussed Hetween two point dipole inclusions, itigr) = ¥2pPpV,V,G(r) ~ 1/r3;
the text, this force was of the order of 200 pN but may beand between two point quadrupoles, itfi§) = —¥%2EV,V,V,V,G(r) ~
as small as 10 pN for other systems. Above this Crossove}«lrs. Extensions to higher-order and mixed moments, e.g., dipole-quadru-

: . . . pole interactions, are straightforward. Thus, we are able to treat quite
we 1) predlct that the force varies quadratlcally with the neral inclusions by calculating the moments of the figldAs we can

. ; e
dlspllac.ement and 2) are able to make a Second_mdependéﬂkays invertu to find ¢» we might proceed as follows. From experimental
prediction ofé from the curvature of the quadratic form in evidence for the distortion field around an isolated inclusion, estimate
this regime. For the data set examined, a quadratic responsem this, extractys and calculate its moments to obtain the far-field
does seem to be closely followed, and both estimates of thigteraction potential and higher-order corrections to any order.
elastic modulus agree remarkably well. Together these ob-
servations represent the best evidence that our model cof; FERENCES
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