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The mean-squared end-to-end distance for a Worm-Like Chain with Bends

Consider a polymer chain of n segments of length a. This chain contains an arbitrary number
of identical pieces of p segments each. Each of the pieces is a freely rotating polymer chain
(FRC)(Flory, 1969; Yamakawa, 1971). These pieces are joined by the angle φ, while all other
joint angles within the piece are equal to θ, and all the dihedral angles set unrestricted. The
mean squared end-to-end distance of the overall chain is given by,

〈R2〉 =
n∑

i=1

n∑
j=1

〈ri · rj〉

=
n∑

i=1

〈r2
i 〉+ 2

n−1∑
i=1

n∑
j>i

〈ri · rj〉 (1)

The first sum in Eq. 1 is simply the sum over a2. The second sum is more involved.
The factor of 2 ensures that we account for all terms in the first part of Eq. 1. Consider
the case of i = 1, as we look at one piece from segments j = 2, . . . , p.

p∑
j=2

〈r1 · rj〉 =
p∑

j=2

αj−1

Summing over the next piece should include the fixed angle φ in place of a θ. Let
β = − cos φ, then for the next piece (j = p + 1, . . . , 2p) we have:

2p∑
j=p+2

β

α
αj−1 = αp β

α

p∑
j=2

αj−1

Likewise, the sum over the third piece of the chain must include two factors of β and
remove two factors of α,

3p∑
j=2p+2

β2

α2
αj−1 = α2p

(
β

α

)2 p∑
j=2

αj−1
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Symbol Definition
R End-to-end vector
ri i th Segment vector in the FRC
a Segment length in the FRC
n Total number of segments in the FRC
p Number of segments per piece in the FRC (n

p = number of pieces per chain)
θ Segment bond angle in the FRC
φ Bend angle
A Persistence length
L Contour length
P Number of bends of angle φ in the bWLC
T Length between adjacent bends in the bWLC
〈β〉 Average excluded volume between two Kuhn segments
βs Excluded volume between unperturbed DNA Kuhn segments
βl Excluded volume between Kuhn segments of looped DNA (treated as cylinders)
no Number of effective Kuhn segments per molecule
ns Number of Kuhn segments in an unperturbed DNA molecule
nl Number of Kuhn segments for DNA converted completely to solenoidal loops

Table 1: Definition of Parameters

We can then see that the (m + 1)th piece contribution is given by,

αmp

(
β

α

)m p∑
j=2

αj−1

A chain of n segments divided into n
p pieces contains n

p − 1 bends. The entire sum of
segment projections of j > i for i = 1 is therefore given by,

n∑
j=2

〈r1 · rj〉 = a2

n
p−1∑
m=0

αmp

(
β

α

)m p∑
j=2

αj−1 (2)

Notice in Eq. 2 that the starting index in the sum over j is j = 2. Therefore we lose
the projection of segment rp+1 on to r1 for each piece in the chain (i.e. the first segment
of each piece is not included in the sum over j). Likewise, when i = 2 we lose the first and
second segments of each piece. We will account for these lost projections later. Let Eq. 2,
inserted into the second term of Eq. 1, be called A (not to be confused with the persistence
length A). If we multiply every segment in the first piece with the rest of the n

p − 1 pieces
(and still neglect the lost terms) we obtain:

A0 =

n
p−1∑
m=0

αmp

(
β

α

)m p−1∑
i=1

p∑
j>i

αj−1

The second piece is identical to the first except we now need only sum over n
p −2 pieces,

A1 =

n
p−2∑
m=0

αmp

(
β

α

)m p−1∑
i=1

p∑
j>i

αj−1
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and so on up until we reach the last piece in which it simply sums over itself and we
only need m = 0. Therefore we write the entire sum as,

A =

n
p−1∑
s=0

As =

n
p−1∑
s=0

n
p−1−s∑
m=0

αmp

(
β

α

)m p−1∑
i=1

p∑
j>i

αj−i (3)

Eq. 3 is just a combination of geometric series that can be easily solved. The result is
given by,

A =

[
n
p −

(
n
p + 1

)
Q + Q

n
p +1

(1−Q)2

][
pα

1− α
− α− αn+1

(1− α)2

]
(4)

where Q = αp−1β. Now we need to account for the lost terms in the sum of Eq. 3. As
mentioned before, the construction of A periodically skips over segments as it sums over i.
If we inspect Eq. 3, we can see that:

for i = we miss j =
1 mp + 1
2 mp + 1, mp + 2
...

...
p− 1 mp + 1, mp + 2, . . . , mp + p− 1

where m = 1, 2, . . . , n
p − 1. We therefore construct the following sum which contains the

above terms,

B =

n
p−2∑
s=0

n
p−1−s∑
m=1

αmp

(
β

α

)m p−1∑
i=1

i∑
j=1

αj−i (5)

The solution can again be simplified into geometric series, giving:

B =

[
(n

p − 1)Q− n
p Q2 + Q2 n

p

(1−Q)2

][
− α2

(1− α)2
(1− α−p)− p

α

1− α

]
(6)

A third and final term is needed to make up for another missed product in the sum in
Eq. 3, which accounts for the dot product of the pth segment of each piece with all higher
number segments. This sum is simply given by,

C =

n
p−2∑
s=0

n
p−2−s∑
m=0

αmp βm+1

αm

p∑
j=1

αj−1 (7)
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Figure 1: A. Diagram of a freely rotating chain (FRC) showing vector segments and bond
angle assignments. B. Schematic representation of the relationship between the b-WLC
model and the FRC model. We start with a FRC model that contains abnormal bend
angles at regular intervals. The final b-WLC model retains the discontinuous bends of angle
φ, yet the polymer chain is smooth everywhere else.

If we solve it similarly to A and B, we obtain:

C =

[
Q

n
p β −Qβ + (n

p − 1)β

(1−Q)2

][
1− αp

1− α

]
(8)

The terms A, B, and C constitute the double sum in Eq. 1. Therefore, we obtain:

〈R2〉 = na2 + 2a2
[
A + B + C

]
(9)

At this point, Eq. 9 describes a freely rotating chain with a number of abnormal bends
at an angle φ that are positioned equidistant from one another along the chain. We call
these bends abnormal because they are different from the normal bends θ found throughout
in the regular FRC. (Yamakawa (1971) gives a general formulation for a FRC with periodic
structure. Although we did not use this approach in our derviation of Eq. 9, we found
that our approach gives an identical expression for 〈R2〉 to Yamakawa’s result in the freely-
rotating coil limit.)

Finally, we take the limit to the WLC by the well known procedure employed by Kratky
and Porod(Kratky & Porod, 1949; Flory, 1969) to generate a semi-stiff continuous contour
chain between the bends (Figure 1). The following constraints are held constant in the limit,

lim
a→0, α→1

a

1− α
≡ A, (10)

lim
a→0, n→∞

na ≡ L

where A is the persistence length derived from the normal FRC and L is the contour length.
For the present model we must add another constraint for the length of each piece in the
chain, that is:

lim
a→0, p→∞

pa ≡ T
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where T is the length between adjacent bends. Making the estimation that as α → 1 then
− lnα ≈ 1− α and solving Eq. 10 for α we get:

α = e−a/A (11)

Now, using the constraints of Eq. 10 and Eq. 11 we can simplify each term in Eq. 9.

2a2A =

[
L
T − (L

T + 1)e−T/Aβ +
(
e−T/Aβ

) L
T +1(

1− e−T/Aβ
)2

][
2TA− 2A2

(
1− e−T/A

)]

2a2B =

[
(L

T − 1)e−T/Aβ − L
T

(
e−T/Aβ

)2 +
(
e−T/Aβ

)2 L
T(

1− e−T/Aβ
)2

][
− 2TA− 2A2

(
1− eT/A

)]
2a2C = 2aA

[
e−

L
A β2 − e−T/Aβ2 + (L

T − 1)β(
1− e−T/Aβ

)2

](
1− e−T/A

)
a→0= 0

The first term in Eq. 9 vanishes since na2 = La = 0. The complete function for the
ned-to-end distance 〈R2〉bWLC is given by,

〈R2〉bWLC =

[
L
T −( L

T +1)e−T/Aβ+
(
e−T/Aβ

) L
T

+1(
1−e−T/Aβ

)2

][
2TA− 2A2

(
1− e−T/A

)]
+

[
( L

T −1)e−T/Aβ−L
T

(
e−T/Aβ

)2
+
(
e−T/Aβ

)2 L
T(

1−e−T/Aβ
)2

][
− 2TA− 2A2

(
1− eT/A

)]

where T is the chain length between bends. We can finally derive a more useful form of this
function if we notice that the number of bends P , is given by P = L

T − 1. We then obtain:

〈
R2

〉
bWLC

=

[
1 + P − (P + 2)Γ + ΓP+2

(1− Γ)2

] [
2AL

P + 1
− 2A2

(
1− e−

L
A(P+1)

)]

−

[
PΓ− (P + 1)Γ + Γ2(P+1)

(1− Γ)2

] [
2AL

P + 1
+ 2A2

(
1− e

L
A(P+1)

)]
(12)

where Γ = − cos φe−
L

A(P+1)

This is the form given in Eq. 1 in the main manuscript, which gives 〈R2〉bWLC as a
function of the number of bends.

Excluded Volume

Compaction enhances the interactions between DNA segments. We need to relate the pa-
rameters in the first order perturbation model, given by Eq. 3 in the main manuscript,
to the number of bends. As bends are induced in the chain, some regions are perturbed
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more so than others. Only at high coverage of the DNA will the entire chain have uniform
interaction parameters describing its state. Therefore for intermediate numbers of bends we
will approximate the situation with average parameters linearly related to the number of
bends. We now define an average binary cluster integral,

〈β〉 =
Pβl + (Pmax − P )βs

Pmax
(13)

where βs and βl represent the unperturbed segment and the superhelical loop cluster inte-
grals respectively. As these superhelical loops form, the effective contour length of the chain
is reduced. We therefore write the number of segments as a function of increasing bends in
the following way:

no =
nl − ns

Pmax
P + ns (14)

where ns and nl are the number of segments in the free chain and completely covered chain
respectively.

Assuming ABF2p binds as a monomer, Diffley and Stillman show the DNA foot-
print to be approximately 30 bp (Diffley & Stillman, 1991). Therefore, assuming a 30
bp×0.34 nm/bp = 10 nm arc segment we estimate the radius of one superhelical loop as
r = 10nm/(102◦π/180◦) and therefore the diameter of the superhelical Kuhn segments is
given by Dl = 2r = 11.2 nm. AFM measurements yield an estimate to the superhelical
pitch of 15 nm. Using three ABF2 molecules per loop (3× 102◦ = 306◦ ∼ 360◦) and using
pBR322 DNA with 145 binding sites/3 = 48 loops, we have a final effective contour length
of nl = 48× 15 nm = 725 nm when completely covered in protein. With these calculations
we find the following parameters for ABF2p binding to linearized pBR322,

βs =
π(100 nm)22 nm

2
= 31.3× 103 nm3

βl =
π(100 nm)211.2 nm

2
= 175.9× 103 nm3

ns = 4361 bp
0.34 nm/bp

100 nm
= 14.8

nl = 48 loops
15 nm/loop

100 nm
= 7.25

Finally, the expression for the mean-squared end-to-end distance with excluded volume
correction is then given by:

〈R2〉 = 〈R2〉bWLC

(
1 +

4
3
z

)
z =

(
3

2π〈R2〉bWLC

)3/2

〈β〉n2
o
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