Supplementary Material

Table 1 Mean values of the Cremer–Pople puckering parameters for each pyranose ring at the reducing and non-reducing ends of each disaccharide (CH, C4S, C6S, and HA). The mean value of the third puckering parameter, ϕ_{CP} , is not included because it was uniformly distributed in each case. $\theta_{CP} = 0^{\circ}$ indicates a ⁴C₁ chair conformation (Cremer and Pople, 1975) and the absence of error estimates indicates that the estimated error was less than the smallest significant figure shown.

		At Reducin	g Terminus	At Non-reducing Terminus		
		$\left< \mathcal{Q}_{\scriptscriptstyle CP} \right>$ (Å)	$\left\langle heta_{{\it CP}} ight angle$ (°)	$\left< \mathcal{Q}_{\scriptscriptstyle CP} \right>$ (Å)	$\left\langle heta_{{\it CP}} ight angle$ (°)	
СН	GlcUA	0.58	8.6 ± 0.3	0.57	8.8 ± 0.2	
	GalNAc	0.57	8.7 ± 0.4	0.58	8.2 ± 0.4	
C4S	GlcUA	0.58	8.6 ± 0.2	0.57	8.8 ± 0.3	
	GalNac4S	0.58	8.1 ± 0.6	0.58	8.0 ± 0.2	
C6S	GlcUA	0.58	8.6 ± 0.4	0.57	8.7 ± 0.3	
	GalNac6S	0.57	9.1 ± 0.5	0.58	8.2 ± 0.5	
НА	GlcUA	0.58	8.7 ± 0.4	0.57	8.6 ± 0.3	
	GlcNAc	0.58	8.4 ± 0.3	0.57	8.7 ± 0.3	

Table 2 Coarse-grained model bond lengths, *b*, valence angles, θ , and torsion angles, *v*. A prime denotes that the atom belongs to the reducing sugar terminus. ϕ and ψ denote the glycosidic torsion angles, the only flexible internal degrees of freedom present in the model. V_Q denotes the center of charge site used to model electrostatic interactions between charged monosaccharide units and V_G denotes the center of geometry (repulsive Lennard-Jones site) used to model steric interactions between non-adjacent

Internal Coordinate	GlcUA	GlcNAc	GalNAc	GalNAc4S	GalNAc6S
(A or degrees)	J = 4, I = 3	J = 3, I = 4			
<i>b</i> (O1'–CJ')	1.42	1.42	1.42	1.42	1.42
<i>b</i> (CJ'–C1')	2.89	2.52	2.52	2.52	2.53
<i>b</i> (C1'–O1')	1.41	1.41	1.41	1.41	1.41
$b(C1'-V_G')$	1.69	1.51	1.37	1.72	1.48
$b(C1'-V_Q')$	3.31	na	na	5.78	5.90
θ(C1–O1–CJ')	117.5	117.7	117.6	117.2	117.7
θ(O1–CJ'–C1')	147.8	144.0	145.1	144.4	145.0
θ(CJ'C1'O1')	148.4	144.6	144.4	144.4	144.2
θ (CJ'–C1'–V _G ')	6.1	7.2	10.0	19.4	26.3
θ (CJ'–C1'–V _Q ')	42.8	na	na	53.0	86.3
φ(CI–C1–O1–CJ')	-173.2	-110.9	-111.1	-112.2	-111.8
ψ(C1–O1–CJ'–C1')	-179.6	-123.2	-142.6	-137.0	-145.9
v (01–CJ'–C1'–O1')	171.4	2.0	-1.7	-0.9	-1.6
ν (O1–CJ–C1–V _G)	-76.7	-84.9	-31.8	-74.7	-113.4
v (O1–CJ'–C1'–V $_Q$ ')	93.5	na	na	-73.9	-116.4

monosaccharides.

Glycosidic Linkage PMFs

The glycosidic linkage PMFs, $F_{kl}^{B}(\phi, \psi)$, computed from the all-atom disaccharide simulations are provided in tabulated form. The PMFs correspond to the virtual bond definition of the glycosidic linkage torsion angles (see **Topology** section and Table 2). In discretized form, the PMFs are given by, $F_{kl}^{B}(\phi_{i}, \psi_{j})$, where

 $\phi_i = -180 + \frac{\Delta\phi}{2} + i\Delta\phi$, $\psi_j = -180 + \frac{\Delta\psi}{2} + j\Delta\psi$, and using angle increments of $\Delta\phi = \Delta\psi = 10$ degrees, (*i* and *j* = 0, 1, ..., 35). Rows and columns in the files correspond to the ϕ and ψ degrees of freedom, respectively.

PMF filenames:

$F^{\scriptscriptstyle B}_{kl}(\pmb{\phi},\pmb{\psi})$	Glycosidic Linkage Type	Filename
$F^{B}_{AB}(\phi,\psi)$	CH <i>β</i> 1,3	pmf_ch_b13.txt
$F^{B}_{BA}(\phi,\psi)$	CH <i>β</i> 1,4	pmf_ch_b14.txt
$F^{\scriptscriptstyle B}_{\scriptscriptstyle AC}(\phi,\psi)$	C4S <i>β</i> 1,3	pmf_c4s_b13.txt
$F^{B}_{CA}(\phi,\psi)$	C4S β1,4	pmf_c4s_b14.txt
$F^{\scriptscriptstyle B}_{\scriptscriptstyle AD}(\phi,\psi)$	C6S <i>β</i> 1,3	pmf_c6s_b13.txt
$F^{\scriptscriptstyle B}_{\scriptscriptstyle DA}(\phi,\psi)$	C6S β1,4	pmf_c6s_b14.txt
$F^{B}_{AE}(\phi,\psi)$	ΗΑ β1,3	pmf_ha_b13.txt
$F_{EA}^{B}(\phi,\psi)$	HA β 1,4	pmf_ha_b14.txt