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A time-series method is presented, nontechnically, for analysis of data generated in indi-
vidual-subject operant studies, and is recommended as a supplement to visual analysis of
behavior change in reversal or multiple-baseline experiments. The method can be used
to identify three kinds of statistically significant behavior change: (a) changes in score
levels from one experimental phase to another, (b) reliable upward or downward trends
in scores, and (c) changes in trends between phases. The detection of, and reliance on,
serial dependency (autocorrelation among temporally adjacent scores) in individual-
subject behavioral scores is emphasized. Examples of published data from the operant
literature are used to illustrate the time-series method.
DESCRIPTORS: ANOVA, experimental design, methodology, multiple baseline,
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Reversal and multiple-baseline designs are the
methodological kingpins in the functional anal-
ysis of behavior. These designs use a baseline
period to assess the typical performance of a
subject's target behavior, followed by an ex-
perimental manipulation intended to alter the
level of the target behavior. In reversal designs,
the intervention phase is followed by another
baseline period to demonstrate the efficacy of the
experimenter's control over the target behavior.
In multiple-baseline designs, the intervention is
implemented at different times to gauge its im-
pact on each separate behavior or subject.

Behavioral scores are plotted on a time line
running through the baseline and intervention
phases, and the return-to-baseline phase in a re-
versal study. The temporal order of the behav-
ioral scores is an intrinsic and unalterable char-
acteristic of such time series, as is the temporal
arrangement of the baseline, intervention, and
return-to-baseline phases (Risley and Wolf,
1972).
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25631-01 from the National Institute of Mental
Health, U.S. Public Health Service. Reprints may be
obtained from R. R. Jones, P.O. Box 3196, Eugene,
Oregon 97403.

The behavioral scores used in these two de-
signs constitute an interrupted time series
(Campbell and Stanley, 1970). The subjects'
scores are displayed over time, with interruptions
in the time series designated as the change points
from one to another phase of the design. In the
typical reversal design, interruptions occur at
the transition between baseline and intervention
phases, and again between the intervention and
return-to-baseline phases. The main problem for
analysis of such interrupted time-series data is to
determine whether or not changes in the be-
havioral scores following the interruptions war-
rant the conclusion that experimental control
over behavior has been obtained.

Different methods can be used to assess the ef-
fects of interruptions on behavioral scores in
reversal or multiple-baseline studies. Operant re-
searchers have typically relied on visual inspec-
tion of their data when drawing conclusions
about the efficacy of their experimental interven-
tions. Recently, although controversially, con-
ventional analysis-of-variance models have been
suggested for statistically comparing mean scores
from each of the several phases in reversal de-
signs (Gentile, Roden, and Klein, 1972; Hart-
mann, 1974; Thoresen and Elashoff, 1974).
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The purpose of this paper is to recommend
the use of a third procedure, time-series analysis,
as a supplement to visual analysis in operant
studies (e.g., Schnelle and Lee, 1974). Time-se-
ries analysis has been developed for use in other
disciplines (e.g., econometrics and meteorology),
and seems to have potential for the analysis of
the effects of intervention in individual-subject,
interrupted time-series designs. In what follows,
arguments favoring time-series analysis are out-
lined, and the method is applied illustratively
to data published in the operant literature. Be-
fore discussing the time-series method, the gen-
eral matter of drawing inferences from data,
whether in operant or other studies, should be
addressed.

On Making Inferences from
Nonindependent Scores

Analysis of reversal or multiple-baseline ex-
periments in applied operant research is aimed
at drawing conclusions about behavior change
due to an intervention. Conclusions are based
on human judgments or inferences about the
impact of an intervention on some target be-
havior. Although they require human judgment,
these inferences about behavior change are not
based on subjective, personal criteria. Rather,
inferences are made using criteria that are
known to, or can be communicated to, other
operant researchers. Examples of some criteria
used in making inferences about behavioral
change include the stability of baseline behav-
ioral scores, the variability of behavioral scores
within and across phases of an experiment, and
the amount of overlap between scores from ad-
jacent phases, e.g., baseline and intervention
phases of an experiment. Coupled with these
criteria is the requirement that there are enough
scores in each phase of an experiment to justify
the inferences or conclusions drawn by the re-
searcher. For example, most operant researchers
would not be convinced by a study with only
one score in each of three or more phases of the
experiment. The number of scores per phase
required to support inferences about behavioral

change depends largely on the other criteria, viz.,
the stability, variability, and between-phase over-
lap of the observed scores.

These criteria, which form the basis for mak-
ing inferences about change in operant studies,
are statistical in nature-.e., stability, variabil-
ity, overlap, and numbers of scores are statistical
concepts. Hence, it is clear that inferences or
conclusions drawn by operant researchers from
reversal or multiple-baseline studies require con-
sideration of statistical properties of the experi-
mental data. It is irrelevant here whether the
operant researcher actually calculates statistical
indices (e.g., score variances) or visually ap-
praises the statistical properties of behavioral
scores. The point is that statistical properties of
behavioral data form the basis for the operant
researcher's inferences and conclusions about the
impact of interventions in reversal or multiple-
baseline experiments. Although it is not in the
tradition of operant methodology to calculate
statistical indices, or to conduct statistical infer-
ence tests, applied behavior analysts are skilled
in visual appraisal of the statistical properties of
behavioral data and in drawing inferences or
conclusions about behavioral change from such
appraisals.

In addition to the stability, variability, over-
lap, and number-of-scores properties of behav-
ioral data in operant experiments, there is an-
other statistical property of behavioral scores
that heretofore has not been recognized as an im-
portant influence on inferences about behavioral
change in reversal and multiple-baseline experi-
ments. This property is serial dependency. It has
been identified as the major reason why certain
recently suggested statistical analyses of individ-
ual subject data are not appropriate (Hartmann,
1974; Thoresen and Elashoff, 1974). Operant
researchers who have tended to eschew inferen-
tial statistical procedures may have been relieved
to learn that serial dependency precludes the un-
critical use of certain conventional statistical
methods (e.g., analyses of variance to compare
means from two or more phases of an operant
experiment). Unfortunately, serial dependency
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not only biases the results of conventional in-
ferential statistical procedures, but it also inter-
feres with inferences about changes in behavior
derived from the customary visual appraisal of
statistical properties of operant data.

What is serial dependency and why does it
interfere with visual inferences about behavioral
change? Serial dependency is a common prop-
erty of behavioral scores, such as repeated ob-
servations of a single subject. For example, if in
a classroom study the proportion of time spent
on-task is obtained each day for two weeks for a
pupil, it is likely that the 10 temporally ordered
scores in this series will not be independent of
one another. That is, the score for Day 1 will
be related to the score for Day 2, which in turn
will be related to the score for Day 3, etc. When
this occurs, the sequence of scores for the sub-
ject is said to be serially dependent. The term
"tserial" refers to the fact that the temporal order
of the scores is an inherent and inviolable prop-
erty of the scores, and the term "dependent" re-
fers to the relationship between scores in the
temporally ordered series.

Serial dependency in temporally ordered be-
havioral scores for a single subject (or for the
mean score from a sample of subjects) is a sta-
tistical property of reversal or multiple-base-
line data that is not as well known or understood
as are other statistical properties, such as stabil-
ity, variability, overlap among scores, or num-
bers of scores. Researchers are able to appraise
these latter and better-known statistical proper-
ties by, for example, visually estimating trends
(stability), determining the range of scores (vari-
ability), counting the number of scores in one
phase of an experiment that fall within the
range of scores from an adjacent phase (over-
lap), and counting the number of scores within a
phase (number). In contrast, serial dependency
in behavioral scores cannot be so handily ap-
praised as these other statistical properties. But
the importance of serial dependency in behav-
ioral scores demands that operant researchers
become familiar with it, and with a fairly simple
procedure for appraising the extent of serial de-

pendency in any given series of behavioral scores
obtained in a reversal or multiple-baseline ex-
periment.

Serial dependency is appraised by calculating
a statistic called an autocorrelation coefficient.
Existing computer programs' routinely calculate
autocorrelations as one stage in the time-series
analysis of behavioral scores, so the computa-
tional details will be excluded from this dis-
cussion. Instead, a conceptual description of
autocorrelation is provided, and readers who are
familiar with conventional correlation methods
will readily see the similarity with autocorrela-
tions.
An autocorrelation indicates the extent to

which scores at one time point in a series are
predictive of scores at another time point in the
series. To obtain an autocorrelation, pairs of
scores from the series are formed as follows. The
score from time point 1 is paired with the score
from time point 2, the score from time point 2
is paired with the score from time point 3, etc.
When the pairs are formed with scores from
adjacent time points, the resultant coefficient is
called a lag 1 autocorrelation, since there is one
time-point lag or difference between the two
scores in each pair. Larger lags can be formed
by pairing, for example, score 1 with score 3,
score 2 with score 4, etc., to obtain a lag 2 auto-
correlation. The autocorrelation coefficient is in-
terpreted exactly like the conventional corre-
lation, except that the degrees of freedom for
determining the significance of the coefficient are
reduced by the number of lags. For example, in
conventional correlation analysis, the df are
N - 2, while for autocorrelation, they are
N - 2 minus the number of lags (where N is
the number of pairs of scores over which the
correlation is obtained, and lags is the number of
time points between the scores in each pair).

If the lag 1 autocorrelation for a series of

2Existing computer programs may be obtained by
contacting their authors, e.g., the Time Series Pro-
grams, TMS and CORREL, Bower, Padia, and Glass
are available from Laboratory of Educational Research,
University of Colorado, or from the first author.
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behavioral scores from an operant experiment
is statistically significant (say at the usual 0.05
level of confidence), then it can be said that the
scores are serially dependent. Often, when the
lag 1 autocorrelation is significant, the coeffi-
cients for larger lags will be also, but usually the
size of the correlations decreases as the lags in-
crease. This means that the within-subject pre-
dictiveness of the scores lessens as the time be-
tween scores lengthens, which makes good intui-
tive sense.

Serial dependency, as measured by autocor-
relations, is quite common in behavioral scores
for individual subjects. In fact, it could be
argued that serial dependency should always be
found in repeated measurements for individual
subjects, unless, of course, the time intervals be-
tween scores are so large or so irregular as to
preclude any reasonable expectations of predicta-
bility from one time point to later ones. The rea-
son that one should expect serial dependency is
simply that people and their environments do
not behave or function randomly over time. If
they did, then one could argue that the entire
psychological enterprise (i.e., the prediction and
control of behavior) has been tilting at wind-
mills for many decades.

Empirically, however, what about the likeli-
hood of finding serial dependency in behavioral
data from typical operant experiments? For the
present paper, 24 graphs of experimental re-
sults were sampled from JABA and were re-
analyzed using time-series procedures. Criteria
for selecting this sample and the re-analyses are
discussed later. For now, the evidence for serial
dependency in these 24 experiments will be con-
sidered to show how common autocorrelation is
in behavioral scores. Twenty of the 24 experi-
ments (839%) had significant lag 1 autocorrela-
tions, ranging from 0.40 to 0.93. Nine of the 20
significant autocorrelations were greater than
0.70. Clearly, then, serial dependency is a rela-
tively common property of behavioral scores ob-
tained in operant experiments.

Given that serial dependency is likely to
occur in behavioral scores, what are the implica-

tions of this for making inferences about behav-
ioral change due to an intervention? It was
suggested above that operant researchers make
inferences about behavioral change based on vi-
sual estimation of certain statistical properties of
their data, e.g., stability, variability, overlap, and
number of scores. These statistical properties,
and estimations of them either visually or com-
putationally, are difficult to interpret unequivo-
cally when applied to scores that are not inde-
pendent of each other.

The difficulty with interpreting statistical esti-
mates obtained from serially dependent behav-
ioral scores can be explained via the following
analogous situation. Suppose we wish to develop
norms for teasing behavior in young children.
Teasing rates per minute are obtained for each
child in several families by direct observation in
home settings. Our final sample of data includes
teasing rates for each of 50 children, aged 3 to
6 yr from 25 different families. To determine a
norm for teasing behavior in this age group, we
could simply average the teasing rates over the
50 children. We certainly could do the arith-
metic; that is, add the 50 teasing-rate scores
and divide the total by 50, to get an average
teasing rate.
The issue is whether or not the 50 summed

teasing rates are independent of each other in
the same way that 50 rate scores would be inde-
pendent if they were obtained for 50 children,
each of whom was from a different family, i.e.,
if there were as many families as children in the
sample. Because of the strong possibility that
siblings show correlated teasing rates, the 50
scores in our example cannot be interpreted as
independent. The mean score, therefore, will be
biased in comparison to a mean obtained in the
other case, where the 50 children were from 50
different families, and the correlation between
sibling teasing rates simply could not exist. Not
only will the mean be biased; other statistics will
be as well. In particular, the variance in such a
sample of correlated scores will tend to be less
than in a sample of independent scores. Simi-
larly, the variance or variability in serially de-
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pendent time-series behavioral scores will tend
to be less than in a series of serially independent
scores.

The point is that we are accustomed to think-
ing about statistics as if they were always used
with samples of independent scores, largely be-
cause statistical concepts were originally devel-
oped for these kinds of scores. When conven-
tional statistical procedures are applied to
serially dependent samples of scores, the assump-
tions underlying the statistics are violated, in
particular the independence assumption. Our
conventional graduate-school-learned statistical
procedures and concepts were never meant to
be used with serially dependent scores.
To summarize, then, serial dependency is evi-

denced by autocorrelations in an individual sub-
ject's behavioral scores obtained in reversal or
multiple-baseline experiments. Serial depen-
dency appears to be a common characteristic of
behavioral scores for the individual subject, but
one that is not well understood vis-a-vis its im-
plications for either visual or statistical appraisal
of changes in behavioral scores. Estimates of be-
havioral score properties like stabilities, varia-
bilities, or averages, whether obtained visually or
statistically, may be biased by serial dependency
and if so, would not be as readily interpretable
as if the estimates were obtained from indepen-
dent scores.

Recommended Use of Time-Series
Analysis in Operant Studies
The principal recommendation of this paper

is that time-series analysis be used to supplement
visual analysis of behavioral change in operant
experiments. Used as a supplementary proce-
dure, time-series analysis should confirm valid
and appropriate inferences and conclusions de-
rived from visual analysis. If visual and time-
series analyses produce contradictory inferences
or conclusions from the same set of data, then
the visual analysis should be further scrutinized,
since serial dependency may have misled the
visual analysis.

This recommendation requires no further

qualifications regarding the appropriateness of
the method for behavioral data of the kind
usually found in applied behavior analysis. Sta-
tistical purists, however, would be bothered by
application of the time-series method to data
that possess certain characteristics, e.g., unequal
numbers of scores in the different phases of an
experiment, too few scores within or across the
phases, or unequal time intervals between the
scores in the series.3 The reasons for concerns
such as these are statistical in nature. The ex-
istence of such properties may bias parameter
estimation in the time-series method, with the
result that statistical significance tests will be
conservative. This means that statistically signifi-
cant findings will be less likely to occur when
there are unequal or too few scores in the phases
of an experiment.

It should be added that even visual analysis
of operant studies could be biased as well when
properties such as these obtain in an operant ex-
periment. But in the applied and practical world
of applied behavior analysis, it may not always
be possible to obtain equal numbers of scores
across phases or more than a few scores within
certain phases. Hence, the operant researcher
often has to make do with the available data.
We argue, simply, if this is the case and the
researcher is willing to be confident in visual
analysis of possibly inadequate data, then the
added support provided by time-series analysis
for these visually derived inferences should be
welcome. If confirmation of visual inferences
is not obtained, the researchers should certainly
entertain the possibilities that the visual analysis
is inaccurate, and that the experimental data are
simply not adequate to the task of inferring any-
thing about behavioral change due to the experi-
mental manipulation. The counter-suggestion
that time-series analysis may be inaccurate or
biased could also be entertained, but at least one
likely cause of an inadequate visual analysis, i.e.,

3These purists would also be greatly bothered by
simple visual analysis of time series, whether or not
these properties of the scores were obtained.
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serial dependency, is explicitly accommodated by
time-series analysis.

Conceptual Description of the
Time-Series Method

Three issues in the analysis of behavioral
time-series scores should be of interest to users
of reversal or multiple-baseline designs: (a)
change versus no change in level, (b) zero versus
nonzero trend, and (c) change versus no change
in trend. Level is a formal term used to describe
a location parameter in a serially dependent time
series. The term level is reserved for autocorre-
lated data, while mean is used to describe the
central tendency in uncorrelated data. If a seri-
ally dependent time series has been transformed
to uncorrelated scores, then the level and mean
are the same. But when we speak of the central
tendency in autocorrelated time-series scores, we
use the term level. Change in level refers to
change at the interruption point, and is seen as
discontinuity in the series from one phase to the
next. Trend refers to any gradual upward or
downward linear slope in the behavioral scores
over time. Continuous trend may be evidenced
throughout the entire series, perhaps running
across all phases of the design. Trend character-
istics of the data may vary from phase to phase
of the reversal design. Thus, the third property
is change versus no change in trend at each in-
terruption point.

These three properties, and the two states of
each, provide eight combinations of effects that
could be of concern to operant researchers. But
the two combinations involving both no overall
trend and yet a change in trend are unlikely, so
they will be ignored here. The remaining six
combinations are described more fully below,
and are illustrated graphically in Figure L.' For
simplification, only the baseline and initial treat-
ment phase of a reversal design will be shown.
Each graph shows a baseline and treatment
phase, separated by an interruption point (ti).

4For additional kinds of changes in interrupted
time series, see Glass, Willson, and Gottman (1975).

The straight line "curves" are obviously ideal-
ized, given the usual variation of behavioral
scores in operant research. Finally, the graphs
have been drawn showing downward changes
in the behavioral scores. The points to be made
are equally germane for graphs showing upward
changes.

a. Change in level, zero trend, no change in
trend (Figure 1-a). This combination of effects
illustrates a frequent hypothesis in operant re-
search, change in behavioral scores from base-
line to treatment. Change in level at an inter-
ruption point may be seen as an overall increase
or decrease in the scores during the treatment
period. The time-series procedure inspects the
pattern of baseline scores and predicts what the
scores in the treatment phase should be, given
the baseline scores. If the scores in the treatment
phase are statistically different from the esti-
mated scores, the analysis estimates the magni-
tude of change and a probability value for the
significance of the change.

b. No change in level, nonzero trend, no
change in trend (Figure 1-b). The second kind
of change that time-series analysis can detect
involves any upward or downward linear slope
in the behavioral scores over time. This kind of
change, called trend, across all phases is particu-
larly troublesome, since a treatment effect can be
interpreted simply as a continuation of the trend
first established during baseline, rather than a
change in level at the interruption point due to
treatment. For example, if treatment is designed
to reduce the rate of deviant behavior, and base-
line scores show a downward trend, then a re-
duction in deviant behavior during treatment
might be misinterpreted as an effect of treat-
ment, when in fact the observed reduction was
nothing more than baseline trend continuing
into the treatment phase. It is for this reason that
operant methodologists (e.g., Sidman, 1960)
have cautioned investigators to establish stable
(i.e., zero trend) baselines before implementing
experimental interventions.

c. Change in level, nonzero trend, no change
in trend (Figure 1-c). It is precisely in such cases
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to = start of time series
tj = an interruption point
t, = end of time series
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of nonzero trend that time-series analysis is
particularly useful. The method can detect
changes in level even when nonzero trend exists
in the scores. That is, if scores are gradually de-
creasing, and the treatment is powerful enough
to produce the intended effects, time-series anal-
ysis may detect a significant change in level at
the interruption point, taking into account the
nonzero trend. Note the difference between Fig-
ure 1-b and Figure 1-c. Both show nonzero trend
and no change in trend, but Figure 1-c shows a
change in level at the interruption point while
Figure 1-b does not. One obvious and important
implication of these two illustrations is that in-
vestigators who use time-series analysis can be
less concerned with establishing stable or zero-
trend baseline scores than in the past. This is not
to say that zero-trend baselines are unnecessary,
but in some studies the cost of continuing base-
line observations until zero trend is obtained
may be prohibitive. In such studies, the data
can often be analyzed by the time-series proce-
dure to detect changes in level, even given the
nonzero trend during baseline.

d. No change in level, nonzero trend, change
in trend (Figure 1-d). The fourth kind of change
that time-series analysis can detect involves
changes in trend between baseline and treatment
phases where there is no change in level at the
interruption point. For example, a gradual
downward change during baseline may be ac-
celerated or slowed during the treatment phase.
Detecting changes in trend essentially amounts
to identifying changes in the rate of change in
the scores. Change in trend might involve a re-
versal of the direction of the trend from baseline
to treatment phases. That is, downward trend
during baseline may change to upward trend
during the treatment phase. Time-series analysis
can detect such changes due to treatment where
there is no change in level from baseline to
treatment.

e. Change in level, nonzero trend, change in
trend (Figure 1-e). The fifth combination of
changes that time series can detect involves both
level and trend changes. That is, treatment

might change the level of scores at the interrup-
tion point, and also might change the rate of any
upward or downward trend from baseline to
treatment phases. When such changes in both
trend and level parameters are obtained, visual
inspection can be misleading, since it is difficult
to accommodate change in trend subjectively
when inspecting for change in level, or vice
versa. But the time-series method can account
for one of the two parameters when testing for
significant change in the other.

f. No change in level, zero trend, no change
in trend (Figure 1f). The final case is, of course,
what every operant researcher dreads-no
changes in behavior. When the scores in both
phases are highly variable, visual inspection for
change in level can be misleading. Time-series
analysis provides an appropriate method for
testing the null hypothesis in instances of this
kind.

What specifically does time-series analysis do
with behavioral data? First, time-series analysis
transforms the raw scores to uncorrelated or
serially independent scores. Second, time-series
analysis statistically compares the transformed
scores from adjacent phases in the design. The
transformation to serially independent scores is
conceptually similar to other kinds of data trans-
formations familiar to most social scientists
(e.g., arc-sin transformations of proportion
scores, square-root transformations of low-rate
frequency scores, logarithmic transformations of
scores with similar means and standard devia-
tions, or z-transformations of correlation coeffi-
cients). Each of these better-known transforma-
tions is used to change the properties of scores
to meet the assumptions of parametric statistical
tests. In the case of the time-series transforma-
tion, the resultant scores are freed of serial de-
pendency, and therefore satisfy the assumption
of uncorrelated error required by linear para-
metric methods, e.g., analysis of variance.
The second thing that time-series analysis does

is also conceptually uncomplicated. Readers fa-
miliar with the general linear model (Cohen,
1968; Overall and Spiegel, 1969; Walberg,

158



TIME-SERIES ANALYSIS IN OPERANT RESEARCH

1971) will recall that the analysis of variance is
essentially a special case of multiple regression
analysis. The time-series method presented here
uses the linear regression model to test for dif-
ferences in level and trend. In the regression pro-
cedure, a dummy coding technique (Cohen,
1968; Kerlinger and Perlhauzer, 1973) is used
to create variables whose values represent mem-
bership in ANOVA groups. The only difference
between time-series and regression procedures
lies in the value assigned to these dummy vari-
ables. In the regression technique, the usual
values are either one or zero, reflecting group
membership or nonmembership, respectively. In
time-series analysis, comparable dummy coding
is used to represent the baseline versus treatment
"groups" of scores, but the values of the dummy
variables incorporate a parameter that repre-
sents the amount of serial dependency in the raw
data. If this parameter is zero, which would
mean there is no serial dependency in the
scores, then the time-series dummy codes reduce
to precisely those used in the standard regression
procedures for testing differences in means. For
the present purposes, the point to remember is
that the time-series method is procedurally iden-
tical to regression analysis for testing change in
level, trend, and change in trend between base-
line and treatment phases. However, in time-
series analysis, the values assigned to the dummy
variables are functions of the serial dependency
in the scores, whereas in standard regression
analysis, no dependency is reflected in the
dummy codes.

Thus far, the presentation of time-series anal-
ysis has been as nontechnical as possible. Now
would be the appropriate point to discuss the
mathematical details of the time-series method,
before reporting illustrative re-analyses of pub-
lished studies where the time-series method was
used to supplement the authors' original visual
appraisals. But to keep this paper nontechnical,
the reader interested in these details is referred
to the literature cited earlier. In particular, we
recommend starting with the book by Glass,
Willson, and Gottman (1975).

Illustrative Time-Series Analyses
To demonstrate the utility of the time-series

method in the analysis of operant data, examples
were selected from the Journal of Applied Be-
havior Analysis. Experiments were chosen for re-
analysis on the basis of the following criteria.
First, experimental effects claimed by the authors
and depicted in the graphs had to be sufficiently
nonobvious to warrant some critical inspection.
Second, to represent the variety of operant ex-
periments, studies were chosen that used mul-
tiple baselines, several different phases, small
numbers of data points within phases, and un-
equal numbers of data points across phases.
Third, particular attention was given to experi-
ments where possible nonzero trend was ap-
parent from visual inspection of the graphs. The
examples discussed below cover five different
operant research designs: (a) a single compo-
nent study-AB (Boren and Colman, 1970);
(b) a traditional reversal design-ABAB
(Ingham and Andrews, 1973); (c) a multiple
component study-ABCB (Phillips, Phillips,
Fixsen, and Wolf, 1971); (d) a multiple-base-
line study-A/B/C/B/C (Baer, Rowbury, and
Baer, 1973); and (e) a reversal component
study-ABACADEA (Wincze, Leitenberg, and
Agras, 1972). Some of these examples involve
combined data for a number of subjects, others
involve individual subjects.
The first illustration is taken from a study of

reinforcement principles in a military phychia-
tric ward. Experiment III from Boren and Col-
man (1970) was designed to increase attendance
of soldiers at a unit meeting. The subjects had
been operating in a token system where each
soldier received 20 points (used to buy backup
reinforcers) for attendance at 8:00 a.m. daily
meetings. The investigators sought to increase
attendance rate over that provided by the points
alone, so applied a chaining contingency,
whereby attendance at the meeting was required
before additional points could be earned for
satisfactory performance in other activities dur-
ing the day. Fifteen days of attendance data were
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used as a baseline or pretreatment period, dur-
ing which the 20-point token system was in ef-
fect (Condition C). This phase was followed by
20 days of the chaining contingency (Condition
D). The data are shown in Figure 2 (Figure 3
in Boren and Colman). Visual inspection of
these data suggests two effects, first an increase in
attendance due to the chaining treatment; and
second, an upward trend in the scores, particu-
larly during the chaining phase. Boren and
Colman (1970) interpreted these data as fol-
lows:

Within the first week, the participation in-
creased to a median of 639%, compared to
a median of 389% for the previous week.
The attendance continued to rise until the
median of the last week shown in Figure 4
[sic) was 87%. Since the data points in
Figure 3 for the chaining condition over-
lap with only one data point for the pre-
vious condition, it is clear that the chaining
technique increased attendance at the unit
meeting with considerable reliability and
without any increase in the points offered.
[p. 33)

This interpretation suggests both changes in
level of attendance due to the treatment, and
upward trend in attendance during the chaining
condition ("The attendance continued to
rise. . ."). Time-series analysis was applied to
the data to supplement these visually based in-
terpretations. The regression analysis for change

Condition C
1. 20 points

100

90

c 80
70

.U60-

' 50

c4

30

20

'1

Condition D
1. 20 points
2. Must attend to receive points

for remainder of day

7/31 8/7 8/14 8/21 8728 9/4 9/11 9/18 9/25
July August September

Session

Fig. 2. Illustrative data from Experiment III in
Boren and Colman (1970).

in level yielded a time series t of 2.84 (df - 33;
p < 0.01), supporting the authors' interpreta-
tion of an increase in attendance during the
chaining condition. But time-series tests for
trend and change in trend were nonsignificant,
contradicting the interpretation that attendance
continued to rise during the chaining condition.
Hence, while time-series analysis supportsthe
conclusion of an abrupt increase in attendance
due to the chaining procedure, evidence for a
continued increase throughout the treatment was
not obtained, contrary to what visual inspection
of the data might suggest.

The next illustration uses data from Ingham
and Andrews (1973), who used a traditional re-
versal design (ABAB) to assess the impact of
token reinforcement and a penalty schedule on
stuttering behavior of adults. An ABAB experi-
mental design was used to make two compari-
sons between the token reward system (A),
which was followed by a combined reward/
penalty schedule (B). Speech therapists recorded
the number of syllables spoken, the number of
syllables stuttered, and the speaking time for
each subject during 45-min rating sessions. The
percentage of syllables stuttered and the rate of
speech were computed for 21 sessions and are
shown graphically in Figure 3 (Figure 1 in
Ingham and Andrews). The authors were pri-
marily concerned with evaluating the trend of
the two dependent variables when the token
penalty was removed from the overall system.
This implies that their hypothesis was focused on
an anticipated change in trend-not in level-
between adjacent phases. The following conclu-
sions were drawn:

The penalty schedule combined with the
reward schedule in the token system in-
creased rate of reductions in frequency of
stuttering and improved rate of speech,
when compared with the reward schedule
alone. [p. 233)

Ordinarily, such a statement would apply mainly
to differences in mean levels. However, since
the hypothesis was stated in terms of trend, time-
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RATING SESSION NUMBER

Fig. 3. Illustrative data from Ingham and Andrews (1973).

series tests for changes in trend were first con-

ducted.
A significant nonzero trend was obtained for

syllables per minute (dotted line) across all
phases (F = 15.42; p < 0.01), but no changes
in trend between adjacent phases were detected
for either syllables per minute or per cent syl-
lables stuttered (solid line). Therefore, the pen-

alty component was not effective in altering the
trend observed for the reward system alone.
When the time-series procedure was used to

test for changes in level, only the final manipu-
lation proved sufficiently powerful to impart
clear improvement in syllables per minute (t
2.18; df=5; p < 0.05). No changes in the
level of this variable were observed between
other phases. Also, no changes in level for per

cent syllables stuttered were obtained between
adjacent phases.

Note that the one significant change in level
obtained involved only three data points in the
last phase. Even with this small number of

points, the time-series method produced signifi-
cant findings. This does not, however, mean

that only three data points are recommended for
experiments analyzed by time-series methods. In
fact, in this example, it is not clear that the
reward/penalty schedule was the sole reason for
the significant change in level from Phase 3 to

Phase 4. The change from Phase 1 to 2 was not

significant. The significant change from Phase 3
to 4 could have been due to a cumulative effect
of the contingencies operating across Phases 1
through 3. Of course, further experimentation
would be needed to support this post hoc inter-
pretation.

The third illustration of the time-series
method uses Experiment I in Phillips et al.
(1971), which was designed to increase prompt-

ness at evening meals at Achievement Place.
During a 35-day baseline phase, elapsed minutes
were recorded between the ringing of the dinner
bell and the time at which the last of the four
boys in the study sat down at the dinner table.
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Next, during each of 20 days of the "points"
condition, each boy lost 100 points for each min-
ute he was late. This first treatment condition
(B) was followed by a second condition (C) in
which threats of loss of points were announced
periodically during the 19 days of this "Threats
No Points" condition, but no points were de-
ducted. The final phase of this experiment (16
days) was a return to the points condition (B),
where, again, each boy lost 100 points for each
minute late. The graph of these data is shown
in Figure 4 (Figure 1 in Phillips et al.). The
authors' interpretation of these data was:

When the 100-point fine was made contin-
gent on each minute late, the boys were
more prompt and, by the end of the Points
condition, all boys were seated at the table
less than 60 sec after the dinner bell rang.
Under the Threats No Points condition, the

behavior reversed to about 10 min late;
during the final Points condition the boys
were again prompt in coming to dinner.
These data indicate that point losses were
effective in producing punctual behavior at
dinner time. [p. 47)

This interpretation suggests that the level of'
"minutes late" was reduced by the Points con-
dition (B), was increased by the Threats No
Points condition (C), and was again reduced by
re-institution of the Points condition (B). No
suggestion of trend or change in trend is evident
in either the authors' interpretation or the graph
of these data.

Time-series analyses of these data produced
a significant F for changes in level (F 18.11;
df 3, 81; p < 0.001), but nonsignificant F-
ratios for trend and change in trend. These sup-
plementary time-series findings illustrate the ap-

Promptness At Meals

Lu
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I-

z

BASELINE POINTS THREATS POINTS
NO POINTS

SESSIONS
Fig. 4. Illustrative data from Experiment I in Phillips, Phillips, Fixsen, and Wolf (1971).
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plication of the time-series method to a multiple
component operant study and tend to confirm
the authors' original interpretations, although
comparisons between adjacent pairs of phases
would be required to duplicate the authors' con-
clusions precisely.

The fourth example (Baer et al., 1973) used
a multiple-baseline design to investigate the ef-
fects of differential reinforcement on the com-
pliance of three negativistic preschool children.
Baer et al. modified an ongoing token system to
include teacher-delivered reinforcement for com-
pletion of specifically suggested tasks. In addi-
tion, timeout for noncompliance was applied in
subsequent experimental phases for two sub-
jects. During 60 days of observation, compliance
to the teacher's formal invitations to tasks were
recorded. A graphic representation of these data
is presented in Figure 5 (Figure 1 in Baer et al.).
Visual examination suggests that changes in
level were obtained for all subjects when rein-
forced for requested completion (Phase B). The
authors concluded that:

For each child, this technique resulted in
clear and useful increases in compli-
ance..... In the case of two children whose
compliance was not maximized by differen-
tial reinforcement alone, further increases
in compliance were produced by combining
a 1-min timeout for noncompliance with
the differential reinforcement procedure.
... [Timeout] was more effective than dif-
ferential reinforcement alone. [pp. 289,
2973

Here, the authors claim a second change in level
for the two children subjected to the timeout
contingency (Phase BC).

Three separate time-series analyses were per-
formed, one for each subject. The regression
analysis for change in level yielded a t of 2.08
(df = 28; p < 0.05) between Phases A and B
for Hannah, and a similar result for Frankie
(t = 7.35; df = 58; p <0.01). Thus, the sup-
plementary time-series analysis supported the

authors' contention that the reinforcement for
requested completion was effective in raising
compliance above baseline levels. However, this
conclusion is not supported for Charlotte (t
1.63; df = 28; n.s.). Further, the claim that
timeout (Phase BC) increased compliance was
not substantiated for either Charlotte or Han-
nah. All t's for changes in level between adjacent
Phases 2 through 5 for Charlotte and Hannah
were nonsignificant.
The last example of time-series analysis uses

data from a reversal component study conducted
by Wincze et al. (1972). In an effort to reduce
delusional verbal behavior of hospitalized schiz-
ophrenics, several token reinforcement proce-
dures were implemented following a therapist's
feedback condition. These procedures included
differential application of tokens in therapy ses-
sions and on the ward, as well as a bonus system
for remaining below a percentage criterion level
of delusional statements. The verbal behavior of
10 subjects was monitored for 21 to 63 days,
during which various contingencies were operat-
ing within a counterbalanced design. Only some
of the findings for Subject 7 will be discussed,
as an illustrative example.

The percentage of delusional talk for Subject
7 is shown graphically in Figure 6 (Figure 7 in
Wincze et al.). The present discussion is con-
fined to delusional behavior in therapy sessions
(the open circles). Conclusions of the authors are
as follows:

Token reinforcement reduced the percent-
age delusional talk in therapist sessions
(phases 2, 6, and 7).... Feedback applied
in therapist sessions (phase 4) slightly re-
duced the percentage delusional talk. [p.
2543

All eight phases of the experiment were in-
cluded in the time-series analysis. Comparing
the level in each phase with the level of the pre-
ceding phase produced only one statistically sig-
nificant change in level, between Phases 6 and
7 (t 2.36; df= 12; p < 0.05). Thus, only
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trends that makes claims for changes in level
equivocal, and which produced the nonsignifi-
cant level changes. Time-series analysis does al-
low study of changes in trend, however, and is
particularly useful when stable (i.e., zero trend)
baselines are not obtained, as in this study.
Hence, the time-series procedure was used to test

for changes in trend, particularly between those
phases for which the authors claimed level
changes, but for which the t's were nonsignifi-
cant. Significant differences in trend were ob-
tained between baseline Phase 3 and feedback
Phase 4 (t=3.18; df = 12; p < 0.01), be-
tween feedback Phase 4 and baseline Phase 5
(t = 2.67; df 12; p < 0.05), and between
baseline Phase 5 and Phase 6 (t 2.26; df
12; p < 0.05).
These results show that the effects of inter-

vention were to change the trend characteristics
(upward or downward) from one phase to the
next, but as already noted, changes in level were

not obtained, given the trends extant in the data
(except between Phases 6 and 7, where little if
any trend occurred). Thus, changes in trend were

inappropriately interpreted as changes in level,
based on the authors' visual analysis of their
data. Now, it still could be claimed that the

interventions were effective, but the nature of
the effects was to change the trends, not the
levels. One could argue that the trend changes
amount to the same thing as the claimed, but
not supported, level changes. However, this in-
terpretation would be supported unequivocally
only if the phases had been lengthened to allow
stable (i.e., zero trend) scores to emerge. When
trend is evident and relatively few data points
are used, claims for level changes will often be
equivocal.

DISCUSSION AND CONCLUSIONS
Other illustrations of the time-series method

could be presented, using data taken from
JABA, but they would not add appreciably to

the present discussion. From the previous discus-
sion and the examples shown above, the follow-
ing conclusions seem justified.

First, the examples covered the variety of op-

erant experiments reported in JABA, including
reversal designs and multiple-baseline designs
with multiple treatment or intervention phases.
Data for individual subjects, as well as aggre-

gate data over a set of subjects, were analyzed.
Designs with unequal numbers of scores in the
various phases of the experiment were used, and
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the range of number of data points within phases
was considerable, i.e., from only three to as many
as 34. Statistically significant findings were ob-
tained for changes in both level and trend, and
these findings were obtained between phases
with the smallest, as well as the greatest, number
of scores. In short, the time-series method il-
lustrated here was satisfactorily applied to typi-
cal applied operant designs, which incorporated
a great variety of score and design properties.
Thus, it seems fair to conclude that the time-
series methods used are satisfactory supplements
to visual methods for analysis of operant data.

Second, casting time-series analysis as a pro-
cedure to supplement visual analysis, the illus-
trations show that in many instances, the au-
thors' visually based conclusions were supported,
in other cases they were not, and in still others
the time-series analysis revealed findings that
had not been discussed by the original experi-
menters. All three kinds of supplementary in-
formation provided by time-series analysis are
useful. It is rewarding to have one's visual im-
pressions supported by statistical analysis. It is
humbling and/or educational to have other im-
pressions not supported. And it is clearly bene-
ficial to have unseen changes in the data detected
by a supplementary method of analysis. It is diffi-
cult to see how operant researchers can lose in
the application of time-series analysis to their
data. Probably no statistical method will ever
replace human judgment (Michael, 1974), but
as a supplementary tool, time-series analysis de-
serves a place in the operant methodologists'
armamentorium.
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