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We created synthetic data-sets analogous to those shown in the lower-right panel of Fig. 3 in the main text, but
using “real” WMs representing the binding specificities of yeast TFs, and using branch lengths in the phylogenetic tree
that are proportional to those for theSaccharomyces sensu strictospecies. Formally, we took each of the102 WMs
inferred in [1] and made them all uniform widthw = 10. WMs wider thanw = 10 were cropped symmetrically, and
WMs shorter thanw = 10 were padded with random columnswa = wc = wg = wt = 1/4. For each data-set we
chose one of the102 WMs at random and embeddeds = 4 sites in a random sequence of lengthL = 500. We then
createdS = 5 descendant sequences at phylogenetic distances that are proportional to those of the5 Saccharomyces
sensu strictospecies. Those proximities are given byqcer = 0.8, qpar = 0.8, qmik = 0.58, qkud = 0.5, and
qbay = 0.45. The proximities are related to branch lengths by the equality

qs = e−bs . (1)

Using this we first transform all proximitiesqs into branch lengths. For the synthetic data we multiply each branch
length with a factorλ, with λ ranging fromλ = 0.25 to λ = 4. Finally, we transform the branch lengths back to
proximities using (1). Atλ = 0.25 this leads to proximitiesq1 = 0.948, q2 = 0.948, q3 = 0.873, q4 = 0.841,
q5 = 0.819. At λ = 1 the proximities of course match theSaccharomycesproximities, and atλ = 4 the proximities
are q1 = 0.41, q2 = 0.41, q3 = 0.11, q4 = 0.06, q5 = 0.04. In the figure we use the geometric mean of the
5 proximities as an indication of the “average” proximity for each data-set. The performance of the algorithms is
measured in the same way as for Fig. 3 in the main text.

As the results show, the performance of PhyloGibbs (with phylogeny) on this data is quantitatively close to the
performance on the data in the upper-right panel if Fig. 3. The nonphylo algorithms perform even more poorly on this
data than on the data in the upper-right panel of Fig. 3 in the main text.

We also tested if the nonphylo algorithms would perform better if they were run on a single sequence withs = 4
embedded sites instead of on allS = 5 orthologues (containigSs = 20 sites in total). We ran MEME and WGibbs
on single sequences, asking them to find4 sites of lengthw = 10. Both algorithms performed even more poorly in
this test. The sites that MEME predicted had an average overlap of0.077 ± 0.011 with the true sites, and WGibbs
had an average overlap of0.096 ± 0.013. These performances are more than twice as low as the performance when
running on allS = 5 orthologues. In fact, the algorithms do not perform statistically better than what would be
expected by randomly placing windows: the sites cover4 ∗ 10 = 40 of the500 bases, which corresponds to8% of the
input sequence. It thus appears that, at least for yeast WMs, the nonphylo algorithms clearly benefit from using the
orthologous sequences, even if they treat them as independent.
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Results of a test analogous to the one shown in Fig. 3 in the main text but with “real” WMs from yeast, and using
phylogenetic distances proportional to the phylogenetic distances of theSaccharomycesspecies. The overlap between
the embedded and predicted sites at different average proximities is shown for PhyloGibbs with phylogeny (red),
PhyloGibbs in nonphylo mode (light blue), WGibbs (dark blue), and MEME (pink).
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