A. R

MODIFICATION OF THE AMPLITUDE OF THE HUMAN ELECTRO-OCULOGRAM BY LIGHT AND DARK ADAPTATION*

BY

J. FRANÇOIS, G. VERRIEST, AND A. DE ROUCK From the Ophthalmological Clinic of the University of Ghent, Belgium. Director: Prof. Dr. J. François

WHEN an electrode is placed on the cornea and another near the posterior pole of the eye (or elsewhere on the body) a standing potential is found (Kohlrausch, 1931; Marg, 1951). In vertebrates the cornea is positive in relation to the retina. The axis of this electrical system is approximately the same as the optic axis. If electrodes are placed near the eye and if the eye is turned, the electrode closest to the positive corneal pole will be positive in relation to the others. This recorded electro-oculographic response (EOG) depends on the angle and speed at which the globe rotates; it is independent of the action currents of the eye muscles, which are not recorded.

Fig. 1 shows a normal human EOG; the electrodes are placed round the left eye, and when the patient looks to the right (MR) this eye is adducted and electrode (1) on the nasal side becomes nearer to the cornea and positive to electrode (3) on the temporal side; we obtain also an upward deflexion on the derivation 1/3.

^{*}Received for publication February 21, 1955.

The only communication relating to the modification of the human EOG by light and dark adaptation is that of Miles (1940). According to this author, there is a statistically valid augmentation of 0.38 mV when the illumination of the subject varies from 0.001 to 5 mL^+ ; each time the subject is submitted to a new illumination the amplitude of the EOG is modified for about 5 minutes and especially during the last 2 minutes.

We have, for two reasons, made a new study of the eventual relation between the amplitude of the EOG and the state of adaptation: first, because Miles's results are not in agreement with those of Wulff and Freyburger (1948) using animals (according to these authors, the standing potential of the excised eye of a frog augments during dark adaptation, as does the *b*-wave of the ERG), and secondly, because Miles based his experiments on levels of illumination and not on thresholds of perception.

Technique

Light and Dark Adaptation.—We used the Goldmann-Weekers adaptometer (2nd model). This apparatus consists chiefly of a hemisphere corresponding to the whole binocular visual field of the subject, who may thus be exposed to a global light adaptation which may be varied from 1,000 to 8,000 asb.

During dark adaptation, we determined the global thresholds for white light (integral adaptometry with contrast only in time; duration of the bright and dark phases: 1 sec.).

Electro-Oculography.—We used non-polarizable silver electrodes attached to the skin with collodion. The skin was cleansed with ether and contact was aided with commercial electrode jelly. Three electrodes were placed round the left eye:

(1) on the base of the nose near the inner canthus,

(2) on the inferior orbital margin, a little to the nasal side of the sagittal plane of the eye,

(3) on the temporal orbital margin, near the outer canthus.

A distant electrode (4) was placed on the occiput. At different stages of the experiments, the subject performed four successive ocular movements, as rapidly as possible:

(i) from the middle to the extreme right (MR),

(ii) from the extreme right to the middle (RM),

- (iii) from the middle to the extreme left (ML),
- (iv) from the extreme left to the middle (LM).

We used this technique in preference to limited excursions $(e.g. 30^\circ)$ because the results are more constant. As a control these movements were performed in an uninterrupted series. An ink-electroencephalograph was used for the registration.

Experiments.—With each subject we first took an EOG in moderate brightness, without pre-adaptation to dark or light (WA). Subjects 1, 2, and 3 were then light-adapted (2,000 asb. for 5 min.) and the eye movements were recorded immediately after the fifth minute (L 1). The subjects were subsequently dark-adapted under adaptometric control and the EOG was recorded at different levels

^{† 1} apostilb (asb)=1.0 10⁻¹ millilamberts (mL) = $\frac{1}{\pi}$ 10⁻⁴ stilb (sb, 1 cd/cm²), if luminance and brilliance may be confused.

of adaptation, referred to in the Tables in log asb (D 2). The subjects were then again light-adapted and a new EOG was recorded (L 2).

During the examination of Subject 4 we added between WA and L 1 a supplementary recording in moderate dark adaptation without previous light adaptation (D 1); we also followed the course of modification of the EOG for a few minutes after L 2, with Subject 4 in moderate brightness (return to normal: RN). This RN was also tested with Subject 2.

During the examination of Subject 5, the EOG-modification during dark adaptation was measured, first without previous light adaptation (D 1), then after previous light adaptation of 2,000 asb. for 5 min. (B 2), and finally after previous dark adaptation of 4,000 asb. for 5 min. (D 3).

Results

The mean amplitudes of the deflexions of the EOG, all converted into μV , are given in Tables I to V and in Figs 2 to 7. The results concerning the "monopolar" derivations 1/4 (nasal) and 3/4 (temporal) and the "bipolar" derivation 1/3 are fully reproduced; we have calculated for each the absolute mean (m) and the fourth of the algebraic sum (δ) of the deflexions; theoretically δ must equal zero and the values given indicate errors due to irregularities of conduction and differences of amplitude of the movements. M is the mean of the two m corresponding to the "monopolar" derivations. The infra-orbital derivation 2/4 was only used to control the vertical components of the movements; we have given only the values of MR. The duration of the deflexions remained constant in all conditions and for all the subjects (almost 0.60 sec.); the amplitude of the deflexion is thus proportional to the resting potential, disregarding the extra-ocular factors.

Conclusions

(1) Light adaptation (2,000 asb, 5 min.) gives a decrease of amplitude of the electro-oculographic deflexions; after the end of a period in the dark, the deflexions become larger, so that the values are soon greater than before the light adaptation.

(2) Dark adaptation after light adaptation is characterized by a fall in the EOG-amplitudes, which begins immediately after the rise which follows the end of the light adaptation; it is very rapid at first and becomes progressively slower. At the end of the dark adaptation the EOG remains stationary or rises slightly, even if the perception threshold continues to decrease. One of the subjects was light-adapted successively at 2,000 and 4,000 asb., and the modifications of the EOG were the same after these two different pre-adaptations.

(3) If the subject was dark-adapted without preliminary light adaptation, the amplitude of the EOG-deflexions for a given threshold was markedly higher than when the subject was in the dark.

(4) In contrast to the b-wave of the ERG, there is no constant relation between the thresholds of perception and the relative amplitudes of the

400

FIG. 2.-Subject 1.

TABLE 1	I
---------	---

SUBJECT 1

		WA	L 1						
				2.3-3.9	3.8-3.6	3.1-3.0	4.6-4.5	5.9-5.7	5-3
1/4	MR	+294	280	294	302	277	269	263	269
	RM	-255	235	286	252	244	224	218	190
	ML	-260	269	224	238	160	148	117	140
	LM	+305	269	280	286	280	258	249	266
	mean	286	263	<i>273</i>	269	<i>240</i>	225	212	216
	δ	+ 21	+11	+16	+24	+40	+40	+49	+51
3/4	MR RM ML LM mean δ	$ \begin{array}{r} -235 \\ +242 \\ +262 \\ -253 \\ 248 \\ + 4 \end{array} $	255 262 301 260 264 +14	255 255 279 253 261 +6	207 249 268 249 243 +13	211 246 242 238 <i>234</i> +10	187 229 242 231 222 +13	198 246 246 229 230 +17	176 220 251 227 218 +69
$\frac{1/4+3/4}{2}$	<i>Μ</i>	267	264	267	256	237	223	221	217
	δ	17	12	10	11	30	27	32	33
1/3	MR	+251	238	220	216	202	185	180	169
	RM	-187	205	202	191	196	185	180	174
	ML	-207	257	251	249	235	220	231	233
	LM	+189	220	213	198	207	205	196	194
	mean	208	230	222	213	210	<i>199</i>	<i>197</i>	<i>192</i>
	δ	+11	+1	-5	-6	-5	-4	-9	-11

TABLE IISUBJECT 2

		W A	L 1				D 2				L 2	RN
				2·5 3·8	$3 \cdot 6$ - 3 \cdot 5	$3 \cdot 3$ $- 3 \cdot 0$	4.7 −4.2	5·9 - 5·7	5.6 -5.3	5·3 -5·2		
1/4	MR RM ML LM mean δ	+80 -60 -32 +116 72 +26	45 36 43 81 57 +12	131 108 66 116 <i>105</i> +18	71 93 33 76 69 +5	72 53 25 81 57 +18	55 45 25 55 45 +10	60 41 8 65 43 $+18$	55 46 0 45 36 +14	$ \begin{array}{r} 63 \\ 33 \\ 0 \\ 33 \\ 32 \\ +16 \end{array} $	73 58 33 33 61 +4	99 73 41 116 82 +25
3/4	MR RM ML LM mean δ	-130 + 166 + 166 - 156 - 155 + 38	85 158 100 103 <i>111</i> +17	154 201 201 164 180 +21	100 183 154 149 <i>146</i> +6	75 153 149 129 <i>127</i> +24	66 140 103 149 <i>114</i> +7	65 133 111 120 <i>107</i> +15	55 133 116 110 103 +21	66 123 123 123 123 109 +14	160 171 147 146 <i>141</i> +3	149 183 188 159 <i>170</i> +15
$\frac{1/4+3/4}{2}$	<i>Μ</i> δ	113 12	81 5	142 3	108 1	92 6	80 3	75 3	70 7	70 2	<i>101</i> 1	125 10
1/3	MR RM ML LM mean δ	+198 -196 -196 +173 <i>190</i> -5	151 149 148 143 <i>14</i> 6 -1	183 176 194 166 <i>180</i> -5	168 168 169 166 <i>175</i> -1	146 172 168 179 <i>166</i> -4	156 153 143 153 151 +4	143 143 143 143 143 <i>143</i> <i>143</i> 0	138 149 148 148 146 - 3	143 154 149 167 <i>151</i> +1	166 183 181 166 <i>174</i> +8	212 191 219 171 <i>198</i> -7
2/4	MR	83	81	78	83	78	50	63	63	63	83	90

402

		W A	L 1			D	2			L 2
				3.6	3.2	4.5	5.8	5.5	5.3	-
1/4	MR RM ML LM mean δ	+100 - 72 + 94 + 154 105 + 22	138 40 140 214 <i>133</i> + 43	110 54 132 156 <i>113</i> + 20	68 28 90 126 78 + 19	50 0 76 82 52 + 14	$54 \\ 0 \\ 50 \\ 88 \\ 48 \\ +23$	46 22 52 60 45 +8	52 16 60 50 44 +6	118 84 154 192 <i>137</i> +18
3/4	MR RM ML LM mean δ	176 +246 +228 194 211 +26	198 254 274 232 239 - 25	156 236 244 204 <i>210</i> + 30	116 194 214 186 <i>177</i> + 26	66 143 200 164 <i>143</i> + 28	66 124 188 166 <i>136</i> + 20	96 128 166 164 <i>138</i> + 8	98 152 152 146 <i>137</i> +15	216 240 274 212 235 + 21
$\frac{1/4 + 3/4}{2}$	<i>Μ</i> δ	158 4	186 18	<i>161</i> 10	128 7	97 14	92 3	92 0	90 9	186 3
1/3	MR RM ML LM mean δ	+252 - 200 - 208 + 240 225 - 21	254 190 222 232 224 + 18	250 194 206 236 <i>221</i> + 21	210 184 204 240 209 + 16	156 150 210 228 186 +6	156 132 192 234 <i>178</i> +17	214 154 194 200 <i>190</i> +17	200 176 192 224 <i>198</i> +14	272 182 228 234 229 + 24
2/4	RM	134	152	158	112	76	72	86	78	204

TABLE IIISUBJECT 3

TABLE IVSUBJECT 4

		W A	D1	LI	D 2								RN
			-5.8 -5.3		$\frac{2\cdot 2}{-3\cdot 8}$	$3 \cdot 6$ $- 3 \cdot 3$	4·8 4·7	4·6 -4·5	4·2 4·0	5·9 - 5·6	5.5		
1/4	MR RM ML LM mean δ	+139 - 129 - 106 + 234 152 - 82	119 82 62 135 99 +28	145 79 30 165 <i>105</i> +22	191 139 82 221 <i>158</i> +48	178 178 95 181 <i>158</i> +21	$ \begin{array}{r} 142 \\ 125 \\ 40 \\ 122 \\ 107 \\ +25 \end{array} $	99 63 36 109 77 +27	$73 \\ 69 \\ 16 \\ 96 \\ 63 \\ +21$	56 106 23 66 62 -2	$53 \\ 102 \\ 0 \\ 73 \\ 57 \\ +6$	165 148 49 145 <i>127</i> + 3	191 149 92 191 <i>156</i> +35
3/4	MR RM ML LM mean δ	-168 + 254 + 280 - 264 - 241 + 25	158 191 208 235 <i>198</i> +1	139 241 211 238 207 +18	277 333 254 287 288 +6	251 301 280 261 273 +17	184 195 195 247 205 10	125 198 158 224 <i>173</i> +2	109 135 122 188 <i>138</i> -9	72 165 132 221 <i>148</i> +1	63 132 125 211 <i>132</i> -4	165 251 185 247 <i>212</i> +6	264 370 287 307 <i>307</i> +21
$\frac{1/4+3/4}{2}$	<i>Μ</i> δ	<i>196</i> 16	148 27	156 4	223 42	215 4	156 35	125 25	100 30	<i>105</i> 1	95 10	169 3	231 14
1/3	MR RM ML LM mean δ	$ \begin{array}{r} +290 \\ -260 \\ -303 \\ +297 \\ 288 \\ +6 \\ \end{array} $	274 231 274 271 262 +10	254 257 274 288 278 +2	323 271 297 287 294 +11	304 297 297 271 292 -5	284 251 261 270 266 +10	228 224 221 264 234 +12	185 200 165 208 <i>189</i> +7	172 241 148 251 203 +8	158 214 165 251 <i>172</i> +7	205 284 238 257 246 +15	316 312 288 296 <i>328</i> +28
2/4	MR	82	96	30	79	99	46	90	0	0	0	92	33

FIG. 5.—Subject 4.

FIG. 6.—Subject 5.

TABLE V

		WA D1			D 2						
			4.2-5.9	5.6-5.4	2.8-2.2	3.6-3.3	3.1-3.0	4.6-4.5	4.2-5.9		
1/4	MR RM ML LM mean δ	$+110 \\ -93 \\ -50 \\ +123 \\ 93 \\ +28$	129 96 89 116 <i>108</i> +15	129 108 78 120 <i>109</i> +16	112 80 86 129 80 +19	110 106 86 115 <i>104</i> +8	$ \begin{array}{r} 110 \\ 103 \\ 65 \\ 83 \\ 90 \\ +6 \end{array} $	98 70 63 88 79 +13	81 63 33 56 58 +10		
3/4	MR RM ML LM mean δ	-73 +123 +157 -133 <i>121</i> +18	109 166 161 129 <i>141</i> +19	100 153 161 123 <i>134</i> +22	121 150 163 129 100 +8	131 153 166 129 <i>145</i> +15	100 117 156 117 <i>122</i> +14	86 108 150 112 <i>113</i> +15	65 93 129 115 <i>100</i> +11		
$\frac{1/4+3/4}{2}$	<i>Μ</i> δ	108 10	125 4	121 6	90 11	125 7	106 8	96 2	79 2		
1/3	MR RM ML LM mean δ	+197 -166 -209 +189 <i>190</i> +3	189 181 211 166 <i>187</i> -9	180 191 207 197 <i>193</i> - 5	198 179 214 180 <i>139</i> -4	194 198 219 179 <i>198</i> -9	192 188 214 164 <i>192</i> 	197 177 214 168 <i>189</i> -6	170 170 195 163 <i>174</i> 8		
2/4	MR	88	31	0	12	20	25	25	25		

406

FIG. 7.—Modification of amplitude of EOG after the end of light adaptation (Subject 4).

SUBJECT 5

			D 3								
5.8-5.4	5-3-5-1	5-1	2.8-2.2	3.6-3.2	4.9-4.7	4.3-4.2	5.8-5.7	5.4	5.3		
100	86	65	156	153	119	92	70	$ \begin{array}{r} 63 \\ 58 \\ 16 \\ 66 \\ 51 \\ +14 \end{array} $	70		
38	70	70	100	76	67	55	46		53		
65	36	50	54	166	55	32	20		53		
61	65	71	153	119	86	44	85		85		
66	64	64	<i>116</i>	<i>128</i>	82	68	55		65		
+14	+11	+ 4	+39	+8	+21	+25	+22		+12		
60	61	55	136	119	80	81	51	50	50		
84	96	75	192	154	111	114	78	66	75		
129	128	129	197	172	151	136	104	118	116		
119	106	111	129	131	119	133	100	84	86		
<i>98</i>	<i>98</i>	92	<i>163</i>	<i>144</i>	<i>115</i>	<i>116</i>	<i>83</i>	79	82		
+8	+16	+22	+28	+18	+16	+9	+9	+12	+15		
82	81	78	140	136	98	92	69	65	73		
6	5	18	11	10	5	16	12	2	0		
166	164	146	186	207	179	163	154	144	154		
153	166	154	189	163	177	169	148	146	143		
195	200	190	230	214	198	191	167	169	181		
181	154	166	166	166	163	171	166	158	158		
<i>173</i>	<i>170</i>	<i>164</i>	<i>192</i>	<i>188</i>	<i>179</i>	<i>176</i>	<i>158</i>	<i>154</i>	<i>159</i>		
0	-12	-8	-17	-1	-8	-6	+1	-3	-3		
25	25	80	32	16	16	0	0	0	0		

EOG; since it is not possible to measure a true perception threshold without removing the adapting surrounding light, the study of the possible relation between the value of the resting potential and the threshold by means of EOG encounters insurmountable difficulties which are certainly partly due to noncontrollable psychogalvanic reflexes.

(5) It is recommended that the EOG should be used clinically in testing the motility of the eyes or as a functional test of the retina; it should be used in moderate brightness, without previous dark or light adaptation.

REFERENCES

KOHLRAUSCH, A. (1931). "Elektrische Erscheinungen am Auge", In A. BETHE, G. VON KOHLKAUSCH, A. (1951). Elektrische Elscheinungen all Auge, *In A.* Berne, G. von Bergmann, G. EmbDen, and A. ELLINGER, "Handbuch der normalen und pathologischen Physiologie", vol. 12, pt. 2, pp. 1393–1496. Springer, Berlin.
MARG, E. (1951). Arch. Ophthal. (Chicago), 45, 169–185.
MILES, W. R. (1940). Science, 91, 456.
WULFF, V. J., and FREYBURGER, S. W. (1948). Anat. Rec., 101, 665.