Supplementary Material

Construction of a superword array

We describe an efficient algorithm for building the array SW. The algorithm is
outlined as follows. Initialize SWi| to i for each i from 1 to n. Sort SW at word
level wlev for each wlev from 1 to wicut. The sorting at word level wlev is performed
by using a lookup table.

The lookup table consists of a bucket array Buck with each index between 0 and
4" and a list array List with each index between 1 and n. For convenience, Buck[—1]
is an alias for Buck[4*]. The lookup table keeps the list of positions for every word
code between —1 and 4* — 1 (16). The list of positions for word code ¢ contains the
positions of all occurrences of the word code ¢ in C'seq, where ¢ occurs at a position
of CUseq if c is the code of the word starting at the position. The list of positions
P1, P2, ---, Ps in increasing order for any word code c are linked backward with Buck
and List: Buck[c] = ps, List[p;] = p;_1 for 2 < i < s, and List[p;] = 0. The special
value 0, which is not a position of C'seq, indicates the start of the list.

The sorting is done in two phases. First, build the lookup table by processing the
positions in SW in order of increasing index. Second, copy the positions from the
lookup table into SW in order of decreasing index.

Consider phase 1. For each word code, set up the empty list for the code in the
lookup table. Assume that the array SW is in order at word level wlev — 1. For each
i from 1 and n, SWi| is the start position of a superword at word level wlev — 1.
If there is a word immediately before the superword, concatenate the word and the
superword to form a superword at word level wlev starting at position p = SW[i| —w.
The code of the word is ¢ = Code(p). Append the position p to the list of positions
for the word code ¢, where Buck|c| is the last position in the list. After the positions
in SW are considered, the positions in the lookup table are less than or equal to
n —w. For each p from n —w + 1 to n, append the position p to the list for the word
code —1.

Below is a precise description of the steps in phase 1. Set Buck[c]| to 0 for each ¢

from —1 to 4% — 1. For each i from 1 to n, if p = SW[i] — w is positive, then let ¢ be
Code(p), set List[p] to Buck[c]|, and set Buck[c] to p. For each p from n — w + 1 to
n, set List[p] to Buck[—1], and set Buck[—1] to p.

We analyze the lists of positions in the lookup table before considering phase 2.
The initialization of SWi] to i ensures that SW is in order at word level 0. For any
wlev > 1, assume that SW is in order at word level wlev — 1 at the start of phase 1,
which is true for wlev = 1. At the end of phase 1, for any list of positions for word
code c in the lookup table, the superword starting at any position in the list at word
level wlev begins with a word of the code c¢. Thus, for any two lists of positions for
different word codes in the lookup table, the superwords at word level wlev starting
at the positions in the list for the smaller word code are lexicographically before the
superwords at word level wlev starting at the positions in the list for the larger code.

Next consider a list with at least two positions in the lookup table. Let p and ¢
be two different positions in the list for word code c. Assume that p is added to the
list before ¢, which means that the position p + w is before the position ¢t + w in SW
at the start of phase 1. The superword starting at p at word level wlev consists of
an initial word of code ¢ and a superword starting at p + w at word level wlev — 1.
Similarly, the superword starting at ¢ at word level wlev consists of an initial word of
code c and a superword starting at ¢ + w at word level wlev — 1. Because the array
SW is in order at word level wlev — 1 and the position p + w is before the position
t 4+ w in SW at the start of phase 1, the superword starting at p + w at word level
wlev — 1 is lexicographically before the superword starting at ¢t + w at word level
wlev — 1. Thus, the superword starting at p at word level wlev is lexicographically
before the superword starting at ¢ at word level wlev.

The analysis above suggests that in phase 2, the lists of positions in the lookup
table be copied to SW in order of decreasing index. The lists are processed in order
of decreasing word code. The positions in the current list are processed backward.
Here is a precise description of the steps in phase 2, where the body of a statement
is indicated by a pair of parentheses. Initialize k£ to n + 1. For each ¢ from 4% — 1

to —1, { initialize p to Buck[c|, and if p is positive, { repeatedly decrease k by 1, set

SW k] to p, and update p to List[p] until p is not positive, } and set Bucklc] to k. }
Set Buck[4™] to n + 1.

Note that the statements that set Buck[4"] to n + 1 and Buck[c] to k are in-
cluded to ensure that the array Buck has the following property after the algorithm
terminates. For each word code ¢, if Buckl[c + 1| — Buck]|c| is positive, then the
word of the code ¢ occurs in the combined sequence, the positions of all occurrences
are in a consecutive section of SW, Buck|c] is the smallest index of the section and
Buck[c + 1] — Buck|c] is the number of positions in the section. For any word, the
array Buck is used to locate quickly the section of positions in SW at which the word
occurs.

If the order of positions in SW at the start of phase 1 is the same as the order of
positions in SW at the end of phase 2 in the current iteration, then the construction
of SW is terminated as no more work is necessary. Note that in phase 2, if SW[k] is
equal to p before the assignment for every k, then the order of positions in S at the
start of the current iteration is the same as that at the end of the iteration. In any
iteration of the algorithm, the order of positions in SW at the end of the iteration
depends only on the order of positions in SW at the start of the iteration. Thus, if
the current iteration results in no change to the order of positions in SW, then any
future iteration results in no change to the order either. In this case, the array SW
is sorted at every word level.

The construction of the array SW requires an integer array of size 4¥ + 1 and
three integer arrays of size n: SW, List, and Wcode, where Wcode[p] = Code(p).
The array Wecode is computed once in linear time. The word size w is selected such
that 4% < n. Because each iteration takes time proportional to n, the construction
takes time proportional to wlcut X n. In practice, the parameter wlcut is often set to

a number between 1 and 20.

Use of a superword array

We describe a method for locating the occurrences of the superwords from the whole

data set in the subset by using the array SW for the subset. In the method, the reads

3

in the whole data set are processed one at a time. The current read is compared with
the subset by using the array SW for the subset. The positions of the current read
are considered one at a time in increasing order. Let ¢ be the current position. If a
superword starting at the position ¢ at a word level between 1 and wlcut is free of
the characters NV and #, and is unique with respect to the subset, then the minimum
word level wlev and a section of SW are computed such that the section contains the
positions of all unique occurrences of the superword at word level wlev starting at
the position g. Otherwise, the empty section is reported for the position g. A section
of SW is represented by its leftmost (It) and rightmost (r¢) indices.

For the current position ¢, the word level wlev and the section of SW for ¢ are
computed as follows. Start with an initial section with indices ¢ that have the same
first component code as the position ¢, that is, Wecode[SW|i]] = Code(q). If the
section is too large, then find, by using binary search, a subsection with indices 7 that
have the same second component code as the the position ¢, that is, Wecode[SWi] +
w] = Code(q + w). This is repeated until a small section of SW is located or the
word level wlcut is reached. A precise description of this procedure is given below.

Let ¢ denote Code(q). If ¢ = —1 or Buck[c+ 1] — Buck[c] = 0, then stop with the
empty section by setting [t to 1 and rt to 0. Otherwise, set wlev to 1, set It to Buck|c],
and set 7t to Buck[c+ 1] — 1. (Loop) If rt — It + 1 < pncut, then stop with the word
level wilev and the section of SW from It to rt. Otherwise, if wlev = wlcut, then stop
with the empty section. Otherwise, set ¢ to Code(q+wlev X w), find, by using binary
search, the smallest index 7 such that It < i < rt and Weode[SWi] + wlev x w] = ¢,
find the largest j such that it < j < rt and Weode[SW[j] + wlev x w] = ¢, and
increase wlev by 1. If ¢ = —1 or the index 7 or j can not be found, then stop with
the empty section. Otherwise, set [t to 7, set rt to 7, and go to the Loop step.

The method, in the worst case, takes time proportional to wlcut x log k for the
current position g of word code ¢, where k£ is the number of positions in SW with
word code c¢. The time requirement of the method is acceptable for the computation
of overlaps between the current read in the whole data set and reads in the subset

because the time requirement of the method is not a major portion of the total time

requirement of the application and main memory is limited. For the current read f
from the whole data set and a read g from the subset with a unique superword, a
banded dynamic programming algorithm is used to compute an overlap between the
reads f and g. The banded dynamic programming algorithm is much slower than the

method.

