Supplemental Figure 1. Activity of CHK2 expressed in human cells. (A) Recombinant CHK2 is phosphorylated at the activating site of Thr⁶⁸. Recombinant CHK2 purified from insect cells (lane 1) or control with no CHK2 (lane 2) was immunobloted with the Thr⁶⁸ phospho-specific antibody to demonstrate that the protein is highly modified at this site. (B) CHK2 is phosphorylated at Thr⁶⁸ in irradiated cells. A375 cells were left untreated (lane 1) or irradiated with X-rays (5 Gy, lanes 2 and 3 or 10 Gy, lane 4 and 5). Cells were harvested 1 hour (lanes 2 and 3) or 3 hours (lanes 4 and 5) after irradiation. Lysates were immunoblotted with antibodies to CHK2 (top panel) or to Thr⁶⁸ modified CHK2 (bottom panel). (C) Thr⁶⁸-activated CHK2 responds in vitro to the BOX-V peptide. An increasing volume of lysate from irradiated cells (from 1 to 100 μl) containing Thr⁶⁸ modified CHK2 was immunoprecipitated with an anti-CHK2 antibody. After CHK2 capture, p53^{N1-66} was added in kinase buffer and the incubations were continued at 30°C for 20 minutes without the BOX-V peptide (lanes 2-4) or with the BOX-V peptide (lanes 5-7). The reaction products were immunoblotted with the Thr¹⁸-phospho-specific antibody (arrow) since this is the predominant peptide-activated CHK2 phosphorylation site on p53. Supplemental Figure 2. CHK1 is regulated by p53 DNA-binding domain peptides. The CHK2 homologue, CHK1, was evaluated in the p53 kinase assay to determine whether the docking mechanism extends to a related kinase. CHK1 has not been characterized as well as CHK2 towards p53 (Shieh et al., 2000), however, CHK1 may replace CHK2 as a damage-induced kinase in vertebrates (Zachos et al., 2003). (A and C). The BOX-II and BOX-V domain peptides activate CHK1 phosphorylation of p53 at Ser^{20} . Kinase reactions containing p53^{N1-66} and CHK1 were assembled without peptide (lanes 1) or with the indicated peptides (lanes 2 and 3). Reaction products were analysed for (A) p53^{N1-66} or (C) p53[S15A]^{N1-66} phosphorylation at Ser²⁰ (lanes 1-3). Protein band "a" represents migration of unphosphorylated or Ser²⁰-phosphorylated p53^{N1-66}, while protein band "b" is a kinase supershift that represents Thr¹⁸ phosphorylation (as in Figure 2E and F). (B and D) CHK1 exhibits constitutive activity towards Thr¹⁸. Kinase reactions containing p53^{N1-66} and CHK1 were assembled without peptide (lanes 1) or with the indicated peptides (lanes 2 and 3). Reaction products were analysed for (B) p53^{N1-66} or (D) p53[S15A]^{N1-66} phosphorylation at Thr¹⁸ (lanes 1-3). Protein band "a" is unphosphorylated or Ser²⁰phosphorylated p53N1-66, while protein band "b" is a kinase supershift that represents Thr18 phosphorylation. CHK1 has high basal Thr¹⁸ kinase activity (B and D, lane 1) and is attenuated allosterically as a Thr¹⁸ kinase by the BOX-II and BOX-V domain peptides (B and D, lanes 2 and 3). However, BOX-II and/or BOX-V domain peptides stimulate Ser²⁰ phosphorylation (A and C, lanes 2-3). Further, these data indicate that CHK1 targeting of Thr¹⁸ can occur independent of Ser¹⁵ phosphorylation and are consistent with the possibility that CHK1 can be an alternate Ser²⁰/Thr¹⁸ p53 transactivation domain kinase. The relatively complicated phenotypes of p53 missense mutants containing a Ser²⁰ phosphorylation site mutation to Ala²⁰ may be explained, in part, by adjacent Thr¹⁸ phosphorylation by either CHK2, CHK1, or other homologous protein kinases. ## References Zachos, G., Rainey, M.D. & Gillespie, D.A. (2003) Chk1-deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. EMBO J., 22, 713–723. Supplemental Figure 2.