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ABSTRACT Repulsive pressure has been measured as a function of lattice spacing in gels of
tobacco mosaic virus (TMV) and in the filament lattice of vertebrate striated muscle. External
pressures up to ten atm have been applied to these lattices by an osmotic stress method.
Numerical solutions to the Poisson-Boltzmann equation in hexagonal lattices have been
obtained and compared to the TMV and muscle data. The theoretical curves using values for K
calculated from the ionic strength give a good fit to experimental data from TMV gels, and an
approximate fit to that from the muscle lattice, provided that a charge radius for the muscle
thick filaments of - 16 nm is assumed. Variations in ionic strength, sarcomere length and state
of the muscle give results which agree qualitatively with the theory, though a good fit between
experiment and theory in the muscle case will clearly require consideration of other types of
forces. We conclude that Poisson-Boltzmann theory can provide a good first approximation to
the long-range electrostatic forces operating in such biological gel systems.

INTRODUCTION

In 1961, Bernal and Fankuchen published their classic study of hexagonally-packed gels of
rod-shaped viruses and suggested that the stability of such gels resulted from a balance
between electrostatic repulsive and van der Waals attractive forces, even over distances of
several hundred Angstroms. Elliott (1968) attempted an approximate numerical calculation of
these forces for the muscle filament lattice, based on theory developed by Derjaguin and
Landau (1941) and Verwey and Overbeek (1948), and concluded (partly as a result of using
too large a value for the Hamaker constant) that an electrostatic-van der Waals force balance
could account for the observed lattice spacings. These calculations have since been improved
(Brenner and McQuarrie, 1973; Brenner and Parsegian, 1974), and in their recent work,
Parsegian and Brenner (1976) found that one could not reconcile the predictions of an
improved theory with the Bernal and Fankuchen (1941) data on equilibrium spacings in
TMV gels. They called for further experimentation under conditions where theory and
measurement could be expected to agree.

In an attempt to gain insight into the nature of the forces in these systems, we began a
systematic experimental study of lattice spacing as a function of pressure in both TMV gels
and muscle. We used the experimental method recently developed by LeNeveu et al. (1976)
whereby an external osmotic pressure is generated by solutions of large, inert, uncharged
polymeric molecules. We have correlated our data with calculations of the purely electrostatic
pressure in these systems on the assumption that the measurements correspond to an
intermediate pressure regime where the weak van der Waals forces are negligible and the
strong "hard core" overlap repulsive forces are still absent. Initial results from the muscle
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system have been reported briefly (Millman and Racey, 1977; Millman and Wakabayashi,
1979) and detailed accounts of experimental results on muscle in rigor,' on resting muscle,2
and on TMV gels,3 are in preparation.

METHODS

Osmotic Pressure Determination
Samples of ve$.4brate striated muscle and of TMV gels were subjected to a net external pressure by
means of the osmotic pressure exerted by solutions of large polymeric molecules (LeNeveu et al., 1976).
The polymeric molecules used (Dextran from BDH or Pharmacia Chemical Co., Pistcataway, N. J.;
polyvinylpyrrolidone [PVP] from Sigma Chemical Co., St. Louis, MO.) are uncharged, chemically-inert
molecules. Because of their large size, they are unable to penetrate the hexagonal lattices of either the
virus gels or the muscle filaments.

The osmotic pressure generated by the polymer solutions was measured directly by the method of
LeNeveu et al. (1976), using the membrane osmometer designed by R. P. Rand (Brock University) and
used for the osmotic pressure determinations in that paper. Osmotic pressure was determined as a
function of polymer concentration across a dialysis membrane (Spectrapor 2: Spectrum Medical
Industries Inc., Los Angeles, Calif.). Polymer concentration was monitored by its refractive index using
a sugar refractometer. In any particular experiment, the refractive index of the polymer solution was
measured after equilibration of the system to enable a direct conversion into osmotic pressure.

In most of our experiments, we used dextran with a molecular weight range from 200,000 to 270,000.
In experiments with both muscle and TMV gels, some results were obtained with a dialysis membrane
(similar to that used to calibrate osmotic pressure) separating the dextran solution from the sample.
These results were indistinguishable from those obtained without the membrane, showing that the
polymer molecules do not enter the hexagonal lattices. Essentially identical results were also obtained in
the muscle system with solutions made with PVP (average molecular weight = 40,000).

Lattice Spacing
Lattice spacings were measured by low-an,le x-ray diffraction using mirror-monochromator cameras
similar to those used by Huxley and Brown (1967), with specimen-to-film distances between 20 and 40
cm. The cameras were mounted either on an Elliott GX6 rotating anode (Elliott Automation, Boehrum
Wood, England) or on a Jarrell-Ash microfocus x-ray generator (Spectro Equipment, Royalton, Ohio).
Exposures of a few hours were usually required for the TMV gels; of less than one hour for the muscle
except for very high polymer concentrations, where exposures of a few hours were sometimes necessary.
The x-ray beam (CuKa,) passed through a 1-2 mm thick sample bounded by thin mica (TMV) or Mylar
(muscle) windows. TMV patterns were obtained at room temperature; muscle patterns at room
temperature for most rigor muscles, or at 80C in the case of relaxed muscles.

Equatorial x-ray reflections from the hexagonal lattices were obtained. Normally, the 10, 11, and 20
reflections were seen from the TMV gels and the 10, and 11 reflections from the muscle filament lattice,
though other orders were seen occasionally in both types of sample after long x-ray exposures. In both
cases, changes produced in the lattice spacing were reversible.

TMV Gels
TMV was grown on young tomato plants, harvested, and purified by the method of Gregory and Holmes
(1965). The final purification was done in sodium phosphate buffer of ionic strength 0.1 M and pH of
either 6 or 7.2. After final centrifugation, a small part of the pellet was placed, along with a small
amount of buffer, in a circular chamber (volume -5,ul). A thin sheet of mica covered one side of the
sample, and a single sheet of dialysis membrane covered the other side. About 2 ml of test solution
(dextran dissolved in buffer) was placed over the dialysis membrane and the sample was allowed to
equilibrate for a few hours to several days. Before examination on the x-ray camera, most of the dextran

'Millman, B. M., K. Wakabayashi, and T. J. Racey. Manuscript in preparation.
2Millman, B. M., and T. Irving. Manuscript in preparation.
3Millman, B. M., T. Irving, B. G. Nickel, and M. Loosley-Millman. Manuscript in preparation.
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solution was removed, leaving a small volume above the dialysis membrane, which was then covered with
a second thin mica sheet and sealed. The final polymer concentration was determined by measuring the
refractive index of the solution just before sealing the sample chamber.

In some samples, the dialysis membrane was omitted, allowing direct contact between the polymer
solution and the TMV sample. No difference was detected between results from these preparations and
those where dialysis membrane was used.

Muscle Preparation
Glycerol-extracted rabbit psoas muscle was prepared by the method of Rome (1967). For experimental
use, small strips (-1 x 2 mm in cross section and 1-2 cm long) were removed, tied to small plastic
frames, and equilibrated in standard salt solution (100mM KCI, 1mM MgCl2, 6.7 mM KPO4 buffer:pH
7.0). After equilibration for periods from one to several hours, the standard salt solution was replaced by
a polymer solution (dextran dissolved in standard salt solution) ofvolume several times the volume of the
muscle sample. The muscle was then left to equilibrate for several hours. Muscles prepared in this
manner were in rigor.

Fresh frog sartorius or semitendinosus muscles were mounted in a chamber of capacity of -25 ml and
adjusted to the desired sarcomere length as determined by light diffraction. Muscle preparations in rigor
could be obtained consistently by exposing the fresh muscle to 4 mM idoacetate in Ringer's solution for
48 h at 40C before skinning. The muscle was then chemically skinned with detergent (Triton X1000)
using a technique described by Racey (1976). The muscle was placed in a "skinning" solution
(0.1-0.5% Triton dissolved in a "rigor" solution: 100 mM KCI, 4 mM MgCl2, 10 mM histidine
buffer:pH 7.0) for 1-8 h, and then rinsed in the rigor solution for -1 h. This solution was then exchanged
for solution containing a specific concentration of polymer, and the preparation was allowed to
equilibrate for 2-24 h. Relaxed muscles were skinned by a similar method, except that the "relaxing"
solution also contained 5 mM MgCl2, 5 mM ATP, and 5 mM EGTA. In this case 0.5% Triton was used
at pH 6.5 for 3-8 h. During treatment with skinning, relaxing and polymer solutions, the relaxed
preparation was constantly agitated with a magnetic stirrer. This technique, similar to that used by
Magid and Reedy (1980), usually gave relaxed muscle preparations, though on occasion the muscle had
moved into rigor as judged by the relative intensity of the 10 and 11 equatorial x-ray reflections. (In the
relaxed muscle I,s > I,,; in muscle in rigor '10 < I,,.)

Rabbit psoas muscle in rigor was also obtained by skinning intact muscle strips in the manner
described for frog muscle after the muscle had passed into rigor by leaving it at room temperature for a
few hours. No iodoacetate of glycerol extraction was needed in this case.

CALCULATION OF ELECTROSTATIC PRESSURE

Our theoretical calculations of the electrostatic pressure are based on solutions of the
Poisson-Boltzmann equation:

V 2V = (47re/,) 2; Zinoe-Z41kT(1)
in a region of dielectric constant e between periodic arrays of cylinders of dielectric constant e
and a fixed surface charge density. The ions are specified by a charge Z,e and a number
density n° in the reservoir region. Elsewhere the ions move in an average electrostatic potential
' but are otherwise noninteracting. Although this approximation is known to be quantitatively
inaccurate when applied to the calculation of the thermodynamic properties of ionic solutions
with ionic strengths > 0.01 M, it is believed to be rather accurate for the long-range
correlation functions. This evidence is based both on Monte Carlo studies (Torrie and
Valleau, 1979), and on approximate integral equation solutions of model systems. For
example, the solution for the mean spherical approximation (MSA) to a model 1-1 ionic
solution of ions with hard core repulsive diameters, d, predicts an inverse screening length K(1
+ 1/4 K2d2 _ 1/6 K3d3 + ...) where K iS the Debye-Huickel parameter (cf. Eq. 4a below)
(Waisman and Lebowitz, 1972). For typical ionic diameter d -0.4 nm and K -1.0 nm-'
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appropriate to a 0.1 M solution, the MSA yields only a 4% correction to the simple
Poisson-Boltzmann result. Since at higher ionic concentrations the MSA is in reasonable
agreement with Monte Carlo results (Rasaiah et al., 1972), we believe a figure of < 5% as a
reasonable estimate of the accuracy of the Poisson-Boltzmann equation for the range of
parameters of experimental interest here. The experimental data we present cannot distin-
guish such small corrections to the screening length.
Once the electrostatic potential in Eq. 1 has been calculated, the local ionic number density

and pressure are determined by:

n = z nWe -Ze0/kT PI = n1kT. (2)

However, the total force perpendicular to any plane surface in the medium includes extra
terms arising from the local electric fields. These Maxwell stress tensor terms are given by
E(E2- ED)/87r, where El, and E1 are the components of -vVI parallel and perpendicular to the
surface. The bulk or macroscopic pressure P above ambient for the periodic arrays considered
here is then just the local force per unit area averaged over the surface of a unit cell in the
sample. That is,:

P = ((n,) - no)kT + (e/8r) (E? - E) . (3)

We have considered in detail the two systems shown in Fig. 1. For the simple hexagonal
(TMV) system we write VI = 2n a,,ra n cos 6n0 inside each cylinder and 4' = 1" F"(x) Cos 6n0 in
the interstitial region within each unit cell. We have defined a "radial" coordinate x = ln
r * (3 + (3 cos 60)/(I -,3 cos 60) with d a numerical constant chosen to fix the points A and
B in Fig. 1 at the same maximum x value. The Poisson-Boltzmann equation then becomes a
set of coupled, nonlinear, ordinary differential equations for Fn(x) which we have solved
numerically subject to the boundary conditions that the discontinuity in the perpendicular
component of D/4w = eE/4ir on the cylinder surface gives the fixed surface charge density a

and that the perpendicular component ofE vanishes on the surface segment A-B in Fig. 1. We
have typically achievid better than 4-figure accuracy with a truncated set of from 5 to 10
coupled equations. The change of variable from r to x indicated above was crucial in enabling
us to obtain such convergence even at close packing, i.e., nearest neighbor cylinder spacing C
= 2a, where a is the cylinder radius.

2a 2- B ° ~2bt
Qc Qc°jj-- ~~~~~~B .-

a) TMV b) Muscle

Figure 1 Geometric details of the model systems considered in this paper. Regions enclosed by dashed
lines are the unit cells. Because of symmetry the solid segments A-B and A-B' are the only portions of
these boundaries that need be considered when calculating the macroscopic pressure via the average given
in Eq. 3 or 7.
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The solutions to the Poisson-Boltzmann equation for the TMV system are conveniently
characterized by two dimensionless products. One, aK, involves the Debye-Htickel parameter
K:

aK= a * ( z Z2 n) (4a)

and the other, X, involves the cylinder surface charge density a, or number of electronic
charges per unit length v:

XA 4rel I .2e2 1v (4b)
X=a

kkT =ekT
We must also specify the ratios of the reservoir ionic densities n? and the ratio of the inside to
screening medium dielectric constants '/e. The results are quite insensitive to this latter ratio,
and we have simply used the value /e = 0.2 for all calculations. Our results are displayed in
plots of the dimensionless pressure a'P/fo vs. cylinder separation C/2a, where the constantfo
is given by:

fo = e(kT)2/8ire2 = 2.26 x 10-8 dynes (5)
for e = 80 and T = 2930K. We find the pressure as shown in Fig. 2 falls off approximately as

100 5

- aK.2 0 ,''8 S '.;.f ,'.,

. I,; irt i. i ; _.t S;i..

iO 12 14

Figure 2

aK = 8.0

1.2 C/2a 1.4

Figure 3

Figure 2 Pressure as a function of cylinder separation for the simple hexagonal (TMV) system. Curves
are distinguished by different aK for a monovalent ionic solution. The surface charge parameter is X = 50
corresponding to a cylinder charge of -35 e/nm. Solid curves are the exact solutions to the Poisson-
Boltzmann Eq. 1; dashed curves are the approximate solutions determined from Eqs. 6 and 7.
Figure 3 Pressure as a function of cylinder separation determined from the exact solution of Eq. 1 for the
TMV system screened by a monovalent ionic solution with aK - 8.0. Curves are labeled by different
cylinder surface charge A defined by Eq. 4b. The upper curve corresponds to 70 e/nm, and the lower curve
to 7 e/nm. The saturation of the pressure for large A closely follows Eq. 8a.
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exp[-K(C - 2a)] as expected on the basis of simple Debye-Huickel screening theory.
Furthermore, the behavior of the pressure with surface charge density as shown in Fig. 3 can
readily be understood in terms of the one-dimensional solutions to the Poisson-Boltzmann
equation as discussed below.

It is possible to simplify these pressure calculations considerably and to extend them to the
idealized muscle system if both the cylinder radii and the separation between all cylinder
surfaces is greater than the Debye-Huickel screening length K-. These criteria are definitely
satisfied for the parameters of experimental interest here; quantitative comparisons of the
simplified solutions described below with the exact calculation on the TMV system for some
typical conditions are shown in Fig. 2. Our approximation is based on the observation that
even in the presence of extremely large surface charge densities, the potential iA around any
one cylinder becomes small enough beyond a distance K- of the surface that the linearized
Poisson-Boltzmann, i.e., Debye-Hiickel, equation is valid. Then the only difference between
the exact and linearized solutions in this small V/ region is a scale factor. Furthermore, if aK >
1, the region where A1 is large is effectively planar and we can use the Poisson-Boltzmann
equation in one dimension to estimate this scale factor.

Finally, our experimental conditions are such that the analytical formula for monovalent
solutions is reasonable; that is, i(Poisson-Boltzmann)/i(Debye-Hiickel) =
2/[l + + (X/2aK)2] far from the planar surface. We take K from Eq. 4a, multiply the
Debye-Hiickel solution in two dimensions by this scale factor, and thus write:

Oa 2 Xa K0(rK) (6)
kT 1 + (2aKK(aK)

where the Ki are Bessel functions, as our approximate potential for a single cylinder of radius
a and surface charge parameter Xa. Since in the interstitial regions in the periodic system the
potential is small and the superposition principle is valid, the total potential is obtained by a
summation over all cylinders of the potential given by Eq. 6. A simple averaging as specified
by Eq. 3 then gives the pressure. However, to be consistent with the linearization leading to
Eq. 6, we must keep only terms to order (eil/kT)2 in Eq. 3 and this leads to the simplified
expression:

P=K2( A) + (Vie)2 -((± )) (7)

The averaging in Eq. 7 was obtained by numerical integration over the lines A-B or A-B'
shown in Fig. 1, and we kept contributions to e4/kT from either the 4 or 6 cylinders nearest
these line segments. The reader should be cautioned that the gradient terms in Eq. 7 are large
along A-B'; for the muscle calculation and that significant cancellations occur between the
various terms. Therefore no further approximations, such as replacing the Bessel functions by
their asymptotic formulae, can be tolerated in this case.
On the other hand, reasonable simplifications of Eqs. 6 and 7 can be made in the TMV case

which, except for the scale factor, will lead to the formulae in the literature. In particular, if
we include contributions to el/kT from the two cylinders nearest A-B only, drop the gradient
terms in Eq. 7, and replace KO(rK) by its asymptotic value vir/2rK exp (-rK), then we obtain:

fo (+ 2 (2aK)2)( (A ) cj dxrK_2r, (8a)
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where r = (C/2)2 + x2. The last factor in Eq. 8a is approximately:

2 I, dx 4w e-KC-2 X2/C - KC (8b)

£ x-5e ()3/e28b
in agreement with the asymptotic result given by Brenner and Parsegian (1974). For the
range of parameters shown in Fig. 2, the pressure determined from Eq. 8a,b is indistinguisha-
ble from that given by Eqs. 6 and 7.
Two points related to the scale factor are worth noting. First, for our experimental

conditions, the use of the full nonlinear Poisson-Boltzmann equation leads to pressure
estimates anywhere from a factor of 4 to 50 lower than those given by the linear
Debye-Huickel theory. Second, the nonlinear Poisson-Boltzmann equation predicts that the
pressure will saturate as X -p m (see Eq. 8a) and be relatively insensitive to surface charge
density whenever X/(2aK) > 1.

Since this is precisely our experimental regime we conclude that our largest uncertainties
in the experimental fits are the cylinder radii rather than the very poorly known surface
changes. By reversing the argument we note the experimental pressure measurements cannot
be used to determine the surface charge density but can be used to estimate the radii.

RESULTS

TMV Gels
About one-half of the TMV gels made as described above and allowed to equilibrate for one to
several days gave clear low-angle x-ray diffraction patterns. The better patterns showed sharp
rings corresponding to the 10, 11, and 20 reflections from a hexagonal lattice of size -26 nm.
Thus, as found by Bernal and Fankuchen (1941), the TMV particles form sizable microcrys-
tals, with the rod shaped virus particles oriented parallel to each other in the hexagonal lattice.
There is, however, no overall orientation to the microcrystals and they thus give powder x-ray
diffraction patterns.

On exposure to dextran solutions, the TMV lattice was maintained, but the interparticle
spacing was reduced depending on the net osmotic pressure of the solution (Fig. 4). The
relation between lattice shrinking and osmotic pressure was nonlinear, decreasing towards a
limiting inter rod spacing of - 17 nm. Taking a = 8.5 nm as the charge radius of the virus rods,
we have plotted the data for pH = 7.2, I = 0.10 M in Fig. 5 in the dimensionless parameters
described earlier. The solid curve is the theoretical calculation with the appropriate K = 1.04
nm-' and X = 50, corresponding to an assumed charge density of - 35 e/nm. The curve is in
apparent agremeent with the data points over a pressure range of more than two orders of
magnitude. The values for a and X are reasonably close to those expected for TMV at this pH.
Note particularly that this curve contains no adjustable parameters other than a and X, and
that, for a given X, the data determines a to better than 5%.
As noted above, changes in the charge density X produce little shift in the theoretical curves.

A series of measurements at pH 6.0, which gave a curve indistinguishable from the curve at
pH 7.2, is consistent with the expected insensitivity to X. However, scatter of the data points
probably masked any small change caused by the resulting surface charge differences.
Current experiments are underway using larger pH differences and differences in ionic
strength; we hope that these new measurements will show clearly different force vs. distance
behavior.
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Figure 4 The decrease of interrod spacing, C(nanometers) with increased osmotic pressure, P(torr) in
TMV gels. Each point represents a single measurement. The dashed line represents the minimum interrod
spacing for large pressure.
Figure 5 The relationship between pressure and interrod spacing in dimensionless parameters (a2P/fo
and C/2a, respectively) for the TMV data in Fig. 4, with a = 8.5 nm. The solid line is the exact solution of
Eq. I for aK * 8.8 and X - 50. The reservoir ionic concentrations are in the ratio [+e] [-e]: [-2e] =
3:1: 1, appropriate to sodium phosphate buffer.

Muscle Filament Lattice

In the skinned muscle preparations, whether the membranes were removed by glycerol
extraction or by chemical skinning, the filament lattice shrank when exposed to polymer
solutions. As in the case of the TMV gels, the amount of lattice shrinking was related in a
nonlinear fashion to the net osmotic pressure of the polymer solution. In the muscle case,
shrinking below an interfilament spacing between the thick filaments of -32 nm was not
observed, even with osmotic pressures as high as 10 atm. A similar limit of osmotic shrinking
has been observed in intact muscle using glucose, sucrose or small ions as osmotic agents.4

The muscle filament lattice is considerably more complex than the lattice ofTMV gels. In
intact muscle, thick (myosin) filaments form an hexagonal array with an interfilament
spacing which decreases in frog muscle from -450 to 350 nm as the sarcomere length
increases from 2.0 to 3.6 Am (Elliott et al., 1963). Thin (actin) filaments sit at the trigonal
points of the lattice in an overlap region which varies linearly from 1.6,um at a sarcomere
length of 2.0 ,um to zero at a sarcomere length of 3.6 ,um. For purposes of comparison with
theory, we have calculated the pressure for both structures shown in Fig. 1 and then summed
the results with a weighting that varies linearly with the fractional overlap of actin and
myosin. Our procedure suggests that at all but the very longest sarcomere lengths, the
elctrostatic forces are dominated by repulsion between the thick and thin filaments.

Electron microscope photographs suggest a backbone radius for the thick filaments of 6 to
7.5 nm with projections (cross-bridges) sticking out a further 10 nm or so (Huxley, 1972). The

4Millman, B. M., I. Matsubara, and T. J. Racey. Manuscript submitted for publication.
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Figure 6 The relationshiptween pressure P(torr) and thick filament spacing C(nanometers) for rabbit
psoas muscle in rigor solution at sarcomere lengths from 2.5 to 3.1 jAm. Each point represents the average
from 3-13 measurements together with its standard error. The lines are theoretical curves calculated from
Eq. 6 and 7 for K = 1.09 nm-', Aa = 150, Xb = 27, b = 3.0 nm, and a sarcomere length of 2.8 jAm; the dashed
line is for a = 7.5 nm, the solid line for a = 16.5 nm.
Figure 7 The relationship between pressure and thick filament spacing in dimensionless parameters for
rabbit psoas muscle at sarcomere lengths from 2.5 to 3.1 um. The open circles show the same data as Fig.
6. Solid circles represent individual measurements obtained in rigor solution diluted tenfold. The lines are
theoretical curves; the solid line is as in Fig. 6, and the dashed line for K = 0.35 nm-', appropriate to the
diluted solution.

thin filament is smoother with a radius between 2.5 and 4 nm. It is likely, based on known
amino acid compositions of the various parts of the myosin molecule, that most of the charge
on the thick filament lies on the backbone.5 Measurements of filament charge per unit length
of the filament have been made by Naylor and Elliott;6 we have used figures of 100 and 20
e/nm for the thick and thin filaments, respectively, appropriate to our experimental
conditions.

Using the above values for filament charge and radii (a = 7.5 nm, b = 3.0 nm), the
calculated curve for electrostatic pressure as a function of filament separation (dashed line)
and a typical set of experimental measurements (rabbit psoas muscle in rigor at moderately
long sarcomere lengths) are shown in Fig. 6. The experimental points lie nowhere near the
calculated curve; in fact, they lie in a "forbidden" region of the plane corresponding to forces
which no amount of charge could produce. The only way to reconcile the data to the
calculations, if indeed the forces involved are electrostatic, is to assume that the charge must
be at a much larger radius than previously thought. Thus, for example, if the charges on the
thick filaments are at a radius of 16.5 nm, -double that previously assumed, then the

5Elliott, G. F. Personal communication.
6Naylor, G. R. S., and G. F. Elliott. Manuscript submitted for publication.
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Figure 8 The relationship between pressure and thick filament spacing in dimensionless parameters for
frog muscle in rigor. The circles show averaged results with standard errors at two different sarcomere
lengths assuming a = 15.5 nm. Open circles: 2.1-2.5 ,um; solid circles: 3.1-3.4 Am. The lines are
theoretical curves for a = 15.5 nm, b - 2.8 nm, K = 1.16 nm-', Xa = 150, Xb = 27; at sarcomere lengths of
2.3 um (dashed line) and 3.2 um (solid line).

experimental points are in reasonable agreement with the calculated curve (solid line, Fig. 6).
The data for frog muscle are similar and indicate an a = 15.5 nm. Such large radii are
surprising, but in the remainder of this paper we have used these values for a, and have
attempted to check this model for consistency by varying the experimental conditions of pH,
ionic strength, and filament overlap. Note that in both cases any agreement between the
experimental and theoretical electrostatic pressure is lost if the above values for the charge
radii are changed by more than 1 nm. The implications of this finding for the structure of
the thick filament will be discussed in Millman and Elliott.7

As our first check, we have done experiments using solutions of different pH and ionic
strength. Shifting the pH to 8.0 produced data which did not differ significantly from that at
pH 7.0. As in the case of the TMV gels we find this hardly surprising, given t.he large
experimental scatter and the small shift of the theoretical curves which occurs with changes in
filament charge. Decreasing the ionic strength by a factor of 10 gave an increased pressure for
a given interfilament separation, shifting the curve to the right, much as predicted by the
theory (Fig. 7). In this case, however, agreement between the experimental points and the
theoretical curve is not so good.

Because of the change in overlap pattern with sarcomere length, one would expect the
electrostatic pressure to decrease as the sarcomere length increased at a particular interfila-
ment spacing. Fig. 8 shows data from frog muscle in rigor at short and moderately long
sarcomere lengths together with the theoretical curves for these two conditions. While neither
set of data fits the theoretical curve very well, the data from the short muscles depart
significantly from the theoretical predictions, particularly at low osmotic pressures. This may

'Millman, B. M., and G. F. Elliott. Manuscript in preparation.
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indicate, in part, that other force systems are coming into play. In particular, there may be
considerable resistance to shrinking provided by the cross-bridges which are known to link
thick and thin filaments during rigor. This effect wll be greatest at short sarcomere lengths
where filament overlap is greatest, and will decrease as the sarcomere length increases. This
appears to be so at moderate and high pressures as demonstrated by data, taken in
collaboration with T. Irving, on relaxed frog muscle at short sarcomere lengths which show a
smaller interfilament spacing in relaxed muscle than was found in muscle in rigor at the same
net osmotic pressure. Alternatively, the large charge radius we have found for the thick
filaments could indicate a less rigid structure for these filaments. A decrease of -10% in
charge radius with increasing pressure would bring our data into line with the theoretical
curves. Thus electrostatic forces may still be the dominant force system, coupled with a
variable charge radius.

DISCUSSION

The results from TMV gels indicate that the Poisson-Boltzmann equation (Elliott, 1968;
Brenner and Parsegian, 1974) can provide a good first approximation to the electrostatic
forces acting in hexagonally-packed cylindrical systems where the particle dimensions and
separations may be 10 nm or more. Application to the muscle filament lattice shows general
agreement, though in this complex system there are clearly more factors which have to be
taken into account

Under our experimental conditions, particularly in the case of muscle, other nonelectros-
tatic forces may be involved, especially at very high and very low pressures. At high pressures,
the rods may come into direct contact with each other or with tightly bound water layers,
giving rise to additional stereochemical or hydration pressures. At low pressures, resistance to
indefinite swelling does occur, as shown by the fact that both TMV gels and muscle fi'lament
lattices reach equilibrium spacings when there is no external pressure, i.e., no polymer in the
external solution (Bernal and Fankuchen, 1941; Matsubara and Elliott, 1971). These other
forces could include physical attachments (e.g., Z line and M line in muscle), cross-linking
attachments (especially in rigor muscle), volume constraints from the experimental chamber,
and van der Waals attractive forces. If, as we believe, we can now measure repulsive forces
and accurately calculate the electrostatic forces, it should be possible to identify some of these
other stabilizing forces.

In the case of the TMV gels we have obtainted reasonable quantitative agreement between
our experimental data and the theoretical curves. We are extending and refining our
experiments on both TMV and muscle; in particular, we are studying the effect of varying the
pH and ionic strength. Results from these experiments should enable us to test the
Poisson-Boltzmann theory over a broader range of conditions.
Of particular interest in the muscle case are the changes that occur on contraction. We

already have indications of differences between relaxed and rigor muscle, and similar changes
may occur between relaxed and contracting muscle. We intend to compare relaxed and
contracting muscle for information about the lateral forces in the living muscle filament
lattice (e.g., Schoenberg, 1980). It is quite conceivable that clues to the mechanism of
muscular contraction will emerge from these studies.
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DISCUSSION
Session Chairman: V. Adrian Parsegian; Scribe: Kathy Jennison

SCHOENBERG: Would you amplify upon what you think some of the problems might be with the "worst fit" in the
rabbit muscle? I believe it was the overlap experiments which led you to believe that perhaps the cross-bridges are not
important; however, particularly in the case of the muscle in rigor, the projections from the thick filaments are bound
rather strongly to the thin filaments. Would you comment on what effect that might have?
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