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ABSTRACr Least-squares analysis of experimental data from the analytical ultracentrifuge
is discussed in detail, with particular attention to the use of interference optics in studying
nonideal self-associating macromolecular systems. Several examples are given that describe
the application of the technique, the expected precision of the results, and some of its
limitations. A FORTRAN IV computer program is available from the authors.

INTRODUCTION

Since the pioneering work of Svedberg and Pedersen (1), sedimentation equilibrium experi-
ments have been analyzed by a linearization procedure consisting of a graph of the logarithm
of the concentration as a function of the square of the radius. The slope of such a graph is a
simple function of the molecular weight of the solute. This procedure assumes a single ideal
nonassociating solute.

For more complex interacting systems, such as those exhibiting self-association or nonideal-
ity, this linearization procedure has been extended to measure average molecular weight
moments such as number and weight averages as a function of concentration (2-7). Generally
this is accomplished by estimating the rates of various derivatives obtained over limited ranges
of concentration in the centrifuge cell. Values of equilibrium constants, monomer molecular
weights, virial coefficients, etc. can then be evaluated from the behavior of these moments as a
function of concentration and/or position. However, this method has two major pitfalls: the
inherent difficulty and the associated (sometimes systematic) inaccuracies of numerically
differentiating the data, and the difficulty in evaluating realistic confidence regions for
parameters such as equilibrium constants arising from the use of the intermediate molecular
weight moments and the consequent requirement of complicated weighting factors.
The exponential form of the concentration distribution has been used by several workers to

evaluate equilibrium constants when the monomer molecular weights are known (8, 9). This
approach has a serious drawback in that it requires knowing the molecular weight and partial
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specific volume of the monomer. However, the calculation is simple because it is a linear
least-squares fit.
The nonlinear problem of an unknown monomer molecular weight has been discussed by

several authors (8, 10-13). All of these approaches require estimation of the absolute
concentration, instead of the relative concentration directly obtainable from interference
optics. With one exception (13), these approaches also require that the solute be ideal.
The purpose of this publication is to describe and make available a FORTRAN IV

program, NONLIN, which has been in use in our laboratories for some time (14-16).
NONLIN performs a simultaneous nonlinear least-squares fit of one or more channels of
ultracentrifuge data at different loading concentrations, radial positions, and possible angular
velocities to a specific association and/or nonideality scheme. This nonlinear least-squares fit
of the concentration distribution directly determines monomer molecular weights, virial
coefficients, and association constants. Furthermore, the program only requires a relative
concentration scale, such as is available from interference optics, instead of an absolute scale.
Several examples of the use of this program appear in the literature (14-21). In addition to
these examples, a similar program that uses the same algorithms has been employed for
several other types of experimental data (22-24).

FUNCTIONAL FORM

At sedimentation equilibrium the concentration distribution of the ith component of an ideal
system is related to the effective reduced molecular weight, ai, and to the molecular weight,
Mi, of this component by

lIncr,j Mj(1 - p)w (1)

a(r2/2) RT= RT

where c,; is the concentration of the ith component at a radius r, R is the gas constant, T is the
absolute temperature, v is the partial specific volume, p is the density and w is the angular
velocity. The concentration distribution of the ith species is obtained for constant oi by
integration of Eq. 1:

C,,i = co,i ei( 2/2-r,2/2) (2)

where c0j is the concentration of the ith component at a radius ro. For a monomer-n-mer
association the total concentration at any radius, c,,, can be expressed in terms of the
monomer concentration, c,r,, and an association constant, Kn, by

Cr,t = Cr,1 + Kn (Cr,i)n. (3)

The equivalent of Eq. 1 for a nonideal system' describable by communal virial coefficients is

a ln c,
.= ai,a=dO(r2/2) i,a In y1

+ alnc (4)

ai

1 + 2B,c + 3B2c2 +...

'The variation of a, with the density increment associated with the solute is formally the same, to first order, as a small
positive contribution to the second virial coefficient, B, (32).
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where c is the total solute concentration (&ci), the y, are the activity coefficients of the ith
species on the c scale, and the virial coefficients of the system are denoted by B, B2.....2 In
addition to the i,,a the c0,, and to the communal B1, B2...., another parameter, bc, must be
included for each channel used. This is an additive constant in the evaluation of the total
concentration introduced because the Rayleigh interferometer usually measures relative
concentration instead of absolute concentration. For the "meniscus depletion" technique this
constant should be close to zero and is usually only a few micrometers of displacement on the
photographic plate. However it must be included as

Cobs= Ctrue + C (5)
where the subscripts refer to the observed and true concentration (or fringe displacements).
The corresponding concentration distribution for any association and/or nonideality scheme
can be generated by appropriate combinations of Eqs. 2-5. The implicit assumptions of this
approach are that no volume change occurs on association (v is a constant) and that the
activity coefficients of the monomer, y'im' and any n-mer, yn are related by Eq. 6:

n In yz = In -yn. (6)

Under the assumption of Eq. 6 and of the mass action relation, the total concentration is
given by:

C , = Kg1C0, exp [a(r2/2 - r0/2)-E k Bk rt (7)
5-1 k-I kJ

where m is the total number of virial coefficients considered and n is the number of associated
species present. Accordingly we must fit the functional form, F:

n

Yi F = C{CO, exp [(ln K5)/L(2) + cra(r2/2 - r2/2)

-EZ Bk(F-C)k () + Ac (8)
k-i k

to the observations, Y1. The criterion used is the familiar least-squares (minimization of the
sum of the squares of the residuals).

This equation has been written for generality. It is usually assumed that L(Q) = Q, but for
pressure-dependent associations we define L(Q) = Q(I - VP)Q/(I - ZJp)1, as Q times the ratio
of the buoyancy factor for the Q-mer to that of the monomer and Kg as the association constant
at 1 atm pressure. The value of K, is taken as unity. This formulation accounts for the effects
of a volume change on association. It is important to note that this implies that the apparent
degree of association is not always an integer.

NUMERICAL METHODS

The basic algorithm takes some function, F (Eq. 8) and a series of data points, Y, and Xi, and determines
a vector, a, of fitted parameters such that the sum of the squares of the residuals, the differences between

2The virial coefficients used in Eq. 4 are equal to the respective colligative virial coefficients multiplied by the
monomer molecular weight. This form of Eq. 4 was chosen for mathematical simplicity, since the incorporation of the
colligative virial coefficients in Eq. 4 would also require rotor speed, partial specific volume, and temperature to be
included to calculate the monomer molecular weight.

JOHNSON ET AL. Analysis of Ultracentrifuge Data 577



the function and the data points, is a minimum. The numerical procedure used for this least-squares
curve fitting is a modification of the basic Gauss-Newton procedure (25-27). This procedure is simply
an algorithm which when given an initial guess for the vector a will find a better guess for a. The
procedure is then applied in an iterative fashion until the vector a does not change, within some specified
tolerance.
The first step in any procedure of this type is to define the function, F. This function should predict the

directly observed dependent variable, Yi, rather than some function of Y, (such as In Yi used in the
graphical procedure). The reason for this is that any nonlinear transformation made on Y1 will distort the
distribution of random experimental error (noise) which is always present on the data so that it may no
longer be assumed to be Gaussian. With such distortion the usual least-squares criterion can no longer be
applied. Consequently, we choose a function, F, to directly approximate the experimental data:

Yi !-- Fi = F (Xi, a) (9)

where Xi is the corresponding independent variable.
The proper choice of fitting parameters, a, is also important. For example, it is better to use the

natural log of the equilibrium constant, In K, instead of the equilibrium constant. This forces the
equilibrium constant to be positive at all times. In addition, since the free energy change is of greater
interest, the error statistics are evaluated in free energy space by using In K as one of the fitting
parameters. In general, the curve fit should be done on the actual parameters which are of interest.

If we let the i subscripts represent a particular data point and the i subscripts represent a particular
element of a, we can then define a matrix P whose elements are

pi ac F (Xi, a) ( 10)

and the vector of residuals, Y*, whose elements are

Y- Yi- F(Xi,a). (11)

The "correction vector," e, is then defined as

t = (P'P)l Py* (12)

where P' is the transpose of P and (P' P)-' is the inverse of the matrix (P' P). Great care must be taken
in finding the inverse of this matrix since this matrix is usually nearly singular. However, since the
matrix is symmetric, the square root method of matrix inversion can be used (28). This square root
method is exceptionally good for nearly singular matrices. The basic Gauss-Newton procedure then
provides ak, the value of a for the kth iteration, as

ak =ak-l + e. (13)

The procedure is repeated until a does not change within some specified tolerance, usually a fractional
change of one part in a million.
The Gauss-Newton procedure was modified so that instead of using e to provide both direction and

distance it is used only for the direction and a search is made to find the distance which gives a minimum
variance. This search is performed by either multiplying or dividing the magnitude ofa by two until two
distances are found: one whose corresponding variance is less than the variance of the previous iteration
and one whose corresponding variance is larger than the previous iteration. The value from'the previous
iteration and these points are then fit to a quadratic polynomial. The resulting polynomial is then
differentiated to find the distance corresponding to the minimum variance. Occasionally one of the
points used in the search will have a lower variance than the predicted minimum, and in this case the
lowest point is taken. Such a search procedure forces the variance to decrease with each iteration. This
greatly improves the convergence properties of the Gauss-Newton procedure thus relaxing the
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requirements on the initial guesses. This modification is a generalization of a procedure suggested by
Box (25) and Hartley (26).
A complication arises for cases where the function, F, is a function of itself (e.g., for nonideal

sedimentation equilibrium, Eqs. 7 and 8). This can be resolved by defining a new function, G, as the
difference between the calculated concentration and the function F evaluated at that calculated
concentration. The value of the function F can then be evaluated for each data point iteratively by
Newton's method as

Fq+= Fq -_ G/lFq (14)

where q refers to the iteration number. The iterative process is continued until Fq+' becomes
indistinguishable from Fq; i.e., G approaches zero.
The reported confidence limits are calculated by searching the variance space for an F-statistic

corresponding to approximately a 65% confidence probability (22, 23). The 65% confidence region for a
Gaussian distribution is the mean plus or minus roughly one standard deviation. This search of the
variance space is performed in two ways: In the first way each of the elements of a is varied
independently. In the other way the direction of the search is defined in terms of the F statistic (variance
ratio) as the axis of the multidimensional hyperellipsoid defined by the solutions, Q, of the following
matrix equation (25, 27).

(a -Q) PP' (a -Q) < ns2 F statistic, (15)

where n is the number of parameters and s2 is the variance of the minimum. Confidence intervals
evaluated by this procedure correspond to approximately 1 SD, but because of the correlation between
successive data points and between parameters these confidence limits are only estimates of the true
value. In general such confidence limits will be asymmetrical and are thus reported as a range of values
instead of a single value. These confidence limits only reflect the precision of the fit of the experimental
data to the model and do not necessarily indicate the accuracy of the determined parameters. The
evaluation of the confidence region does not include possible effects of systematic errors in the data.
Likewise the use of an incorrect association and/or nonideality model can lead to utter nonsense
(examples of this are given later).
The cross-correlation between fitting parameters, CCij, is evaluated from the elements of the inverse

of the P'P matrix at the solution,

Cij = (P'P) '/[(P'P)J'(P'P)111]12 (16)

Goodness of fit can be determined by two commonly used criteria: first, the variance must be
approximately the same as the experimental noise level, e.g., a few micrometers of displacement on the
photographic plate; second, the residuals must appear to be random as a function of either concentration
or radius. The latter criterion is usually applied qualitatively rather than quantitatively. The program
does, however, quantitate this second criterion by estimating the nonrandomness of the residuals.
To evaluate the precision and range of applicability of these algorithms, simulated data with

pseudo-random noise was used. For the purpose of testing the program simulated data are preferable
because (a) the "correct" answers and model are known, (b) the amount of added random noise is also
known, and (c) the same data can be analyzed with different sets of random noise. Several examples
already exist in the literature where these algorithms have been used on real experimental systems
(14-21, 23).
The simulation of data involved in iterative process to choose monomer concentrations at some

reference points, consistent with conservation of mass in an ultracentrifuge cell with specific bounding
radii and loading concentrations. The radii were chosen to simulate the six-channel centerpieces
available for the Beckman Model E ultracentrifuge (29, 30) (Beckman Instruments, Palo Alto, Calif.).
Initial loading concentrations were chosen so that the concentrations of the solute in the three sample
cells were in a ratio of 9:3:1 (inside to outside radius) and such that the middle cell would have the
maximum observable fringe gradient (15 mm/cm2) at its base. In addition, the data from all the cells
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were truncated when the concentration gradient exceeded a realistic experimental value, 15 mm/cm2. A
total of approximately 80-90 equally spaced points were simulated for each of the three pairs of
channels of the centerpiece. Data simulated in this manner are consequently a good approximation of
what can be obtained for real experimental systems with the analytical ultracentrifuge.

In an attempt to further simulate real experimental data, Gaussian distributed random noise of some
specified amplitude, usually 3 Aim on the photographic plate, was added to each of the simulated sets of
data. These Gaussian distributed random numbers were calculated as 6 minus the sum of 12 random
numbers evenly distributed between 0 and 1. The resulting numbers have a mean of zero and an SD of 1
and consequently can be scaled to give any desired mean and standard deviation. The evenly distributed
random numbers were calculated with functions RANDU, (IBM scientific subroutine package; IBM
Corp., White Plains, N.Y.) or RANF (Control Data Corp., Minneapolis, Minn.), depending on the
computer used.

TESTS OF METHODS

The description of the function and usefulness of this program consists of a series of examples.
These examples include the analysis of a monomer n-mer association (a relatively simple case)
and a nonideal monomer dimer association (a particularly difficult problem). In addition,
some examples illustrate possible pitfalls in analyzing data of this type by any method. First,
however, we demonstrate that our method of finding the confidence interval, the use of Eq. 15,
is reasonable for at least one functional form.

Confidence Intervals
To test the algorithm for evaluating the confidence intervals a linear system must be used. The
use of a linear system, in this case a quadratic polynomial, allows independent calculation of
the confidence intervals by standard statistical techniques. In this manner we have an
estimate of the true confidence intervals to compare with that generated by the algorithm
which we have used.
To this end, 25 evenly spaced data points were calculated for a quadratic polynomial:

y=B0+B1X,+B~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2X 0 <Xi<1,y == Bo + B,Xj + B2 i 0 X<1

where Bo = 4, B, = 3 and B2 = 2. Gaussian distributed simulated random noise was then
superimposed on these data so that the standard deviation of this noise was 0.02.

These data were then "analyzed" by the algorithms presented in the Numerical Methods
section yielding among other things the confidence interval for each of the parameters. In
addition, the standard error of each parameter was evaluated by the standard statistical
method, taking the variance of each of the parameters as equal to the variance of the data
points times the corresponding diagonal element of the (P'P)-' matrix. Table I presents a
comparison of these standard deviations and of the confidence intervals for these calculations.
The example given in Table I shows that for this case the values of the confidence interval as
predicted by Eq. 15 are approximately a factor of 2 larger than those predicted by the more
standard techniques. This discrepancy probably stems from a difference in the assumptions
involved in evaluating these two statistical measures. The usual method of evaluating the
standard error assumes that the parameters are independent. It is, however, easy to
demonstrate that this is not the case. Table II gives the cross-correlation matrix for the curve
fit presented in Table I. The correlation matrix implicitly describes the shape (but not the
size) of the confidence region. If all off-diagonal elements were zero, this region would be
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TABLE I
A COMPARISON OF STANDARD ERRORS AND CONFIDENCE INTERVALS FOR EACH OF

THE PARAMETERS WHEN FITTING TO A QUADRATIC POLYNOMIAL

Parameter Value* Confidence interval1 Standard error'

Bo 4.000 (3.970, 4.030) ±0.015
B, 2.980 (2.837, 3.124) ±0.066
B2 2.025 (1.896, 2.154) ±0.062

*Best least-square value.
1As determined by Eq. 15.
'As determined by standard statistical methods (see text).

radially symmetric about the estimated values for the parameters: a hypersphere. In the
presence of correlation, the eigenvalues of the correlation matrix describe the lengths of the
principal semi-axes of the hyperellipsoid and the corresponding eigenvectors define their
orientation (25). These are the directions used in describing the confidence region. For the
matrix in Table II, the eigenvalues are 2.745, 0.246, and 0.008. Hence along an unique linear
combination of parameters, the confidence region appears some 2.75 times larger than
predicted by simple linear theory. In other directions, however, the confidence region is more
tightly defined. With the high cross-correlation shown in Table II it is not surprising that the
standard statistical method predicts a value that is a factor of 2 less than an alternative
method that includes cross-correlation as one of its assumptions. Consequently, Eq. 15 seems
to predict a reasonable value for the confidence interval, at least for this example.
A further word is in order about confidence intervals. The expected confidence intervals

with nonlinear functions are rarely symmetrical and thus is is impossible to express them as
plus or minus a single value. An example of an asymmetrical confidence interval is the
confidence interval of an equilibrium constant, or In K, when the experimental conditions are
such that the equilibrium is almost completely in either direction. In this circumstance the
confidence region will be very asymmetrical with one of the limits being either plus or minus
infinity. Our method of evaluating the confidence interval allows for asymmetric confidence
intervals and will indeed predict a confidence limit of plus or minus infinity as required by the
data!

Ideal Self-association
The example that was chosen to illustrate the usefulness of this method of analysis is a
monomer-tetramer equilibrium. For each of the cases investigated data were calculated for
the given equilibrium in an attempt to simulate an experiment using the available six-channel

TABLE II
THE CORRELATION MATRIX* FOR THE ANALYSIS PRESENTED IN TABLE I.

Parameter Bo B, B2

Bo 1.000 -0.879 0.765
B, -0.879 1.000 -0.970
B2 0.765 -0.970 1.000

*Calculated according to Eq. 16.
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FIGURE 1 The effect of a variation of the reduced molecular weight af on the ability to determine a, in K,
and n for a monomer-tetramer system. See text for details of data simulation and analysis.
FIGURE 2 The effect of a variation of the equilibrium constant on the ability to determine , in K, and n.
See text for details of data simulation and analysis.

centerpiece. Normally distributed pseudo-random noise was added to the data at a realistic
level for careful measurement (0.003 mm SD). Unless otherwise stated, the equilibrium
simulated is a monomer-tetramer with an equilibrium constant3 of 1.0 mm-3 and a reduced
molecular weight, a, of 3.0 cm-2.
The effect of a variation of the reduced molecular weight, a, on the ability to estimatear , the

natural logarithm of the equilibrium constant, in K, and the degree of polymerization, n, is
shown in Fig. 1. The open circles below a- of 0.5 cm-2 correspond to determinations where
the base-line concentration level is known (6c = 0); under these conditions this could be
obtained through a complementary synthetic boundary experiment, and the assumption of
mass conservation. The open circles at a= 10 cm-2 correspond to an analysis where the degree
of association is known (n = 4). Between values of a ofs0.7-7 cm-2, in this example, this
method can simultaneously evaluate monomer molecular weights to within a few percent, and
free energies of association to within 60 cal/mol without prior knowledge of the degree of
association.
A similar series of calculations is given in Fig. 2, where the equilibrium constant is varied

over six orders of magnitude:cr =b3ecm2; n = 4. With the exception of values of the
equilibrium constant of 0.001 mm-3 it can be seen that the actual value of the equilibrium
constant has little effect on the estimation of itself, the degree of association or the reduced
molecular weight. The inability to accurately determine these parameters at values of K <
0.001 mm-3 is not surprising since then the weight fraction of tetramer never exceeds 5% in
any of the cells and is only 0.1% at the base of the least concentrated cell.

3The unit of concentration used in these simulations is millimeters of displacement of the interference pattern on the
photographic plate. In a typical model E ultracentrifuge using 12-mm centerpieces this corresponds to -1 mg/ml.
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FIGURE 3 The effect of a variation of the degree of polymerization on the ability to determine a, In K,
and n. See text for details of data simulation and analysis.

A similar variation of the degree of polymerization (n) is shown in Fig. 3. It is obvious that
degrees of polymerization as high as 15 have little effect on the analysis.

Nonideal Self-association
It has been demonstrated analytically that the variation in molecular weight that results from
self-association can, under some conditions, be expressed as a series expansion in concentra-
tion similar to Eq. 4 (31). It was further demonstrated that for a monomer-n-mer association
the second term is proportional to the concentration to the n - 1 power and has a negative
sign. Consequently, a nonideal monomer-dimer association should be and is, exceptionally
difficult to resolve since the terms of the respective expansions tend to cancel each other. This
is the example we have chosen to demonstrate the use of the method.

Synthetic data were generated as before with various values of the virial coefficient, B,. In
these examples K was taken to be 1.0 mm-' and a to be 5.0 cm-2. Fig. 4 shows the results of
the analysis of these data at several values of B,. It appears that for a single experiment with
three solution/solvent pairs the lower limit for the measurement of B, (simultaneously with
K2) is 0.004 mm-'. To enable the reader to easily appreciate the meaning of various values of
B, we have presented in Fig. 5 the apparent weight-average value of the reduced molecular
weight of the solution as a function of concentration for three values of B,. Comparing the
lower limit of measurement, 0.004 mm-', for B, with Fig. 5 indicates that this is actually very
little nonideality. The inset in Fig. 5 is to illustrate that the lower limit of measurement
corresponds to a change in the shape of the graph of apparent weight-average molecular
weight against log concentration. It is this change in shape that will enable B, and K2 to be
resolved. The upper limit appears to be between 0.3 and 1.0 mm-', which is sufficient
nonideality that the association is very difficult to observe (see Fig. 5).

Another interesting phenomenon is illustrated in Fig. 4. The points at B, values of 0.003
and 0.001 mm-' show a high correlation between the values of In K and a. It should be
pointed out, however, that under these conditions, the weight fraction dimer does not exceed
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FIGURE 4 The effect of a variation of the amount of nonideality on the ability to determine a, In K, and
B, for a nonideal monomer-dimer self-association: a - 5 cm-2, K = 1 mm-', n = 2. See text for the details
of data simulation and analysis.
FIGURE 5 Weight-average-reduced molecular weight as a function of concentration for some of the
nonideal examples presented in Fig. 4.

50% anywhere in any of the cells. It is consequently not surprising that the cross-correlation
coefficient between the parameters is -0.978 and that this is reflected in the analysis. What is
surprising is that in a situation such as this the molecular weight can be determined to within
2% and the free energy of association to within 200 cal/mol.

Incorrect Models
A second nonideal example is worth nothing. In this example data were generated to simulate
an ideal monomer-dimer association with a maximum weight fraction dimer of 23% at the
base of the most concentrated cell. These data were then analyzed as an ideal monomer-
n-mer association and as a nonideal single component. A comparison of the resulting
parameter values is given in Table III. There are several noteworthy points in this table. First,
the choice of an incorrect model does not adversely affect the ability to determine the
molecular weight, for this example. This may be useful, but is not guaranteed to be true in
every case. Second, the second virial coefficient, B,, is negative. The choice of an incorrect
model may well be the source of some of the negative values of B, reported in the literature.
Third, the analysis by the incorrect model picked values of the base line, bc, which are
incorrect by 1 /100 of a fringe on the photographic plate. This emphasizes the need of a very
accurate determination of this parameter whenever possible. Fourth, the incorrect model
yielded a variance which was 25% higher than the correct model. Since the critical F statistic
for a 65% confidence interval is <1.05, the correct model can be ruled out on this basis. It
should be noted, however, that the incorrect model appears to fit the data by all other criteria
which can be applied including randomness of the residuals. Consequently, if there is any
possibility of systematic or nonrandom noise in the data these two models can probably not be
distinguished.
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TABLE III
ANALYSIS OF DATA GENERATED TO SIMULATE A MONOMER-DIMER ASSOCIATION

WITH THE CORRECT AND INCORRECT NONIDEAL NONASSOCIATING MODEL*

Analyzed as

monomer-dimer nonideal monomer

3.010 (2.986, 3.035) 3.098 (3.079, 3.117)
n 2.025 (1.971, 2.079)
In K2 -2.377 (-2.556, -2.204)
B, -0.024 (-0.025, -0.023)
6c, 0.0006 (-0.0005, 0.0018) 0.0028 (0.0012, 0.0043)
6c2 0.0004 (-0.0007, 0.0015) 0.0023 (0.0009,0.0036)
6C3 0.0001 (-0.001 1, 0.0013) 0.0016 (0.0002, 0.0031)

Variance 8.76 x 10-6 11.17 x 10-6

= 3.0 cm2; K2 = 0.2 mm-'; n - 2.

Another common mistake in the literature is the neglect of small amounts of nonideality.
Every macromolecule can potentially exhibit nonideality because of excluded volume and
charge repulsion. In a carefully designed experiment these effects often can be diminished, but
cannot be eliminated. The reader is referred to our experiments on Limulus hemocyanin
performed in 0.45 M KCI (16). Even with nearly half molar salt we were able to measure the
nonideality and simultaneously account for the nonideality as a combination of charge effect
(predominant) and excluded volume.

In Fig. 6 we present the apparent values of the reduced molecular weight, a, and the
logarithm of the equilibrium constant, ln K, when a nonideal monomer-dimer association is
analyzed as an ideal monomer-dimer association. Comparison with Fig. 5 shows that a value
of 0.01 mm-' for B1 does not appear to be markedly nonideal, yet neglect of this small amount
of nonideality does indeed cause significant errors.
To demonstrate that similar problems exist for ideal systems we present in Table IV an

analysis of a monomer-trimer association in terms of the correct monomer-trimer model and
in terms of an incorrect monomer-dimer-tetramer model. In this incorrectly analyzed case, the

E
C.)
cx

b°

0.0 0.001 0.003 0.01 C C

B, (mmi')

C.
CL
y

FIGURE 6 Errors introduced into the evaluation of a and In K by neglecting various amounts of
nonideality. Data were generated for a monomer-dimer association with varying amounts of nonideality
and analyzed assuming ideality: a = 5.0 cm-2; K - 1.0 mm-'. See text for details.
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TABLE IV
ANALYSIS OF DATA GENERATED TO SIMULATE A MONOMER-TRIMER MODEL BY THE

CORRECT AND AN INCORRECT MONOMER-DIMER-TETRAMER MODEL*

Analyzed as

monomer-trimer monomer-dimer-tetramer

or 3.014 (2.984, 3.043) 2.610 (2.571, 2.648)
In K3 -0.029 (-0.089, +0.034)
In K2 0.422 (0.322,0.525)
In K4 1.180 (1.033, 1.330)
bc, +0.0002 (-0.0009,0.0012) -0.0024 (-0.0036, -0.0012)
6C2 +0.0002 (-0.0009,0.0012) -0.0022 (-0.0034, -0.0011)
kc3 +0.0000 (-0.0010, 0.0011) -0.0019 (-0.0031, -0.0007)

Variance 7.78 x 10-6 9,51 x 10-6

a= 3.0 cm-2;K3 = 1.0 mm-2;n -3.

monomer molecular weight is significantly in error, and the equilibrium constants are totally
meaningless. As mentioned in the discussion of Table III, the base-line error is small but
significant; again the variance is significantly higher for the incorrect model. However, as
previously mentioned, the lower variance is only a weak argument in favor of one model over
the other if the possibility of systematic experimental errors exists.

It should be noted that these limitations and consequences imposed by the use of an
incorrect model, i.e., neglecting nonideality etc., are not a problem or limitation specific to this
method of analysis, or to this computer program, and to a large extent are not limitations
imposed by the use of the analytical ultracentrifuge. These problems are in fact a consequence
of the similarities of the functional forms of the conservation of mass equations for the
different molecular interactions and the physical limits of solute concentration and detection
imposed by any experiments on macromolecules.

CONCLUSIONS

In this report we have presented and demonstrated the usefulness of nonlinear least-squares
techniques as applied to the analytical ultracentrifuge. The examples used to test both the
method and our computer program were specifically chosen to demonstrate the flexibility and
precision of the approach for both ideal and nonideal systems. In addition, several examples
were chosen which point out pitfalls of an incorrect choice of model.
We wish to emphasize that the primary usefulness of this method of analysis is to test

particular models against experimental data and determine the corresponding parameter
values and confidence intervals. It can be used to rule out models that obviously do not fit the
experimental data. However this approach cannot easily be used to distinguish between
different models that fit the data with approximately the same precision. Consequently, this
method should be used in conjunction with some of the model independent methods that have
been developed (2-4, 7).
We have used this general method of analysis for approximately 10 years in the analysis of

data from the analytical ultracentrifuge and from other biochemical techniques. The reader is
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referred to the literature for a discussion of these experimental systems (15-24) and to recent
studies from other workers (33, 34).

Should the reader desire to apply these methods to the analytical ultracentrifuge, two
versions of a FORTRAN IV program are available from the authors: one for an IBM 370 and
the other for a Control Data Corp. Cyber 720. A third version is also available that is not
specific to the analytical ultracentrifuge, but requires a user-specified equation.
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