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ABSTRACT Certain standard properties, including spontaneous curvature, are assumed for
the membrane of a bilipid vesicle. Then, if there is a mechanism that causes the membrane
area to increase, vesicle cleavage is found to occur.

INTRODUCTION

A simple mathematical model of the red blood cell membrane was proposed by Canham
(1970) and, in a generalized form that includes spontaneous curvature, by Helfrich (1973).
That model, based on minimization of bending energy, has been remarkably successful in the
description of the biconcave shape of the red blood cell (Deuling and Helfrich, 1976a).
In that model shear stresses within the membrane are assumed negligible. The membrane
is in essence a two-dimensional fluid, with energy per unit area equal to

Jkjcj + C2 - Co)2, (1)

where kc is an elastic constant, c, and c2 are the principal curvatures, and co is the constant
of spontaneous curvature.

In model 1 the membrane is assumed homogeneous but asymmetric, as seems appropriate
to the fluid mosaic model proposed by Singer and Nicolson (1972). Several authors (Evans,
1974; Helfrich, 1974; Sheetz and Singer, 1974) have concluded that membrane asymmetry
is essential to an explanation of observed red blood cell shapes, and have proposed various
mechanisms to account for it. Such an asymmetry of the lipid bilayer, and the resulting
nonzero value of co, could arise from differences of composition or effective area of the two
monolayers, or from the effects of membrane proteins. Indeed, asymmetry might be antici-
pated simply because of the different fluid environments on the inside and outside of the
lipid bilayer, but there is also substantial evidence that the inner and outer monolayers dif-
fer in composition and structure (Singer and Nicolson, 1972). Thus co cannot in general
be assumed to be zero; in fact, some progress has also been made toward an understanding
of mechanisms that could cause the spontaneous curvature to change with time (see Sheetz
and Singer, 1977). It is Qf course possible that model 1 is too idealized and that shear
stresses should indeed be taken into account, at least over short time intervals (see Evans
and La Celle, 1975; Deuling and Helfrich, 1976b). In any case, the model is useful be-
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cause of its simplicity and elegance. Because it has only one unspecified parameter, c0,
model 1 has correspondingly great predictive value. By contrast, in membrane models
based on the more traditional thin shell theory (e.g., Fung and Tong, 1968), it is usually
necessary to specify a priori an intrinsic membrane shape.
We now apply membrane model 1 to a bilipid vesicle where c0 remains constant, but where

there is some kind of mechanism that increases the membrane area. We are not concerned
here with the precise nature of the growth or synthesis mechanism; however, one mechanism
that has been observed in connection with biological membranes and widely discussed is
the fusion of small vesicles with the membrane. In the process their area is incorporated
into the membrane and their contents expelled across the membrane (see reviews: Berlind,
1977, p. 216; Morre and Ovtracht, 1977, p. 135).

FORMULATION OF THE MODEL

Let us then consider a vesicle whose area increases, and let p be the pressure difference (ex-
ternal pressure minus internal pressure). Although one might assume a general functional
dependence

dA/dt = f(A, V,p)

dV/dt = g(A, V,p) (2)

for the time derivatives of the vesicle area and volume, we prefer for concreteness to men-
tion the following two special cases: in case 1, dA/dt and dV/dt depend linearly on A
(or, more generally, on a linear combination of A and V), so that A and V increase expo-
nentially with time. Case I might apply to a nearly impermeable membrane where the rate
of fluid transport across the membrane is essentially related to or limited by the membrane
area. A more interesting situation, case 2, is where dV/dt is proportional to p - po, and
the volume increases in such a way that p tends toward the constant pressure po; in fact,
if the time constant is sufficiently short, the time dependence of A is unimportant since p
is approximately equal to po, and A enters the problem only as a parameter. Case 2 ap-
plies if the membrane is relatively permeable, so that fluid is transported quickly across the
membrane whenever p differs from the osmotic pressure po. We ignore for the present
any change in po that might be caused by dilution of the fluid within the vesicle. In either
of the above cases we assume Eq. 1 and use energy considerations to determine the vesicle
shape at each instant; thus we are assuming that other dynamic effects in the system (e.g.,
membrane acceleration, motion of fluid with the vesicle) can be neglected at the time scale
of interest.
We are primarily concerned with the changes in vesicle shape and volume that occur as

the area increases, but to solve the problem we need information about the family of static
vesicle shapes. The numerical calculation of static vesicle shapes is of itself an interesting
but rather lengthy undertaking; however, the underlying mathematical problem can be
stated quite simply: find the closed surface of given area and volume for which the integral
over area of the energy (1) is a minimum. Deuling and Helfrich (1976a, b) and Jenkins
(1977) have each described methods of doing this. Assuming axial symmetry, they each set
up a variational problem and use the calculus of variations to derive a system of Euler equa-
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tions, which are then solved numerically. Deuling and Helfrich use a Newton-Raphson
method of solution, whereas Jenkins uses the technique of quasi-linearization. Because our
method of solution for static vesicle shapes is sufficiently similar to those of Deuling and
Helfrich (1976a, b) and Jenkins (1977), we will omit the details here, but it has some com-
putational advantages that will be described elsewhere.

RESULTS FROM NUMERICAL COMPUTATION

Results for case 2 when co = 5 are shown in Fig. 1, Fig. 2, and Fig. 3. Case 2 is for con-
stant pressure, so for convenience we present results in nondimensional form with kc = 1,
po = 1; however, the problem can easily be rescaled for other values of kc and po if desired.
In that case distances are to be multiplied by (kc/po)"13, areas by (kc/po)213, volumes by
kc/po, and curvatures co, cl, c2 by (po/k)'"3. In Fig. 1 the broken lineABC shows the free
energy (bending energy, plus pressure times volume) of the family of spherical solutions. A
family of elongated solutions, CDBE, bifurcates from the family of spherical solutions at
point C. Near C the elongated solutions approximate prolate ellipsoids, but from B to E,
where they have lower energy than the spherical solutions, they are dumbbell-shaped. The
sequence of vesicle shapes under conditions of increasing vesicle area is shown in Fig. 2, and
the corresponding volumes are shown in Fig. 3; letters correspond to those in Fig. 1. The
spherical solution A grows until it reaches size B. Let us suppose for the moment that the
spherical solutions become unstable at B, so that a transition occurs to the dumbbell shape
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FIGURE 1 Free energy of spherical solutions (broken line) and elongated solutions (solid line) as
functions of vesicle area. All quantities have been nondimensionalized so thatp = 1.
FIGURE 2 Sequence of vesicle shapes showing vesicle cleavage. Solutions are axially symmetric
about the vertical axis. The scale in nondimensional units is indicated on the vertical axis, and
letters correspond to Fig. 1.
FIGURE 3 Volume of spherical solutions (broken line) and elongated solutions (solid line) as
functions of vesicle area. Letters correspond to Fig. 1.
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B' of the same area and free energy. Upon further increase in vesicle area the shape ap-
proaches E and the necklike region of the dumbbell becomes very narrow. We have not
been able to obtain complete closure of the neck, perhaps because of computational inac-
curacies near the singularity, or perhaps because a somewhat larger value of co is needed.
In any case, the neck is so narrow at E that it is natural to assume that the membrane fuses
and that two separate vesicles are formed. The process then repeats itself from A .

DISCUSSION

For suitable positive values of co, growth of the membrane area thus leads naturally to a
vesicle cleavage phenomenon. That result agrees with intuition in that the large positive
value of the spontaneous curvature drives the configuration to two spheres when the area
has become large enough to accommodate them. By contrast, negative values of co typically
give the biconcave vesicle shapes associated with erythrocytes (Deuling and Helfrich,
1976a, b). When co = 0, we infer from the results of Jenkins (1977) that the vesicle
would elongate but cleavage would not occur. The shapes calculated by Deuling and
Helfrich (1977) for myelin forms for various co also appear consistent with the above inter-
pretations.

In the mode of vesicle cleavage that we have outlined, the main unresolved problems in-
volve the transition from the sphere B to the dumbbell shape B'; we believe that these
questions deserve further study. Whether the vesicle will indeed assume the shape of lowest
free energy as we have supposed depends of course on stability considerations, but because
of the rapid increase in free energy of the spherical solutions with area, as shown in Fig. 1,
it seems implausible that the spherical solutions could be metastable much beyond B. A
transition to the dumbbell shape at B or shortly thereafter is thus highly plausible, but a
thorough investigation of this question will be difficult because it necessarily involves vesicle
shapes that are not axially symmetric.
The dynamic behavior of the membrane during the transition is also of interest. It is clear

that a transition from B to B' cannot occur instantly, since fluid must be transported out
of the vesicle to account for the decrease in volume, as can be seen from Fig. 3. To
examine the details of the transition one would then need to refer back to Eqs. 2, which
govern the transport of fluid through the membrane when p is temporarily less than po.
Thus for case 2, the transition from B to B' is the only part of the problem where Eqs. 2
are really needed, since otherwise one can simply use the quasi-static idealization that the
vesicle shape depends on the area.
We have not yet obtained results for an impermeable membrane (case 1) because the

calculation of the static vesicle shapes turns out to be somewhat more difficult than for
case 2. In case 1 it is clear, however, that the vesicle cannot in general be spherical, for
even if the vesicle is assumed initially spherical, the volume will be insufficient to allow for
a spherical shape once an increase in area has occurred.

SUMMARY

The above model of vesicle cleavage is extremely idealized, and we do not yet know of a
physical situation where it is clearly applicable; nevertheless, we feel that it is so simple and
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natural that its consequences should be understood. We believe that a clear understanding
of the behavior of model membranes under diverse circumstances is especially useful in
that, because of the difficulties of direct measurement, membrane properties must often be
deduced from the observed vesicle shapes. We also note that Greenspan (1977a, b) has for-
mulated a mathematical model of cell cleavage that is related to the classical experiments in
which cleavage of an oil drop is caused by application of a surfactant at the opposite
poles. Similarly, we consider our results on vesicle cleavage to be an instructive analogue
of cell division, even though cell division is known to be a diverse and highly complex phe-
nomenon. More relevant applications are likely to be found in the study of liposomes
(Bangham, Hill, and Miller, 1974) or in the study of various cell organelles.
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