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ABSTRACT A model of a 100-,m diameter Purkinje fiber with intercellular clefts was studied
under voltage clamp conditions to examine the consequences of radial nonuniformity.
Sodium and potassium conductances were distributed so that the surface and cleft mem-
branes had similar channel density. Assuming that the model is appropriate, sodium current
(and conductance) measured in the voltage clamp is grossly underestimated because of loss
of voltage control of the cleft membrane. Under these conditions a value for iNa of about
15-20 mmho/cm2 of actual membrane is consistent with the experimental measurements of
Dudel and Rudel (1970. Pfluegers Arch. Eur. J. Physiol. 315:136-158.). Intermediate and
slow currents (slow inward current and potassium current) appear to be accurately mea-
sured under the model conditions, despite some voltage nonuniformity within the cleft. This
result depended on the presence of a residual sodium current, and experimental removal of
sodium may alter this result. All effects of nonuniformity would be accentuated in fibers
of larger diameter.

INTRODUCTION

Although lengths of thin Purkinje fibers dissected from the walls of sheep heart behave
much like simple one-dimensional cables (Weidmann, 1952; Dl1eze, 1970), their geometry is
complex. A section of a 100- tm Purkinje fiber reveals it to be composed of about 6-12 cells
in cross section, each with a diameter of about 40-60 ,m and a length of 100 ,tm. Con-
nections between cells are fairly common, appearing as gap junctions covering about 17%
of the total junctional area (Mobley and Page, 1972).
The capacitance of a 100-,m diameter sheep cardiac Purkinje fiber measured by injecting

step pulses of current is 12-15 gF/cm2, when normalized by the apparent surface area
(Weidmann, 1952; Fozzard, 1966; Schoenberg et al., 1975). The capacitance measured from
the action potential foot, according to the technique of Tasaki and Hagiwara (1957), is only
2.4,gF/cm2 (Fozzard, 1966). Fozzard (1966) suggested that the discrepancy could be re-
solved by assuming that two-thirds of the total capacitance measured with the square pulse
technique was in series with a resistance of about 300 Q - cm. Sommer and Johnson (1968)

This work was presented in part at a symposium sponsored by the Muscular Dystrophy Association and the Uni-
versity of Rochester entitled "Membrane Control of Function in Excitable Tissues" held November 10-14, 1975 at
the University of Rochester.

BIOPHYS. J. © Biophysical Society - 0006-3495/79/02/217/18 $1.00 217
Volume 25 February 1979 217-234



were instrumental in emphasizing the importance of geometry by pointing out that the mem-
brane in series with a resistance was probably that portion of the cell membrane facing
clefts between the cells making up the Purkinje fiber, as distinguished from the membrane on
the surface of the cell bundle. The cleft membrane is continuous with the membrane on the
surface, but current passing across it must also traverse the intercellular space. Since the
individual cells are much longer than they are wide, this space appears as an intercellular
cleft. If Sommer and Johnson are correct, then larger Purkinje fibers would be expected to
have a larger capacitance per unit apparent surface area. That this is indeed the case was
demonstrated by Schoenberg et al. (1975).
One model used to explain the effects of membrane not on the surface, but in series with

the resistance of fluid in a narrow space, is the T-tubular model of Adrian et al. (1969),
devised for frog skeletal muscle. This model assumes a constant capacitance per unit volume
contributed by the T-tubules. A second type of model, in which the 100-m Purkinje fiber
was made up of six long, triangular cells arranged like six wedges of a pie, was put forth
by Hellam and Studt (1974a) and Schoenberg et al. (1975). In this model, the membrane in
series with a resistance was distributed along the six intercellular clefts. By comparison,
the Adrian et al. model (1969) puts a larger fraction of the "internal" membrane nearer the
surface, and that type of model for Purkinje fibers could not simultaneously account for
both the amount of capacitance filled by the foot of the action potential and that measured
by the square-wave technique.

Since the "pie-shaped" models of Hellam and Studt (1974a) and Schoenberg et al. (1975)
explain the passive properties of Purkinje fibers reasonably well, and since little is known
about the distribution of ionic currents between "surface" and "cleft" membrane in Purkinje
fibers, it seemed reasonable to use the pie-shaped model as a tool for considering the effect
of Purkinje fiber geometry upon recorded active currents. Our approach was to use a fairly
simple model of ionic current channels in the surface and cleft membranes (just complicated
enough so that the membrane could generate an action potential with overshoot and
plateau), and then to see how the geometry of the clefts determined the currents that would
be measured during a voltage clamp experiment. It was found that for the structural param-
eters measured by Mobley and Page (1972), the geometry of the fiber clefts influences the
relationship between currents actually generated by the fiber membrane and those recordable
during a voltage clamp experiment.

METHODS

A cross section of the simplified model for a 100-,m Purkinje fiber is illustrated in Fig. 1. The
model is composed of six cells. The intercellular spacing is taken as constant (Sommer and John-
son, 1968) and in the "standard fiber" model has a value of 30 nm. We will refer to the sarcolem-
mal membrane directly on the surface as the overt membrane, and the sarcolemmal membrane situated
in the clefts between cells as covert membrane. This covert membrane, although part of the surface
membrane of a single cell, is not really at the "surface" of the fiber. Current passing through
this membrane must flow through a resistance due to the finite conductivity of the fluid in the clefts.
The overt and covert membranes are not perfectly smooth; they both have folds that make the real
surface area larger than the apparent surface area. According to Mobley and Page (1972), this in-
crease in area is 1.8-fold for the overt membrane and 3.6-fold for the covert membrane. Similar
values have been reported by Hellam and Studt (1974a).
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FIGURE 1 Model of a 100-Am-diameter Purkinje fiber. For the standard fiber, membrane folding
causes the surface (overt) membrane to have an area 1.8 times the apparent surface area. The area
of the covert membrane lining the clefts is increased 3.6-fold. The width ofthe clefts is 30 nm, and they
are filled with fluid having a conductivity equal to that of Tyrode's solution. Membrane conductances
and capacitances are described in text.

The particular arrangement of the cells and their shape in Fig. I were chosen because of the ease
of mathematical treatment, and also because the apparent diameter of individual cells is 50 ,m,
the apparent surface to volume ratio of the cells is three times the apparent surface to volume ratio
of the fiber, and the ratio of covert to overt membrane is 4 when the appropriate folding factors are
taken into account. Mobley and Page (1972) reported a value of 0.114 gm-1 for the apparent sur-
face to volume ratio of the cells, 0.037 ,um ' for the fiber apparent surface to volume ratio, and a
value of 4.4 for the ratio of covert to overt membrane.
Our goal was to examine how the presence of intercellular clefts in the Purkinje fiber might in-

fluence the ability to study membrane currents by using a voltage clamp technique. More specifically,
we addressed ourselves to the following question: if all the membrane in the Purkinje fiber, both
overt and covert, had similar passive and active properties, would the current recorded during a volt-
age clamp experiment adequately reflect the current generated by the total membrane area if it were
uniformly controlled at the clamping potential? In our analyses we were concerned solely with the
influence of radial nonuniformities upon the recorded currents and did not study the influence of
longitudinal nonuniformity, limited amplifier current, or microelectrode properties. These have
been discussed elsewhere (Lederer and Tsien, 1976; Reuter and Scholtz, 1977; Fozzard and Beeler,
1975).

Since the influence of the clefts upon the currents recorded during a voltage clamp experiment de-
pends almost exclusively upon the amplitudes and time constants of the various current components,
rather than on the finer details of the current kinetics (see section on estimating voltage uniformity),
we chose the simple model conductances suggested by Noble (1962) for most of the computations.
The sodium current equations developed by Noble are modifications of those used to model the squid
axon membrane, adjusted for the few known properties of the sodium current measured experi-
mentally. These simple equations were chosen because they mimic much of the important behavior
of the Purkinje fiber, including the ability to generate an action potential with a plateau, and also be-
cause they give current-voltage relationships not too different from those seen experimentally.
The experimental situation we are modeling is an ideal voltage clamp of a shortened Purkinje fi-

ber, where the membrane potential controlled is that recorded by a micropipette placed intracellu-
larly through the surface membrane relative to the external bath potential, with the assumption
that the resistance of the bath fluid is small.

Symbols

I, Total current across the surface membrane per unit length of "fiber" (ptA/cm).
Ic Cleft current measured from, or injected into, a single cleft per unit length of fiber

(8A/cm).

SCHOENBERG AND FOZZARD Intercellular Clefts and Electrical Properties 219



Cm Capacitance per unit apparent membrane area from Noble, 1962 (;sF/cm2).
V Membrane potential (mV).
VI Resting membrane potential (mV).
I Time (ms).
INa,IK Sodium, potassium currents per unit apparent membrane area from Noble, 1962

(,uA/Cm2).
m, h, n Hodgkin-Huxley kinetic parameters.
x7 Fraction of total membrane area that is on surface (overt). (Equal to 0.2.)
Xc,IO Linear folding factors describing degree of membrane folding of the covert and overt

membranes, respectively (referred to as /i and ke in Mobley and Page, 1972).
a Radius of "fiber."
x Distance from center of fiber.
GL, Gm. Cm Covert membrane passive parameters, defined and measured in Schoenberg et al. (1975).
GL, Om, Cm Covert membrane passive parameters expressed per unit radial depth of cleft per unit

length of fiber: GL = kCGL/ cm; Gm = 'cGm/l cm;-Cm = 'cCm/l cm.
iic Active ionic current density of a single cleft (uA/cm2 apparent surface area).

Surface Currents
The surface membrane current and conductances were defined by the following equations:

Is/2ra = v[Cm(dV/dt) + INa + IK] (1)

INa = (400m3h + 0. 14)(V - VNa) (2)

IK = (1.2n4 + gKI)(V - VK) (3)

K,= 1.8 exp [(VK - V + 10)/50] + 0.015 exp [(V - VK - 10)/60] (4)

dm/dt = am(l - m) - flmm (5)

dh/dt = ah(l - h) - l3hh (6)

dn/dt = an(l - n) - flnn (7)

O.1I(-V- 48)
am = exp[(-V- 48)/15] - 1 (8)

f3 .12(V +8)m exp [(V + 8)/5] - 1 (9)

ah = 0.17 exp [(- V - 90)/20)] (10)

1 + exp [(-V - 42)/O] ( 11)

0.0001 (-V - 50) (12)
n exp [(- V - 50)/10] - 1

n= 0.002exp[(-V- 90)/80] (13)
Cm = 12,gF/cm2 _ - +40mV; VK = -90mV.

The equations above are identical to those of Noble (1962) except in two regards. g9K has been
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modified slightly to model a potassium concentration of 5.4 mM instead of a concentration of 4 mM.
(At a concentration of 5.4 mM K, the model membrane is quiescent, whereas at 4 mM K it is spon-
taneously active). Also, all of the capacitances and conductances of Noble (1962) were multiplied
by the factor q, as Noble's values were based upon all the membrane being overt. For the model
of Fig. 1, only a fraction, q, equal to 602/(602 + 1242) is overt, where "6" and "12" represent the
number of overt and covert surfaces and 42 and 42 are the folding factors that increase the membrane
area (Mobley and Page, 1972). From Mobley and Page, 0,O = 1.35 and Xc = 1.9, so that for our stan-
dard fiber, = 0.2.

Cleft Currents
Schoenberg et al. (1975) derived equations that can be used to describe the clefts of the Purkinje
fiber. By using the balance between transmembrane and intercellular (cleft) currents (intracellular
radial currents were assumed to be small, since the diameter of the cells is large compared to the
width of the clefts), they showed that a passive cleft with a geometry as in Fig. 1 could be described
by the partial differential equation

GL[2(V - V,)I/x2] = Gm(V - V,) + Cm[a(V - V,)/dt], (14)

where Gm and C7m are the conductance and capacitance per unit radial depth of 1-cm longitudinal
length of cleft membrane, GL is the conductivity per unit depth of the fluid in the cleft, x is the dis-
tance from the center of the cleft, and Vr is the resting potential. In Schoenberg et al. (1975), GL =
3.1 x 10-8 mho-cm, Cm = 0.3 mmho/cm, and Cm = 5.5 AF/cm are the probable values of these
parameters in a 100-i,m Purkinje fiber. GL, Gm, and Cm, as defined in Schoenberg et al. (1975), are
the conductivity, conductance, and capacitance per unit depth for 1-cm length of cleft membrane.
We may rewrite Eq. 14 in terms of GL, Gm, and Cm, variables that represent the conductivity, conduc-
tance and capacitance, per unit depth per unit length of fiber, taking into account folding in the lon-
gitudinal direction. In this case GL = GL / I cm,Cm = IcGm/l cm, and Cm = q IcCml cm; Eq. 14
may be rewritten as

GL[2(V - Vr)/0X2] = Gm(V - Vr) + Cm[O(V - V)/dt]' (15)

where GL = 5.9 x 108 mho, Om = 0.57 mmho/cm2, and Cm = 10.5 AF/cm2. Defined in this way, Gm
and Cm are the conductance and capacitance per unit apparent surface area of the passive cleft mem-
brane. In the above equation, Gm(V - V,) represents the ionic current density through the "con-
ductance channels" of the passive cleft membrane, as opposed to the current density discharging the
membrane capacity Cma V/at. Therefore, in modeling Purkinje clefts with active membrane, we may
write

GL(a2V)/Ox2) = Ji' + Cm(aV/dt), (16)

where Ii, is the ionic component of the active currents. To make the active membrane conductances
in the cleft similar in form to those on the surface, we chose Ii, a(INa + IK), where INa and IK are de-
fined by Eqs. 2 and 3. The constant of proportionality was taken as 0.85, a value that gave the clefts
the same resting conductance as found by Schoenberg et al.

Comparison between Overt (Surface) and Covert (Cleft) Membranes
Since the parameters of the overt and covert membrane were defined from different starting points,
it is useful before proceeding to compare their specific conductances and capacitances based upon
real membrane area. The conductances chosen by Noble (1962) give a resting membrane conductance
of 0.715 mmho/cm2 apparent surface area. In our model we placed two-tenths of that in the surface
membrane, giving a conductance for a covert membrane of 0.143 mho/cm2 apparent surface area.
This yields a specific conductance of 0. 143/o2 = 0.0785 mmho/cm2 real surface area. Similarly the
specific capacitance of the overt membrane in our model, derived from Noble's value of 12 jF/cm2
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TABLE I

SPECIFIC CONDUCTANCE AND CAPACITANCE OF THE OVERT
AND COVERT MEMBRANE OF THE STANDARD FIBER

Specific Specific Membrane
conductance capacitance time-constant

mmhzo/cm2 F/cm2 ms
Overt (surface) 0.079 1.33 16.9
Covert (cleft) 0.080 1.45 18.1

The values for the overt membrane are derived from Noble, 1962, while those for
the covert membrane are from Schoenberg et al. (1975). The two are quite simi-
lar; the major difference is that Noble (1962) assumed a capacitance of 12 ;F/cm2
for a standard fiber. Schoenberg et al. found a value of 13 uF/cm2 apparent sur-
face area for a I00-jm fiber.

apparent surface area, is 1.33 uF/cm2 real membrane area. The specific conductance and capaci-
tance of the covert membrane are equal to Gm/202 and Cm/202, respectively, which yields 0.08
mmho/cm2 and 1.45 ,uF/cm2, as in Schoenberg et al. (The factor 2 results because both sides of each
cleft are lined with membrane.) Table I summarizes these values along with the respective membrane
time constants. The chosen properties of the overt and covert membrane per unit membrane are seen
to be quite similar.

Solution ofthe Equations
Eqs. 1- 13 for the overt membrane were easily solved on a Honeywell DDP-516 computer (Honeywell
Information Systems, Inc., Waltham, Mass.), by using a standard fourth-order Runge-Kutta tech-
nique. Eq. 16 for the covert membrane was solved by a Crank-Nicholson finite difference approxima-
tion. The resultant tridiagonal matrix of equations was solved on a Honeywell DDP-516 computer
using the Gauss elimination method (Smith, 1965). In practice the cleft was divided into 20 distance
steps. If i and j represent the distance and time subscripts for each point in space and time, then each
of the terms in Eq. 16, as well as Eqs. 2-4, could be written as

02 V/Ox2 i2[(Vi+,1+i - 21K, + - Vi I,j+1) + (VK+1,j - 2Vi,j + I'j)]1(AX)2
dV/dt ~ (Vi,j+ l - Vi,j)/At

V (Vi,j+, + Vi,j)/2.

where Ax and At are the step sizes in space and time. am 1O3m) Ah 13Oh, a,n, and On, as well as gK1, are
all expressed as functions of Vij. At x = 0, the center of the fiber or bottom of the cleft, we have the
boundary condition that a V/dx = 0. At x = a, the surface of the fiber and cleft, the finite difference
form of Eq. 16 has an additional term, Il/Ax, on the right-hand side, where Ic represents the amount
of current injected at the surface of each cleft per centimeter of fiber. The resulting series of equa-
tions can be solved under two conditions. Either Ic, the current injected, can be treated as the known
variable and the equations used to solve for the voltage distribution along the cleft, or else the bound-
ary condition, V20j = V(a, t) = u-I(t)[Vc - VJ], could be imposed at x = a, and the equations
solved for Ic, as a function of time. The latter is tantamount to calculating the currents generated
within the cleft and measured in response to a voltage clamp of the surface. The resulting voltage
distribution along the cleft can also be calculated. This was the technique used in the present paper.
For the model of Fig. 1, Ic was multiplied times six clefts.

In the section dealing with slow inward current, Eqs. 2-13 from Noble (1962) were replaced by the
more complete set of equations describing the ionic components put forth by McAllister et al. (1975).
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RESULTS

Passive Response

All of the computations performed were based upon the model illustrated in Fig. 1. The
overt membrane was described by Eqs. 1-13 and the covert membrane by Eq. 16 (see
Methods). Steady-state solution of these equations with Is = I, = 0 yielded a resting
potential of - 76.56 mV. For small hyperpolarizing voltage steps the "active" Purkinje fiber
should give a passive response. The circles in Fig. 2 show the computed response of a single
cleft of our "fiber" in response to a hyperpolarizing voltage clamp of the surface from the
resting potential of -76.56 to -77.56 mV. This agrees well with the theoretical response
described by Eq. 7a of Schoenberg et al. (1975) (solid curve). The close agreement between
the two results demonstrates the accuracy and stability of the computer integration, at least
in this voltage range.

A ctive Response
Fig. 3 shows a typical active response computed for a fiber like that in Fig. 1. Fig. 3 A shows
the early currents and Fig. 3 B the late currents, in response to a voltage clamp from the
resting potential of - 76.56 mV to a potential of 0.0 mV. The solid curve shows the total cur-
rent generated; the dotted curve shows the current generated by the surface membrane only.
In the early record features of note include a large inward sodium current spike both on the
surface and in the clefts. Preceding the sodium spike in the total current record is the "re-
sistive-capacitative" current spike, designated by an arrowhead. This is the current neces-
sary to discharge the capacitance near the mouth of the clefts to 0.0 mV. This has a nonzero

TIME (ms)

0 5 10
0

C-)~~~~~~~~~~~~~~~~~C

tf -0.025z
ccccaul

-0.05

FIGURE 2 Comparison between analytic result and numerical integration procedure. Solid curve:
analytic solution of the current response for a single cleft, 50 gm deep, voltage-clamped at its mouth
from a resting potential of -76.56 mV to a voltage of -77.56 (Eq. 7a of Schoenberg et al., 1975). Cir-
cles: numerical integration solution of same problem using the techniques described in Methods for the
standard fiber.
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FIGURE 3 A typical computed response of a fiber like that of Fig. 1 to a depolarizing voltage clamp
of the surface membrane. 3A shows the early, and 3B the later currents after a voltage clamp from a
resting potential of - 76.56 to a voltage of 0 mV. Solid curves: total current. Dotted curves: surface
component only. Total current is the sum of the surface contribution plus that of the six clefts. Stan-
dard fiber.

duration because the current must flow across the nonzero resistance of the fluid within the
clefts in series with the membrane. On the slower time scale record of the late currents, the
sodium spike is greatly compressed and the major feature of note is an increase in current
with time due to delayed rectifying properties of the K current. Quantitative analysis of the
late currents in Fig. 3 B shows that for the example chosen, the total current is approximately
equal to five times the surface current. Since the total area of membrane (overt plus covert)
in Fig. 1 is five times the surface area, and since we selected approximately the same specific
conductance (per unit area) for the surface and cleft membrane (see Table I), then the fact
that the total current is approximately five times the surface current implies that the voltage
distribution along the clefts is fairly uniform. That is, there is not a large voltage gradient
between the cleft membrane near the surface and that near the center of the fiber.

Clamping the Membrane-Late and Intermediate Currents
Fig. 4 shows the magnitude of the late and intermediate (50 ms) clamp currents that would be
recorded during a voltage clamp as a function of clamping voltage. For the 50-ms currents,
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FIGURE 4 Current-voltage relationship of the late currents. Dashed curve: 50-ms current. Solid
curve: total steady-state current. Dotted curve: five times the steady-state surface contribution. At
50 ms, five times the surface contribution is almost identical to the total 50-ms current. Standard fiber.

the total current is nearly identical to five times the surface current (dashed line). For the
late currents, after the currents have grown significantly due to delayed rectification, the
total current is still not very different from five times the surface current, even for large
depolarizations. This suggests that almost all of the intermediate and late currents generated
within the clefts would be recorded during a voltage clamp. It also implies, as discussed
above, that the steady-state voltage distribution is still fairly uniform. The degree of voltage
nonuniformity extant for the worst case over the range of Fig. 4, a voltage clamp to
+44 mV, is shown in Fig. 5. At steady state, the depolarization from resting potential in the
center of the fiber is still at least 80% of that on the surface.

Clamping the Membrane-Early Currents
Voltage clamping of the squid axon has proved to be a powerful tool for learning about
early ionic currents. This is because it has been possible to hold the entire membrane area
at reasonably constant voltage within a very short time after initiating the voltage clamp. In
preparations such as frog skeletal muscle or the cardiac Purkinje fiber, the situation is more
difficult because a large fraction of the muscle membrane is not in direct apposition to the
low-resistance bath surrounding the fiber. We have already seen that the degree of voltage
control achieved in the clefts by current injected through the surface membrane was reason-
ably adequate for recording intermediate and late currents. We consider here the ability to
control the cleft voltage at short times, and the influence this has upon the recorded early
currents.

Fig. 6 A shows the early clamp currents that would be recorded for a fiber, as in Fig. 1,
for a hyperpolarizing clamp to - 86.56. Note that the total current is approximately equal
to five times the surface current after about 5 ms. This is the time necessary to establish
voltage control of the passive cleft. (Fig. 2 and Schoenberg et al., 1975). Fig. 6 B shows
the computed results for a large (101 mV) depolarizing clamp. In this case it takes some
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FIGURE 5 Steady state voltage distribution after a voltage clamp from resting potential of -76.56 mV
to a potential of +44 mV. Standard fiber. Abscissa: distance along cleft. x = 0: center of fiber. x = +a:
surface of fiber.
FIGURE 6 Early clamp currents. A: hyperpolarizing clamp to - 86.56 mV. B: large depolarizing clamp
to +24.44 mV. C: moderate depolarizing clamp to -56.56 mV. Standard fiber. Resting poten-
tial: - 76.56 mV. Solid curves: total current. Dotted curves: five times surface contribution.

5-10 ms to establish voltage control. Fig. 6 C shows a clamp to an intermediate voltage,
V = - 56.56. Very clear loss of control exists for some 15-25 ms. During this period there
is uncontrolled sodium current activity in the cleft.

A ttempting to Measure the Early Negative (Inward) Current

Fig. 7 shows the current-voltage relationships for the peak of the inward (sodium) current.
It is divisible into at least two regions. In the region negative to -40 mV, for example at
- 56 mV, there is some evidence of uncontrolled sodium activity in the clefts while the sur-

face membrane remains effectively clamped with very little regenerative sodium activity. In
the region positive to - 40 mV, we have a very different situation. Here not all of the current
that could potentially be generated within the clefts is measured during the voltage clamp.
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FIGURE 7 Current-voltage relationship for the peak of the early negative (sodium) current. Solid curve:
total current. Dotted curve: five times surface contribution. Standard fiber.
FIGURE 8 Recording the slow inward current after a voltage clamp from a holding potential of -76.56 to
- 16.56 mV. The current components modeled according to McAllister et al. (1975). Solid curve (-):
total current recorded during voltage clamp of fiber. Dotted curve (... .): five times surface contribu-
tion. Dashed curve (--- -): total current from fiber with secondary inward current component of McAl-
lister et al. set to zero. Dot-dashed curve ( -): five times surface contribution with secondary inward
current set to zero. Curves illustrated from 10 ms. Before this, each curve would show a much larger
negative spike related to sodium activity.

The net result is that the amplitude of the peak sodium current is drastically reduced; the
total current recordevd is roughly one-quarter what it would be if the clefts gave a contribu-
tion per unit area equal to that of the surface. In fact, the clefts, although they have four
times as must area as the surface, produce one-quarter as much negative inward current.

There are at least four reasons why the net inward current for the entire fiber is not much
greater than for the surface alone. First, the peak of the cleft current occurs later than that
of the surface current, so that the peak of the total current is less than the sum of the peaks
of the components. Secondly, the peak of the inward cleft current occurs some 2-5 ms after
initiation of the voltage clamp. At this time, it is somewhat counterbalanced by the fairly
large outward resistive-capacitative current that still exists. Thirdly, during the time when
large negative currents are generated by the surface membrane, much of the cleft membrane
is not generating large inward current because it cannot be controlled by the voltage clamp,
and its potential has swung toward the sodium equilibrium potential, +40 mV. Near this
potential very little sodium current is generated. Finally, during the time of sodium current
generation, the cleft membrane length constant is very small, so that much of the current
generated at the bottom of the clefts recrosses (as circulating current) the cleft membrane
and does not appear at the bath ground where it would be recorded.

Measuring the Slow Inward Current
In addition to the large, rapid, inward current, another slower and smaller inward current
is found in Purkinje fibers, which is measured after voltage clamps to intermediate voltages
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(Reuter, 1967). It is interesting to consider whether this current, if generated both in the
overt and covert membrane, could be measured accurately. Since the simple description of
the ionic conductances put forth by Noble in 1962 did not contain this current component,
we used the equations of McAllister et al. (1975) to address this question. Fig. 8 shows the
resultant currents after a voltage clamp from a holding potential of -76.56 to - 16.56 mV.
Shown are the currents for the entire fiber and also for five times the surface contribution in
the presence (lower curves), and absence (upper curves), of the secondary inward current
component, in the equations of McAllister et al. (1975). It is seen in both instances that
after the sodium spike (not visible in this figure), the total current is not too different from
five times the surface current. As discussed earlier, this implies a relatively uniform voltage
distribution along the cleft during generation of this current, and the ability to record the
current generated fairly accurately.
We also computed the current responses after a voltage clamp to 0.0 mV, where an out-

ward chloride current, in addition to the secondary inward current, is activated. In this
instance, too, the total current was not very different from five times the surface contribu-
tion, the voltage distribution along the clefts was fairly uniform, and the secondary inward
current could be accurately extracted from the records by subtracting the current response
obtained in the absence of any secondary inward conductance from that obtained when all
the conductances were present.

Estimating the Voltage Uniformity along a Cleft
We found the degree of voltage uniformity along a cleft for currents with time constants
greater than 5- 10 ms easy to estimate, once the approximate slope conductance of the cleft
membrane was known. For these more slowly changing currents, capacitative charging of
the membrane is less important, so that we may approximate Eq. 15 as

GL[d(V - V*)/ax2] = G*(V - V*), (17)

where G * is the approximate slope conductance per depth of the cleft per length of fiber, and
V*, the "quasi-resting potential," is the potential where the membrane current is zero.
Both of these quantities may be obtained from the I-V relationship of the membrane, pro-
vided this function is not too complicated in shape. As an example we consider the question,
"What is the voltage distribution along a cleft 50 ms after a clamp to - 16.56 mV, if the cleft
has conductances 100 times smaller and 100 times slower than those used in the standard
fiber?" The current-voltage relationship for such a membrane at 50 ms is shown in Fig. 9.
The current-voltage relationship near the clamping voltage of - 16.56 mV can be approxi-
mated as illustrated by the dashed line in Fig. 9. AV = 20.3 mV, so that V* = - 16.56 -

20.3 = -36.86 mV. AI = -13.3 uA/cm2. Schoenberg et al. (1975, Eq. 6a) showed that the
solution of Eq. 17, when G* is positive, may be written

V- V* = AV[cosh (x/X)/ cosh (a/X)], (18)

where x is distance from the center of the cleft, a is cleft length (fiber radius), and X =
(GL /G ) 1/2 = (G /G*) 1/2. When G is negative, as in the present case, the solution is

V - V*=- V[cos (x/X)/cos (a/X)], (19)

whereA = (-GL/)'1/2.
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FIGURE 9 50-ms current-voltage relationship for a hypothetical current having conductances and rate
constants 100 times smaller than those of the standard fiber. The current per apparent surface area at
50 ms (ordinate) is plotted versus clamp voltage (abscissa). The current-voltage relationship in the vi-
cinity of - 16.56 mV can be approximated as shown by the dashed line. 6* for a cleft is equal to 2.
(AI/A V), since each cleft is bounded on two sides by membrane. V* is the voltage at the intercept of
the dashed line and the zero current line.
FIGURE 10 Analytical approximation and computed solution for the voltage distribution along a cleft,
50 ms after a voltageclamp to - 16.56 mV for a cleft with conductances as in Fig. 9. A V = 20.3 mV;
V* = -36.86 mV; OL = 5.9 x 10-8 mho; d* = -1.31 mmho/cm2. Ordinate: deviation from clamp-
ing voltage (depolarization is +); abscissa: position from center of 50-Mm radius fiber. Solid curve:
analytic approximation; squares: computed results.

Fig. 10 shows the close agreement between the analytic approximation (Eq. 19) and the
computed voltage distribution at 50 ms for the current described above. If the rate constants
for this current had not been slow relative to the rate constant for changing the cleft voltage,
the analytic approximation would not have been as adequate.
We do not know a priori the slope conductance of the clefts. However, as a practical

matter, we may first use the above equations, assuming all of the conductance is in the clefts.
This gives a "worst case" approximation with regard to voltage uniformity along the clefts.
If this predicts a relatively uniform voltage distribution during measurement of a given cur-
rent, we can assume that such a current, generated in the clefts, would be accurately mea-
sured during a voltage clamp. This type of argument suggests that both the potassium cur-
rent and the slow inward current would be reasonably accurately recorded, even if they were
generated in part by the covert membrane. This conclusion holds only for a Purkinje fiber
with geometrical properties similar to Fig. 1. An increase in fiber diameter, a decrease in
cleft width, or a decrease in lumen conductivity will all serve to diminish the ability to record
these currents accurately.

Independence and Superposition
Consideration of the fiber model of Fig. 1 demonstrates that if a Purkinje fiber has currents
generated from covert membrane, then it is difficult to make use of the principles of super-
position and independence of currents. This is demonstrated by the fact that the sum of the
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sodium current recorded in the absence of potassium (case I) and the potassium current
recorded in the absence of sodium (case II), after a voltage clamp to a given voltage, is not
equal to the total current recorded after a voltage clamp to the same voltage when both cur-
rents are present (case III). The reason for this is twofold. Firstly, a certain amount of cur-
rent in case I and case II goes to discharge the membrane capacitance in the cleft, and the
sum of these two is not necessarily the current needed to discharge the cleft capacity in case
III. (If the voltage distribution is not too different, the resistive-capacitative currents
(cases I, II, and III) are about equal.) Secondly, the presence or absence of various ionic
conductances affects the voltage distribution along the clefts, which influences the current
produced by the cleft. This effect is small when there is little voltage gradient down the cleft
and large when it is great. Figs. 11 and 12 illustrate this effect. Fig. 11 shows the voltage
distribution down a cleft in the presence and absence of sodium. To magnify the effect, the
calculations were made for a fiber with a cleft length of 100 ,um (200-,um diameter fiber),
rather than 50 jm, as used for all the other calculations. Fig. 12 shows the effect of the
difference in voltage distribution in the presence and absence of sodium upon the delayed
rectifying current. This current, defined in our model as the steady state current minus the
50-ms current, is solely due to the potassium current, and is generated largely in the clefts.
Although in the equations we have used, the potassium conductance is independent of the
sodium conductance, it is clear that sodium conductance does indeed have a secondary effect
that manifests itself through influencing the voltage distribution along the cleft.

DISCUSSION

Although the model used in these studies is a simplistic one, it reflects accurately some of
the complex geometrical properties of the cardiac Purkinje fiber. Its distribution of mem-
brane capacitance and resting conductance is based upon the cable studies of Schoenberg
et al. (1975) and is consistent with the analysis of Hellam and Studt (1974b). In its main

-16 clamp potential

-3 Zero Na

0
> -56

-76 resting potential
x=a x=0 x=-a

DISTANCE ALONG CLEFT

FIGURE 11 Steady-state voltage distribution after a voltage clamp to V = -16.56 mV in the presence
and absence of sodium. Parameters as in standard fiber except fiber radius, a, = 100 Am and IN = 0,
in case without sodium. Abscissa: distance along cleft; x = 0, center of fiber; x = ±a, surface of fiber.
Note increased voltage nonuniformity in absence of sodium conductance.
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FIGURE 12 Effect of sodium removal upon delayed rectification. Fiber model as in Fig. 11. Delayed
rectifying current (ordinate) is defined as steady-state current minus 50-ms current. Abscissa: clamp
voltage.

features, it resembles the anatomical descriptions of several reports (Sommer and Johnson,
1968; Mobley and Page, 1972; and Hellam and Studt, 1974a). It is multicellular, has inter-
cellular clefts with dimensions similar to those reported, and has the appropriate ratio of
overt to covert membrane.
Some assumptions in the model certainly must represent oversimplifications. The clefts

were assumed to have a constant width of 30 nm, as reported by Sommer and Johnson
(1968). The estimate of Mobley and Page (1972) was 15-30 nm. Hellam and Studt (1974a)
reported that the cleft width was quite variable, and averaged about 40 nm. If the variability
in cleft width is not distributed systematically with regard to radial position, then the model
may properly use the average value when the length constant of the cleft is large compared
to its depth, or when cleft variability is not exceedingly great. If the variability in cleft width
is as large as reported by Hellam and Studt (1974a), then the present model may require
modification. Special gap junctional regions (nexuses) do represent points of constriction
of the cleft. While no direct measurements are available for the shape of these junctional
structures, the mean length of cleft membrane occupied by nexuses was reported by Hellam
and Studt (1974a) to be 4.2%. If the nexuses are of this dimension, then they probably play
little role in determining the effective resistance of the cleft.
The conductivity of the fluid in the clefts was taken as equal to that of Tyrode's solution.

Although a reduction of this by 30 50% would not qualitatively change the results presented
here, there are several reasons for choosing this as the appropriate value in the absence of
hard experimental evidence. The conductivity of fluid inside Purkinje clefts or skeletal
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muscle tubules is not precisely known because this parameter is derivable from experiments
only once the geometry of the cleft or tubular network is precisely known. In the least com-
plicated preparation studied, the transverse tubule of the tubular muscle fibers of a scorpion,
the conductivity of the fluid in the tubule was derived to be equal to that of the bathing
medium (Gilai, 1976). In the more complicated geometry of the frog skeletal muscle sys-
tem, the analysis of Mathias et al. (1977), based upon the morphometric data of Mobley and
Eisenberg (1975) and Eisenberg and Peachey (1975), derived a conductivity for the fluid in
the tubular system 0.5-1 times that of the bathing medium. For the Purkinje fiber, Schoen-
berg et al. (1975) showed that a value of conductivity of fluid inside the cleft equal to that of
the bathing medium gave a reasonable value for the capacitance filled by the foot of the
conducted action potential, as well as the appropriate time constant for charging the clefts.
In any case, the important characteristic is the apparent resistance to radial current flow in
the cleft, a composite of the cleft width and the cleft conductivity.
We have not attempted an accurate description of Purkinje fiber currents, but instead have

explored how currents representative of those recorded will be influenced by fiber geometry.
The membrane ionic conductances used were similar in form to those of Noble (1962). An
important property of those conductances is an instantaneous inward rectifying channel.
This causes the K conductance to fall with depolarization to voltages between -70 and
- 20 mV, tending to increase the apparent length constant of the clefts and improve voltage
uniformity. On the other hand, the time constants of the sodium activation variable are
fast, a property that tends to increase voltage nonuniformity during the first few millisec-
onds. With rapid sodium activation, the surface responds more quickly than the clefts,
which are delayed because of the time required to displace the charge on their capacitance.
The use of the 1962 Noble equations in these calculations was arbitrary, but not unreason-
able. They mimic satisfactorily the speed of onset of the action potential depolarization.
The equations used by McAllister et al. (1975) result in a faster activation of the sodium
current, and would lead to an even greater discrepancy between actual and recorded inward
current.
One of the dramatic demonstrations of this model is that even if the covert membrane in a

Purkinje fiber had an active sodium conductance, much of the current generated by it would
not be recorded at the surface. For example, in Fig. 7 the discrepancy was as large as four-
fold. When we reduced the time constants of the currents we used by 10-fold, so that they
more closely resembled the time-course of currents in the cooled Purkinje fibers used by
Dudel and Rudel (1970), the discrepancy was only reduced to 3-fold (unpublished calcula-
tions). It therefore appears likely that sodium conductance in the clefts would be difficult to
record even in cooled fibers.
The size of the discrepancy between generated sodium current and that recorded depends

not only upon the rate constants of the current, but also somewhat upon the magnitude of
gNa. It is therefore somewhat difficult to know the proper value for yNa to use in modeling.
In our model we used the Noble (1962) value of 400 mmho/cm2, referred to the right-circular
cylinder approximation of area. We distributed this conductance between the surface and
the clefts so that the specific sodium conductance was about 44 mmho/cm2, based upon
actual membrane area. Dudel and Rudel (1970), in their experiments in cooled fibers, ob-
tained an estimate of 53 mmho/cm2 referenced to the right-circular cylinder or 5.8
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mmho/cm2 of actual membrane. Increasing this value threefold in accordance with our
modeling of the underestimation for cooled fibers would result in a value of 17.4 mmho/cm2
actual membrane in the cooled fiber.

This value is similar to that used by McAllister et al. (1975) in their more recent model of
Purkinje fiber currents at 37°C. It is somewhat smaller than the value of 44 mmho/cm2 we
have used, although reducing -Na in our model to 15-20 mmho/cm2 would have little effect
upon the main conclusions. The most striking effect would be a still greater discrepancy be-
tween sodium currents generated and those measured at 37°C, since the positive resistive-
capacitative current would be relatively larger (unpublished computations).

In contrast to the difficulties in recording sodium currents, our results suggest that most
of the potassium current that could be generated by the covert membrane of the Purkinje
fibers would be recorded accurately. However, the accurate measurement of potassium cur-
rents depended to some extent on the finer details of the model. An increase in radial non-
uniformity was seen when sodium conductance was removed from the membrane, because
the small, steady-state sodium current assists in depolarizing the depths of the cleft. This
change in uniformity could result in distortions of the potassium I-V relationship. While
the effect seen here as a result of the artifact was relatively small, it is interesting to speculate
on the possibility that this might contribute to the change in threshold for delayed rectifica-
tion in Na-free solution, as described by McAllister and Noble (1966). The artifactual al-
teration in the I-V curve depends strongly on the exact location of the m and h curves on
the voltage axis (overlap), so that the importance of this artifact is impossible to estimate
from available information.

Currents with intermediate kinetics were also investigated by using the ionic conductances
of McAllister et al. (1975). A fair agreement was found between the total recorded current
and that which would have been generated by a uniformly depolarized membrane. In our
modeling we found no evidence of uncontrolled regenerative sodium current within the
clefts between 10 and 300 ms that might masquerade as a slower inward current. This was
illustrated both by the flatness of the recorded currents when the secondary inward current
in the model of McAllister et al. was set to zero (Fig. 8, upper traces), and by the fact that,
for the simulation, the voltage within the center of the fiber was within 5 mV of that on the
surface during this time interval (unpublished). If the conductances of McAllister et al. are
a valid representation of those in a Purkinje fiber, and if it is reasonable to approximate the
geometry of the Purkinje fiber as we have done here, then it seems likely that radial non-
uniformity would not represent a severe impediment toward recording the slow inward cur-
rent in a 100-Am Purkinje fiber.

In these calculations we have not explored several additional consequences of the clefts.
Because of the limited space, it is likely that accumulation and depletion of ions can occur,
especially potassium (Baumgarten and Isenberg, 1977; Baumgarten et al., 1977). In addition
to the effect this would have on the potassium driving force, it would also change the shape
of the instantaneous rectifier curve for potassium. It is apparent, also, that increased fiber
diameter will exaggerate the voltage nonuniformities and their consequences for current
measurements in Purkinje fibers. This is because a larger fraction of the membrane is covert,
and it is more difficult to control the cleft membrane near the center of the fiber. The results
reported here should be considered appropriate only to fibers 100 gm or less in diameter.
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