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ABSTRACT A model for left ventricular diastolic mechanics is formulated that takes into
account noneligible wall thickness, incompressibility, finite deformation, nonlinear elastic
effects, and the known fiber architecture of the ventricular wall. The model consists of a hollow
cylindrical mass of muscle bound between two plates of negligible mass. The wall contains
fiber elements that follow a helical course and carry only axial tension. The fiber angle (i.e.,
helical pitch) is constant along the length of each fiber but varies through the wall in
accordance with the known distribution of fiber orientations in the canine left ventricle. To
simplify the analysis and reduce the number of degrees of freedom, the anatomic distribution
of fiber orientations is divided into a clockwise and counterclockwise system. The reference
configuration for the model corresponds to a state in which, by hypothesis, the transmural
pressure gradient is zero, the tension is zero for all fibers across the wall, and all fibers are
assumed to have a sarcomere length of 1.9 um. This choice of reference configuration is based
on the empirical evidence that canine ventricles, fixed in a state of zero transmural pressure
gradient and dissected, demonstrate sarcomere lengths between 1.9 and 2.0 um in inner,
middle, and outer wall layers, while isolated ventricular muscle bundles are observed to have
zero resting tension when the sarcomere length ranges from 1.9 to 2.0 um. An equation
representing the global condition for equilibrium is derived and solved numerically. It is found
that the model’s pressure-volume relation is representative of diastolic filling in vivo over a
wide range of filling pressures, and the calculated midwall sarcomere lengths in the model
compare favorably with published experimental data. Subendocardial fibers are stretched
beyong L, even at low filling pressures, i.e., 5 mm Hg, while fibers located between 60-80%
of wall thickness extend minimally between 5 and 12 mm Hg. The hydrostatic pressure field
within the wall is highly nonlinear. The pressure rises steeply in the subendocardial layers so
that the net gain in pressure in the inner third of the wall is 85% of the filling pressure. It is
demonstrated that these results are independent of heart size for a family of heart models that
are scale models of each other. They are, however, critically dependent on the existence of
longitudinally oriented fibers in the endocardial and epicardial regions of heart wall.

INTRODUCTION

A precise knowledge of diastolic ventricular mechanics is essential for understanding the
behavior of the heart in normal and pathological states. A realistic model of the diastolic left
ventricle should take into account the known anatomic structure of the ventricular wall and
the key mechanical properties of its muscle fibers.
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The ventricular wall is composed of ordered sets of interconnected muscle fibers, with each
set characterized by a predominant fiber direction. The muscle fibers follow a helical course in
the wall, with the fiber angle (i.e., helical pitch) changing smoothly across the wall (Streeter,
1969; Streeter et al., 1969, 1978). Near the inner and outer walls, the course of the fibers is
predominantly longitudinal, while in the midwall the fibers are predominantly circumferen-
tial. Diastolic filling is thought to alter the degree of extension of the extremely length-
sensitive muscle fibers within the walls of the heart, thereby accounting for Starling’s Law of
the Heart (Patterson and Starling, 1914).

Isolated muscle experiments have established the basic mechanical features of cardiac
muscle that need to be incorporated into any realistic formulation of diastolic ventricular
mechanics. The resting tension of cardiac muscle is a nonlinear exponential function of its
finite degree of extension in the fiber direction (Braunwald et al., 1976). As the resting muscle
is passively shortened to ~85% of L, it becomes slack, i.e., the resting tension becomes zero
(Braunwald et al., 1976). The developed tension drops precipitously in this same length-range
to ~40% of its peak value (Braunwald et al., 1976). L, represents here the fiber length at
which active tension is maximal.

In this paper we formulate a mathematical model of the end diastolic left ventricle that
allows one to take into account the features of cardiac anatomy and physiology outlined above.
The model consists of a thick-walled, hollow, cylindrical mass of muscle bound between two
plates of negligible mass. The wall contains fiber elements that follow a helical course and
carry only axial tension. The forces exerted by the fiber elements are not known in advance.
Instead, wall forces and the geometric configuration of the heart muscle are interdependent.
An equation that determines the possible end diastolic configurations of the heart model is
derived and solved numerically.

The model used in this paper to analyze diastolic ventricular mechanics differs significantly
from previous model work on the diastolic left ventricle. One of two general approaches has
been taken in the past: the first considers the myocardium to be a thick-walled solid of
revolution having isotropic elastic properties (Janz and Grimm, 1973; Janz et al., 1974; Janz
and Waldron, 1978; Mirsky, 1969; Mirsky et al., 1974), while the second approach takes into
account local fiber geometry but assumes that the fiber force is constant across the wall and
ignores the global constraints imposed by diastolic filling (Streeter, 1969; Streeter et al.,
1970). Our results suggest that neither of these approaches can provide a realistic representa-
tion of the heart wall in diastole.

Formulations of Equations

Representing the heart in terms of a model presents a problem, for any model of the heart is
an idealization and is a woeful imitation of nature. The more closely the complicated details of
cardiac anatomy are embodied in a model, the more unmanageable it becomes from a
mathematical point of view. Thus, we need to invent a model that retains the significant
features of cardiac anatomy and physiology, but in a simplified form, so that the properties of
a model can be handled mathematically and studied conveniently. The features that should be
taken into account in the formulation of a realistic model of the end diastolic left ventricle
include the nonnegligible wall thickness, incompressibility, finite deformation, nonlinear
elastic effects, the known fiber architecture of the ventricular wall, and the fact that the heart
accommodates volume both by circumferential and longitudinal expansion.
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FIGURE 1 (top) Schematic diagram of the model left ventricle in the reference configuration. The axial
length is L; the inner radius is R;; the outer radius is R,. The volume of the inner chamber is V==R:L.
The model accommodates increases in volume by axial and circumferential expansion. The ends of the
cylinder slide tangentially to the plates, so that the model retains its cylindrical configuration. (bottom)
The curvilinear solid (——) and dotted (------ ) lines illustrate the course in space of two muscle fibers in
the model wall in the reference configuration. These two fibers are representative of the two fiber systems.
The fibers remain a distance R from the central axis of the cylinder. For each angular displacement w, the
Z coordinate of a fiber changes by B(R) le . As R varies between R;and R, B changes smoothly.
FIGURE 2 The distribution of fiber angles across the wall of the heart model. By convention, 0% of wall
thickness corresponds to the inner surface; 100% wall thickness corresponds to the outer surface.

With these considerations in mind, we represent the left ventricle in end diastole as a
thick-walled, hollow, cylindrical mass of muscle bound between two plates of negligible mass.
One plate is fixed in space and corresponds to the base of the heart. To avoid end effects, we
assume that the muscle can slide freely tangentially to the plates to retain its cylindrical
geometry. The thick walls of this heart model contain fiber elements that follow a helical
course. The model and its associated fiber geometry are illustrated in Fig. 1. The radial
distance of a fiber from the axis of the cylinder and the fiber angle (i.e., helical pitch) remain
constant along the length of each fiber. However, the fiber angle varies through the wall.

Considerable simplification of a model of the heart in diastole can be effected if the model
accommodates increases in chamber volume without undergoing twisting. Studies of the left
ventricle in diastole utilizing biplane cinefluorography provide empirical evidence that the
mammalian heart does not in fact twist significantly during diastolic filling. Nobel et al.,
(1969) inserted multiple tantalum screws into the left ventricular endocardium of dogs until
the cavity was completely outlined in both the anteroposterior and lateral projections. After
the dogs recovered from this procedure, the motion of the screws during diastole was studied
in vivo by biplane cineradiography. Symmetrical outward movement of the tantalum markers
was observed throughout diastole in all cases. The radiologically determined outlines of the
ventricular cavity in the anteroposterior and lateral projections were used to numerically
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calculate the ventricular volume. When a postmortem heart previously labeled with tantalum
screws was passively filled with known amounts of saline, the known changes in volume
compared favorably with the changes in volume calculated from the x-ray data describing the
positions of the screws in two orthogonal projections. If the ventricle twisted as it filled, one
would not expect the x-ray method to be accurate.

The evidence cited above suggests that it is reasonable to devise a diastolic heart model in
which twisting motion is avoided. To accomplish this and at the same time retain variable
fiber angle across the wall as a feature of the model, we divide the fibers into two systems. For
one system, the fiber angle varies between approximately +80° on the inside to —60° on the
outside, in a manner similar to that which exists in the ventricular wall (Streeter et al., 1969,
1978). For the second system, the fiber angle varies between approximately —80° on the
inside to +60° on the outside, with the fiber angle equal in magnitude and opposite in sign to
the first system. The distribution of the absolute value of fiber angles across the wall of the
heart model for the two fiber systems is illustrated in Fig. 2. Since the fibers in the two
systems follow the same helical course but have opposite sense, the heart model accomodates
changes in chamber volume by circumferential expansion and axial extension, similar to the
observed motion of the left ventricle during diastolic filling. The cylindrical configuration of
the model is maintained at all times.

To represent this heart model mathematically, we select one particular configuration and
refer everything concerning the heart to the configuration. In the following mathematical
development the choice of reference configuration is arbitrary. In actuality, for any model of
left ventricular diastolic mechanics, the choice of the reference configuration is itself a crucial
aspect of the model and should be based on physiological considerations and the known
material properties of heart muscle. We proceed here with a general formulation of equations
and defer discussion of the particular reference configuration to be adopted until the following
section.

It is convenient to use cylindrical coordinates. Let (R, 6, Z) represent the position of a
material point M in the reference configuration. The Z = 0 plane corresponds to the fixed top
plate of the heart, while the Z = L plane corresponds to the free plate. Suppose that a fiber
intersects the Z = 0 plane at the point (R, 8,, 0). The equations describing the helical path of
this fiber in space can be written in the form

and R = R,, (la)
0="0, + o, (1b)
and Z = B(R)w, (lc)

where w represents the angular displacement and is the independent parameter. B(R) has
dimensions of length and is related to the helical fiber angle v by the relation

B(R)
T = tanv. (2)

We now want to examine how the position of the point M at an arbitrary end diastolic

configuration (r, 6, z) relates to its position (R, b, Z) in the reference configuration. By
symmetry 6 = 0. If point M is located on the free planar edge of the heart, Z = Land z = L,
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where L and L' are the respective heart lengths. On the other hand, when M is located on the
fixed end of the heart Z = 0 and z = 0. The coordinate z must vary linearly between these
extremes. Therefore

’

L
z=)\Z,where>\=Z. (3)

The dimensionless parameter A represents the axial extension of the heart model, relative to
the reference configuration.

Since heart muscle is known to be incompressible, the volume of every part of the heart wall
must not change as the wall deforms. Local incompressibility thus requires

rdrddrdZ = RdRd0dZ. (4)

Integrating Eq. 4 we have
1
r2=x(R2+C). ©)

Let R, stand for the inner radius of the heart wall in the reference configuration; r; is the
corresponding radius in an arbitrary end diastolic configuration.
Then

wr’\L = R?L + CrL, (6a)
so that the constant of integration C is
V-V

C=—q (6b)

where V is the chamber volume in the arbitrary configuration and V is the chamber volume in
the reference configuration.
The position of point M in 3-space in an arbitrary configuration is

1{ , V-=V\I'?
e+ =) e
The configuration of the heart model is determined by the parameters A and V.

Let T be the net force acting across a muscle fiber. Let 7 be a unit vector pointing along the
fiber in the reference configuration. Let t be a unit vector pointing along the fiber in a possible
end diastolic configuration.

Consider an area element dA in the reference configuration that maps into an area element
da in a possible end diastolic configuration. Now a fiber that cuts across d4 will also cut
acorss da, so that the number of fibers dN that cut across the area element does not change.

Let dF represent the total fiber force due to one system of fibers acting across da in a possible
end diastolic configuration. Then

dF = p(n - 1) TdAt = ANT?, (7

where 4 p = number of fibers in one system per unit cross-sectional area normal to the fiber
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direction in the reference configuration, and n = unit vector perpendicular to the area element
dA in the reference configuration. The factor !4 has to be included because we have split the
total number of fibers into two systems.

Let i,, ig, and i i, be a set of unit vectors that point along the coordinate lines. Let dF, be the
“total” fiber force acting across an area element in a possible diastolic configuration that lies
in the § = constant plane in the reference configuration and has area dA4, in this configuration.
The word “total” refers to the fact that we are taking into account the contribution of both
fiber systems. Now

dFy = pdA,T[(ns - 7.)t, + (0o - 7)t_1], (8)
with
n0= (0, l, 0)9 (9)
r + B\
T4 = (0, (r2 n Bz)\z)x/z’ (r2 + Bz)\z)l/z)v (10)
and

R +B
ti-= (0’ (Rz + BZ)I/Z’ (R2 + Bz)n/z)- (11)

By substitution, it follows that

dF, d

R .
o= PR B (T By T (12)

Let dF, be the total fiber force acting across a material element in a possible diastolic
configuration that lies in the Z = constant plane in the reference configuration and has area
dA; in this configuration. By a similar approach, it can be shown that

d B A
~Fz=P(Rz T Bz)l/z : (r2 i BZAZ)I/Z

. TdAziz. ( 12b)

Note that in these formulas dF, and dF, represent forces acting in an arbitrary end
diastolic configuration, although they are proportional to the area of material elements lying
in the coordinate surfaces of the reference configuration.

In mechanics any constraint, since it results in the prevention of some kinds of motion, must
be maintained by forces. The incompressible nature of the myocardium represents one type of
constraint, and it gives rise to a hydrostatic pressure field P within the heart wall. To maintain
the constraint the pressure must be such that

force
unit volume

(13)

(Batchelor, 1970). We now derive a formula that describes how the pressure varies within the
model heart wall and chamber.

Consider a thin cylindrical wedge of myocardium within the wall of the heart model in an
arbitrary end diastolic configuration. Let the thickness of the wedge be dr and the height Az.
The angle the wedge subtends is 2¥. This wedge illustrated in Fig. 3.
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FIGURE 3 Schematic diagram of wedge volume element used in the derivation of the equation for local
hydrostatic pressure in the wall. The volume element is an arbitrary diastolic configuration. Its height is Az

and its width is dr.
The net force acting across the two sides of the wedge due to the muscle fibers is
—2 dF,sin Vi,

or

5 R rT dRAz
P(Rz ¥ B (7T + BN X

- sin Wi,.

The forces acting on the top of the wedge are equal in magnitude and opposite in direction
to the forces acting on the bottom of the wedge, so that the contribution of these forces to the

total force vanishes.
The volume of the wedge is 2¥r dr Az. Consequently, the total force per unit volume is

R T drR sin\Ili
PRI N+ BN &Y

In the limit as ¥ — 0, sin ¥/ ¥ = 1.

Therefore
oP
VP - —i,
+VP o mor (14)
LI R d R, (15)
" TP RA BN + BN o
0P 0P OR
Buts; = 'aﬁ . —a-;, so that
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oP R T

R- PR BN + BT (16)
R T
P(R) = —,/;IR PNR? + BY)'" : P + BA)" dR + P(R). (17)

Here R; is the radius of the inner (endocardial surface of the heart model. The pressure P
still represents the hydrostatic pressure at 7 in the end diastolic configuration, but it has been
referred back to R in the reference configuration, so that the domain of integration is fixed.

Applying the condition that the hydrostatic pressure at the outer (epicardial) surface of the
heart vanishes, i.e., P(R,) = 0, we obtain an equation for the filling pressure P,:

R, R T
Pc = P(R:) = jl:, p)\(Rz + BZ)I/Z ‘ (r2 + BZA2)1/2 dR. (18)
The distribution of pressure across the wall of the heart model is
R, R T
P(R) = j; PNR® + B . "+ B\)" dR. (19)

These equations for the pressure are applicable when the heart model is in a state of static
equilibrium. We make the tacit assumption that end diastole corresponds to such a state. This
assumption is reasonable because by the end of diastole the pressure is the same in both the
left atrium and left ventricle for a period of time, referred to as the Z-point of the cardiac
cycle by physiologists (Hurst and Logue, 1970).

The condition of static equilibrium implies that the net force acting on the free planar edge
of the heart model is zero. Now two forces actually act across the plate; the hydrostatic
pressure tends to push the plate down, while the muscle fibers pull the plate up. Net force
balance thus requires that

xr} P, + f " 2xrP(r) dr = f " dF;. (20)
The left side of the above equation can be simplified by integrating by parts:

f 2xrP(r) dr = —xr? P, —1rf’° 7'-"d" (21)

Noting that 6P/dr = (P/3R) - (AR /dr) and dr = (dr/dR) dR, it follows that

[r, ,of dl‘—fRo 2—dR (22)

1

Substituting for P(R), one obtains

2
ro R, rrR T
wrip+ [ 2wy dr - v [, R+ B A etk (B

On the other hand,

R, R, AB’R T
j;, dF; = 21r./;l p(Rz ¥ B~ . -+ Bz)\z)'/zdR’ (24)
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The condition for force equilibrium across the free end of the heart model is therefore
R, R T ) r?
L p(Rz + BZ)I/Z * (r2 + Bz)‘z)l/z (2}‘3 - Y) dR =0. (25)

Choice of Reference Configuration and Muscle Fiber Properties

Up to now we have not specified the functional dependence of the muscle fiber force T nor
stated explicitly any properties of the reference configuration. The forms of Egs. 18 and 25 do
not exclude the possibility of a diastolic configuration in which the simultaneous presence of
fibers in states of compression (with T < 0) and extension (with 7 > 0) results in a net
transmural pressure gradient, which we denote by AP, of zero. However, there is experimental
evidence suggesting that fiber tension is in fact zero in all layers of the mammalian left
ventricle when the difference in pressure between the inside and outside of the heart wall
vanishes. In view of the importance of this point, this evidence is described in detail.

Spotnitz et al. (1966) have examined sarcomere length as a function of the filling pressure
and volume under passive conditions in the intact left ventricles of dog and cat. Fresh hearts
were excised from animals sacrificed acutely. The aorta and mitral orifices were sealed with
clamps, and a cannula was inserted into the left main coronary artery. Two cannulas were
inserted across the interventricular septum into the left ventricle: one to measure pressure, the
other to introduce or withdraw fluid increments to regulate pressure. Fixation for electron
microscopy followed adjustment of intraventricular conditions to a desired position on the
pressure-volume curve. The preparation was perfused with fixative (glutaraldehyde) through
the previously cannulated coronary artery. Previous studies have shown that this fixative does
not change resting muscle tension (Sonnenblick et al., 1963). The sarcomere lengths from the
inner, middle, and outer muscle layers were then measured by using electron microscopic
techniques. Using this protocol, these investigators found that the sarcomere lengths in those
preparations fixed in a state of zero transmural pressure gradient (i.e., with AP = 0) ranged
between 1.85 and 2.0 um in the inner, middle, and outer layers of the heart wall. This fact is
evident in figure 9 of their paper.

More recent experimental investigations of the resting sarcomere length-tension relation in
isolated, microscopically thin ventricular muscle bundles have established that sarcomere
lengths between 1.9 and 2.0 um are associated with zero fiber tension. Kreuger and Pollack
(1975) measured sarcomere lengths in thin, isolated rat papillary muscle using light
diffraction techniques. Sarcomere length averaged 2.0 um when diastolic fiber tension was
zero. Pollack and Huntsman (1974) used bright field light microscopy and videometric
techniques to determine the sarcomere length from the striation pattern in thin, live, right
ventricular or papillary muscles of the rat. They found that minimal diastolic sarcomere
length averaged between 1.9 and 2.0 um; resting fiber tension was simultaneously measured in
their preparations and found to be zero over this length range.

The evidence cited above suggests that a diastolic configuration corresponding to zero
transmural pressure gradient and simultaneous zero fiber tension across the entire heart wall
should be one of the possible configurations of a realistic model of the diastolic left ventricle. It
is appropriate, then, to postulate a reference configuration in which AP = 0, T = 0 for all
fibers across the wall, and all fibers are assumed to have a sarcomere length of 1.9 um in the
reference state.
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We emphasize that this reference configuration is adopted because of the above empirical
data, not because it furnishes a trivial solution to Eq. 25 with AP = 0.

Given this choice of reference configuration, the muscle fiber force T for ¥V > V is not
known in advance but constitutes part of the problem of determining the end diastolic
configuration of the heart model. The length of a segment of a fiber in the reference
configuration between § = 0 and 8 = ¢ is (R* + B%)'? . ¢’. Similarly, the length of the same
fiber segment in an arbitrary end diastolic configuration is (#*> + A\* B%)"? . ¢'. The ratio of
these two terms, which we denote by «, represents the degree of extension of a fiber in an
arbitrary end diastolic configuration, relative to the reference configuration.

r2 + )\282 1/2. (26)
a(R)=(R2+Bz)

In the resting state, the tension-extension curve of heart muscle at lengths greater than its
slack length is exponential in character (Braunwald, et al., 1976). It is appropriate, then, to
let

T = D[e?=" — 1], (27a)
where D and C are constants, when a(R) = 1. For a < 1, the fibers resist compression and
T=-K(1 — a). (27b)
It is found when the anatomic distribution of fiber orientations is part of the model, « is
always =1 across the heart wall in all possible end diastolic configurations.

Numerical Methods

Given the end diastolic volume ¥ and with T specified by Egs. 26 and 27, Eq. 25 represents a
nonlinear equation for the unknown parameter A. In this section we outline the numerical
method used to determine A. For this purpose, the fixed interval of integration (R;, R,) is
divided into N segments of uniform length AR. The integral in Eq. 25 is replaced by the sum

Foy - 8RS 5 R d (sz ’—2)
288 S E YR+ B+ BT )
R=Ri+(5j+k)AR (28)

where n = N/5 and the ¢, represent the weighting coefficients in the fifth order Newton-Cotes
closed integration formula:

6 =¢6=19¢ =¢ =75;and ¢; = ¢; = 50.

Using the relations

dr? 1, :
a = —X’ s (29)
da 1 (2NB*—-r?)
d\ " 2a MR+ B’ (30)
dTr da

Cla-1)
n =DCe gy fora=1, (31)
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and

dT da
-d—x=K°afOl'a<l (32)
one can evaluate dF/dA explicitly. The equation F(A\) = 0 is solved by the iterative procedure
F/[A™]
(m+1) _ \(m) _ __ t7° 1
A A FIA™] (33)

(i.e., Newton’s Method). In practice, this method converges efficiently, provided the initial
estimate is sufficiently close to the actual root. To determine the range of possible end
diastolic configurations, the chamber volume ¥V is varied.

RESULTS

Choice of Model Parameters

To facilitate comparison with experimental data, the model parameters are chosen so that the
model left ventricle has approximately the same dimensions and fiber structure as the canine
left ventricle. Spotnitz et al. (1966) have found that zero filling pressure in the canine left
ventricle requires a small initial volume of ~10 to 15 cc. Accordingly, we let V, the chamber
volume in the reference configuration, be 10 cc. The mass of the canine left ventricle is
approximately 100 g, and the ratio of chamber length (i.e., major axis) to chamber diameter
(i.e., minor axis) at end diastole is approximately 1.5 (Braunwald et al., 1976). If we require
that the model satisfy these constraints, it is easily found that R, = 1.02 cm, R, = 3.38 cm,
and L = 3.06 cm.

The distribution of fiber orientations in the canine left ventricle has been investigated by
Streeter and co-workers (1969). They showed that the heart wall had a well-ordered
distribution of fiber angles, and that this distribution of fiber angles did not vary apprecia-
bly at four representative sampling sites. To determine the function B(R) in the model, the
curve representing the mean of their data at these four sites, denoted by the points marked M
in figure 4 of their paper, is digitized. B(R) is then set equal to R times the absolute value of
the tangent of the fiber angle. The fiber angle is always positive on account of the two
symmetric fiber systems in the model ventricle. The distribution of fiber angles used to
calculate B(R) is shown in Fig. 2.

The muscle fiber parameters are pD = 6.0 g cm~2 and K = 10 g cm™2 The numerical
parameters are as follows. The calculations are performed with the interval of integration
(R;, R,) divided into 55 segments of uniform length AR. Sufficient iterations are carried out
to reduce | F(\) | to less than 10~ mm Hg at each diastolic volume.

Diastolic Pressure-Volume Relations

The relation between filling pressure and volume in the model ventricle is shown in Fig. 4.
Zero filling pressure corresponds to the small initial volume of 10 cc. As the intraventricular
volume increases, diastolic pressure rises, first slowly and then very rapidly. The model heart
accommodates volume more by circumferential expansion than by axial extension. For
example, with an increment of 40 cm? in intraventricular volume, r* changes by a factor of
3.42, while the length of the ventricle changes by a factor of 1.46.
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FIGURE 4 Relation between filling pressure and volume in the model ventricle (-x-x-). The plain line is a
plot of the function P = —a + be”, with a = 5.369, b = 3.738, and ¢ = 0.0362. Functions of this form have
been found empirically to fit the diastolic pressure-volume relation of the canine left ventricle (see text).

Noble and associates (1969) have investigated diastolic pressure-volume relations in 7
conscious dogs. The left ventricular volume (V) was estimated by taking biplane cineradio-
graphs with the left ventricular cavity previously outlined by permanent radiopaque markers.
Left ventricular pressure (P) was measured with an implanted transducer. They found that
the diastolic pressure-volume relationship was approximately exponential and was fitted by
the equation P = —a + b e*, where a, b, and ¢ are positive constants. The plain line in Fig. 4
is a plot of a function of this form with a = 5.369, b = 3.738, and ¢ = 0.0362. There is close
agreement between the pressure-volume curve of the model ventricle and this calculated
function, suggesting that the model’s behavior is representative of diastolic filling in vivo over
a wide range of filling pressures.

Distribution of Pressure Across Heart Wall

The hydrostatic pressure field within the model heart wall at mechanical equilibrium, given
by Eq. 19, is shown in Fig. 5. The 10 mm Hg chamber pressure in Fig. 5 A is in the normal
physiological range, while the 21 mm Hg chamber pressure in Fig. 5 B is representative of the
filling pressures encountered with acute pathological ventricular dilatation. Fig. 5 A demon-
strates that the build up in hydrostatic pressure across the model heart wall, from zero on the
epicardial surface to the left ventricular chamber pressure on the endocardial surface, departs
strikingly from a simple linear relation. In the outer layers of the heart wall the pressure rises
rapidly to a low value, compared with the chamber pressure. From 95 to 50% of wall thickness
the rise in pressure is approximately linear, but the slope is minimal, so that a net gain of only
0.4 mm Hg is attained. At approximately 50% of wall thickness, the pressure-wall thickness
curve has a point of inflection; the pressure then rises steeply in the subendocardial layers. The
net gain in pressure occurring in the inner third of the heart wall is 85% of the left ventricular
pressure.

A similar distribution of pressure across the model heart wall occurs at elevated filling
pressures. This point is illustrated in Fig. 5 B. As the filling pressures increase, the absolute
gradient in pressure between the subendocardium and the midwall also rises. For example,

154 BIOPHYSICAL JOURNAL VOLUME 28 1979



(MM HB)

WALL PRESSURE (M He)

WALL PRESSURE

[} 20 4p 60 an 1] ] 20 yp ) [T} 100

% WALL THICKNESS % WALL THICKNESS

FIGURE 5 (A) Variation in hydrostatic pressure across the wall of the heart model when the chamber
pressure is 10 mm Hg. (B) Variation in hydrostatic pressure across the wall of the heart model when the
chamber pressure is 21 mm Hg.

this gradient is approximately 7.9 and 14.9 mm Hg at left ventricular filling pressures of 10
and 21 mm Hg, respectively.

Distribution of Fiber Force and Extension

The distribution of fiber extension within the model heart wall is plotted in Fig. 6 as a function
of the left ventricular pressure. There is marked variation in the distribution of fiber extension;
the fibers of the heart wall can be subdivided into three groups from a physiologic standpoint
on the basis of their fiber extension-filling pressure curve.

The first group consists of fibers that are stretched beyond L, even at the lower limit of
normal physiologic filling pressures, i.e., 5 mm Hg. These fibers comprise the inner 30% of the
heart wall. Their degree of extension-filling pressure curve is shown in Fig. 6 A. As the
ventricular pressure increases, the degree of extension of these fibers continues to increase
rapidly. For example, a fiber located at 10% of full wall thickness is stretched by 20, 34, and
43% at 5, 12, and 21 mm Hg, respectively. Since these fibers are always stretched beyond
L., they cannot contribute to the operation of Starling’s Law of Heart in the heart model.

The second group of fibers also does not contribute appreciably to the operation of
Starling’s Law of the Heart in the heart model. These fibers are located in the wall between
60-80% of wall thickness. Their degree of extension-filling pressure curve is shown in Fig.
6 A. As the ventricular pressure increases from 5 to 12 mm Hg, the degree of extension of
these fibers hardly changes at all. For example, the degree of extension of a fiber located at
70% of full wall thickness changes by only 3.6% when the ventricular pressure is raised from 5
mm to 12 mm Hg. As the ventricular pressure increases to pressures above the normal
physiologic ranges, the degree of extension of this group of fibers continues to increase with
minimal slope.

The third group of fibers consists of those fibers that undergo appreciable extension below
L., as the ventricular pressure increases in the normal physiologic range. These fibers are
located approximately 30-60% and 80-100% of full wall thickness. Their degree of
extension-filling pressure curves is illustrated in Fig. 6 B. As the ventricular pressure
approaches 12 mm Hg, the extension of the midwall fibers ranges from 13 to 15%. This degree
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FIGURE 6 (A) Fiber extension at various representative locations within the model heart wall is plotted as
a function of the filling pressure. The fibers corresponding to curves A, B, C, and D, located respectively at
9, 0, 20, and 29% of full wall thickness, do not contribute to the operation of Starling’s Law of the Heart in
the model, since they are stretched to L, or beyond over the range of normal filling pressures (5-12 mm
Hg). The fibers corresponding to curves E and F, located, respectively, at 80 and 69% of full wall
thickness, do not stretch appreciably over the range of normal filling pressures. (B) Fiber extension at
various representative locations within the model heart wall is plotted as a function of the filling pressure.
The fibers corresponding to curves A4, B, and C are located, respectively, at 40, 49, and 89% of full wall
thickness. These fibers undergo appreciable extension below L, as the ventricular pressure increases in
the normal physiologic range.

of extension brings these fibers to the apex of the myocardial muscle cell length-tension curve.
It is the third group of fibers that contributes to the operation of Starling’s Law in the
thick-walled heart model.

The distribution of fiber stress across the wall of the heart model at ventricular pressures of
10 and 21 mm Hg is shown in Fig. 7. The distribution of fiber stress mirrors the distribution of
fiber extension; however, the peaks and valleys are accentuated because of the fibers’
exponential length-tension relation. Note that maximal fiber force and extension occur in the
subendocardial layers at approximately 7% of full wall thickness.

Figs. 6 and 7 suggest that the diastolic pressure-volume relation of the ventricle as a whole
depends much more appreciably on the force balance achieved between fiber stress and
hydrostatic pressure in the inner half than the outer half of the ventricular wall. To test this
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FIGURE7 (A) The distribution of fiber stress across the wall of the heart model when the filling pressure
is 10 mm Hg. (B) The distribution of fiber stress across the wall of the heart model when the filling
pressure is 21 mm Hg.

idea, we divide the model heart into two cylinders, one representing the inner 50% of the heart
wall and the second the outer 50% of the heart wall, and calculate the pressure-volume
relation of each of these cylinders separately. Fig. 8 compares the pressure-change in volume
relation of each of these “half heart” cylinders with the pressure-change in the volume
relation of the whole heart model. Note that the cylinder representing the inner half of
the heart model has almost the same pressure-volume relation as the total heart model, while
the pressure-volume relation of the cylinder corresponding to the outer half of the heart wall is
completely different. These results suggest that the diastolic pressure-volume relations of the
heart depend primarily on the fiber architecture and forces in the inner half of the heart wall;
the outer half of the heart wall is much more compliant and, for the most part, passively
extended.

Effect of Heart Size

It is important to consider how the preceding results depend on the heart model’s absolute
size. The mammals are remarkable for their extraordinary range in size; the mammalian
heart also varies in size over an extraordinary range. The heart of one of the smallest
mammals, the dwarf bat (Vesperugo pipistrellus), weighs about 0.056 g, while the heart of
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the sperm whale weighs about 400,000 g (Clark, 1927). This represents a seven-million-fold
variation in weight. Yet, the general shape and proportions of the heart remain quite similar
over this wide range of size. For example, the heart of a rat magnified 25 Diam appears very
similar to the heart of an ox (Clark, 1927). Clark (1927) has demonstrated that the weight of
the heart in grams is approximately equal to the cube of the length in centimeters of the cavity
of the left ventricle over a 30,000-fold range, from the 0.13 g heart of the mouse to the 3,900 g
heart of the horse.

The foregoing considerations suggest that the hearts of mammals of different sizes are
approximately scale models of each other. This provides the motivation for investigating the
effect of heart size on the distribution of pressure and fiber extension across the wall in
geometrically similar model hearts.

Specifically, let us consider two model hearts with proportional dimensions in their
respective reference configurations: R} = KR;, R,=KR, and L’ = KL, where K is a
constant. Given the same distribution of fiber angles in the two hearts, Eq. 2 implies that
B(R’) = K B(R).

Suppose that the first heart chamber has volume ¥’ = K*V, while the second heart
chamber has volume V. Let X" and A represent the axial extensions of the two heart models,
relative to their reference configurations, in these respective states. ’

Now
1 vV -V
r’2 = _X—, (IQ’2 + T) = Kzrzl)‘_x, (34)

and

a(R’) = a(R) | x- (35)
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The condition for force equilibrium for the first heart model is

’2

R, R, T[a(R/)] rpr2 r_) ’ _
fR, R (2>\B ——]dR’ =0. (36)

+ 812)1/2 : (r/2 + B/2x12)l/2 N
or
R R T[a(R)] ( , r? |)‘_)‘,)
2 . 'B* — —— =0. 37
K ./;l PR® + BY (¢, + BN 2NB N dR =0 (37)

The latter equation is equivalent to the condition for force equilibrium for the second heart
model, so that \ = \. It follows that P, = P, (Eq. 18) and P (R’) = P (R) (Eq. 19). For a
family of heart models that are scale models of each other, the results of the preceding sections
are thus independent of absolute heart size.

Effect of Fiber Architecture

The behavior of the heart model is, however, critically dependent on the existence of
longitudinally oriented fibers in the endocardial and epicardial regions of the heart wall. To
show this, we calculate the possible diastolic configurations of a second heart model in which
the fiber orientation is circumferential across the entire wall. More specifically, in the second
model, the anatomic distribution of fiber angles is altered so that the maximum fiber angle is
15° or less. This distribution of fiber angles is illustrated in Fig. 9.

Figs. 10, 11 and 12 demonstrate that when all the fibers are circumferential, the diastolic
states of the model become completely different and, from a physiologic standpoint,
untenable. The model heart now accommodates volume with a significantly greater degree of
axial extension (Fig. 10). The diastolic pressure-volume relation is shifted so that the model
heart is much more compliant at all chamber volumes (Fig. 11). Fig. 12 shows that as the
filling pressure increases, the degree of fiber extension in a substantial portion of the middle
heart wall remains less than one (i.e., these fibers undergo compression). This behavior is
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FIGURE 9 Modified distribution of fiber angles across model heart wall in which all fiber angles are 15°

or less, so that all fibers pursue a predominantly circumferential course. This distribution of fiber angles is
not anatomically correct.
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FIGURE 10  Axial extension of two heart models as a function of end diastolic volume change. The upper
curve (-0-0-) corresponds to the heart model with only circumferential fibers (Fig. 9). The lower curve
(—) corresponds to the anatomic distribution of fiber angles (Fig. 3).

unphysiologic because it makes the diastolic configurations of the model incompatible with
effective systolic contraction.

With the results just described, it is assumed that fiber elements in the model resist
extension but not compression, that T = O for a < 0. There is however, experimental evidence
that heart muscle fibers do in fact resist compression (Sonnenblick and Skelton, 1974). It is
possible that the unphysiologic behavior of the heart model when all the fibers are
circumferential results because this important feature of cardiac muscle physiology is omitted
in the model.

To test this idea, we let the fibers resist compression as well as extension by setting

T--K( - a) - (38)

when a < 1, where K = 10 g/cm?, and recalculated the equilibrium configurations of the
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FIGURE 11 Pressure-volume change relation in two heart models. The upper curve (—) corresponds to

the heart model with the anatomic distribution of fiber angles (Fig. 3). The lower curve (-0-0-)
corresponds to the heart model with only circumferential fibers (Fig. 9).
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FIGURE 12 Fiber extension at representative locations as a function of filling pressure in the heart model
with only circumferential fibers (Fig. 9). The fibers do not resist compression. Curves A4, B, and C
correspond, respectively, to 29, 49, and 40% of full wall thickness.

model. Fig. 13 demonstrates that in this case the degree of fiber extension in the middle heart
wall still remains less than one.

DISCUSSION

Comparison with Experimental Data

Experimental determination of the distribution of myocardial fiber extension across the heart
wall in vivo is not technically feasible at this time. The combined use of small implanted
radio-opaque markers and fast computerized tomographic scanning may make such measure-
ments possible in the near future. However, the myocardial cell sarcomere length is
measurable, and the distribution of sarcomere length across the heart wall has been studied in
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FIGURE 13  Fiber extension at representative locations as a function of filling pressure in the heart model
with only circumferential fibers (Fig. 8). The fibers resist compression as well as extension (see text).
Curves A, B, and C correspond, respectively, to 29, 49, and 40% of full wall thickness.
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canine left ventricles that were fixed in situ in the open-chest dog during diastole by rapid,
timed infusion of glutaraldehyde into the coronary arteries.

There is experimental evidence that the minimal resting cardiac sarcomere length is 1.9 um
(Grimm et al., 1970), sarcomere length is linearly related to fiber extension in the range of 1.9
to 2.2 um, (Grimm et al, 1970; Pollack and Huntsman, 1974), and that sarcomere length
ranges between 2.2 and 2.3 um for large extensions (Sonnenblick et al, 1973). Given these
data, it is appropriate to assign the fibers of the heart model a uniform sarcomere length of 1.9
um in the reference configuration. We define the sarcomere length of a fiber in the model as
1.9 um times the extension of the fiber, relative to its length in the reference configuration, up
to an extension of 15.8% (equivalent to 2.2 um).

The relation between diastolic sarcomere length and filling pressure in the intact ejecting
heart has been investigated by Ross and co-workers (1967). Diastolic sarcomere lengths in the
midwall of the left ventricle averaged 2.07 um with a range of 2.05 to 2.15 um, when filling
pressure ranged from 6 to 8 mm Hg (Sonnenblick et al, 1967). This compares favorably with
the calculated average sarcomere length of 2.06 um in the midwall (i.e., 40-60% of wall
thickness) fibers of the heart model. As filling pressure rises in the canine left ventricle,
average sarcomere length increases, and when it reaches about 2.2 um, filling pressure has
reached 12-15 mm Hg. In the model ventricle, the calculated average sarcomere length of
midwall fibers is 2.15 and 2.19 um at filling pressures of 12 and 15 mm Hg, respectively. In
the subendocardial layers of the canine left ventricle, sarcomeres tend to be longer than in the
outer layers (Diamond et al.,, 1971), and the longest sarcomeres are found between the
subendocardial and midwall layers (Mitchell et al., 1960). The calculated distribution of
sarcomere lengths in the model ventricle has the same qualitative features.

Diamond and co-workers (1971) have investigated the effect of heart size on sarcomere
length. Despite a ten-fold difference in size of the heart, they found the relation between
filling pressure and sarcomere length to be identical in the cat and dog. On the basis of these
observations, they conclude that diastolic filling pressure, or wall tension, is the general
determinant of diastolic sarcomere length in the normal left ventricle independent of the
absolute size of the heart. As discussed in the preceding section, the relation between filling
pressure and fiber extension in the heart model is also independent of absolute heart size for a
family of heart models that are scale models of each other. Geometric similarity of
mammalian hearts is an empirical fact.

A variety of methods, including the use of embedded arteries (Gregg and Eckstein, 1941;
Johnson and Dipalma, 1939; Salisbury et al., 1962), pockets of fluid (Laszt and Muller,
1958), plastic tubing (Brandi and McGregor, 1969), latex balloons (Dieudonne, 1967; D’Silva
et al., 1963), needles (Kirk and Honig, 1964), and embedded miniature pressure transducers
(Armour and Randall, 1970) have been employed to measure intramyocardial pressure.
However, the results of these studies are widely divergent, and there is lack of agreement on
the actual variation in hydrostatic pressure across the heart wall. This variability may result
because any implanted measuring device probably, in itself, alters the local fiber structure and
tension, and thereby perturbs the intramyocardial pressure. It is thus not possible to compare
the variation in pressure across the wall of the heart model with well validated experimental
data at this time.
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Physiologic Significance of Results

The numerical calculations suggest that the functional role of heart muscle fiber depends
quite significantly on its relative position in the heart wall. For example, the mechanical
equilibrium corresponding to end diastole in the heart model depends disproportionately on
the fibers of the inner half of the heart wall. While our results provide support for the view
that Starling’s Law of the Heart is in part a reflection of the fact that changes in end diastole
volume alter the degree of myocardial fiber extension, the computations also show that only
approximately 50% of the fibers in the model heart wall can contribute to the Frank-Starling
mechanism. The fibers of the subendocardium are stretched beyond L., at low filling
pressures, while the circumferentially oriented fibers between 60-80% of full wall thickness
stretch with minimal slope as the ventricular volume increases. The latter finding may seem
surprising in view of the fact that the model heart accommodates intraventricular volume by
circumferential expansion. The apparent explanation for this finding is that the thinning of
the heart wall that occurs with increasing intraventricular volume (a consequence of the
myocardium’s incompressibility) substantially reduces the actual radial displacement of these
fibers in 3-space.

The subendocardial fibers operate in a “mechanical milieu” distinctly different from the
other model heart wall muscle fibers. In diastole they are stretched beyond L,,,, and have a
high resting tension. Conversely, during systolic ejection they must shorten far more than the
rest of the myocardial fibers. In view of the inverse relation between muscle force and velocity
in cardiac muscle, these fibers develop less active tension than the rest of the fibers in the heart
wall. During diastole, the hydrostatic pressure in the subendocardial layers of the heart wall is
significantly greater than in the rest of the myocardium. These findings are of special interest
because perfusion of the subendocardium, unlike the rest of the heart wall, takes place
primarily during diastole (Domenech et al.,, 1969; Downey and Kirk, 1974). The model
calculations predict that elevation of left ventricular end diastole pressure increases the
absolute pressure gradient between the subendocardium and the midwall and outer layers of
the heart wall. It is possible that in a compromised coronary vascular bed this pressure
gradient could stop perfusion of the subendocardium and initiate infarction. The subendocar-
dial region of the left ventricular wall is known to be the region of the heart wall in greatest
jeopardy in coronary artery disease (Griggs and Nakamura, 1968) and most vulnerable to
ischemia (Horn et al., 1950; Braunwald et al., 1976).

The results suggest that the diastolic properties of the left ventricle are strongly dependent
on the heart wall’s fiber architecture. The marked variation in the distribution of fiber force
across the wall at end diastole is a consequence of the anatomic distribution of fiber
orientations. The diastolic compliance of the model is substantially increased when all the
fibers of the model pursue a predominantly circumferential helical course. While previous
model work on the diastolic left ventricle has taken into account nonnegligible wall thickness,
incompressibility, finite deformation, and nonlinear elastic effects, the fiber architecture of
the ventricular wall is largely ignored in theoretical formulations of cardiac mechanics. For
example, the investigations of Janz and co-workers (Janz and Grimm, 1973; Janz et al., 1974;
Janz and Waldron, 1978) and Mirsky and associates (Mirsky, 1969; Mirsky et al., 1974) treat
the ventricle as an isotropic, thick-walled solid of revolution.
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Streeter and associates (Streeter and Basset, 1966; Streeter, 1969; Streeter et al., 1970) use
a model for ventricular stress analysis that incorporates varying fiber orientation; however, to
calculate wall forces, a constant tension is assumed for each fiber through the wall. Janz and
Waldron (1976) derive a model for myocardial nonhomogeneity based on the assumption that
circumferential fiber stress is independent of position in the ventricular wall. Glantz and
Kernoff (1975) calculate the muscle stiffness from canine left ventricular pressure-volume
curves using a model based on a similar assumption. The numerical computations presented
here imply that a realistic formulation of diastolic ventricular mechanics must take into
account possible variation in fiber force across the heart wall, as well as its fiber architecture.

SUMMARY AND CONCLUSIONS

In the present paper we have formulated a model for diastolic ventricular mechanics that
takes into account nonnegligible wall thickness, incompressibility, finite deformation, non-
linear elastic effects, and the known fiber architecture of the ventricular wall. Twisting motion
during diastolic filling is avoided in the model by dividing the anatomic distribution of fiber
orientations into a clockwise and counterclockwise system. In the reference configuration,
there is no net difference in pressure between the inner and outer walls, the fiber force is
assumed to be zero across the wall, and all fibers are assigned a sarcomere length of 1.9 um.
Wall forces and the geometrical configuration of the heart at end diastole are interdepen-
dent. .

Numerical evaluation of the possible end diastolic configurations of the model allows one to
make detailed predictions about the mechanical state of the left ventricle at end diastole. The
distribution of fiber extension across the wall is found to be highly variable. Subendocardial
fibers are stretched beyond L., even at low filling pressures, i.e., S mm Hg. Fibers located
between 60-80% of wall thickness extend minimally between 5-12 mm Hg. Only about 50%
of the wall’s muscle fibers contribute to the operation of the Frank-Starling mechanism. The
hydrostatic pressure field within the wall is highly nonlinear. The pressure rises steeply in the
subendocardial layers so that the net gain in pressure in the inner third of the wall is 85% of
the filling pressure. With pathologically elevated filling pressures, the absolute pressure
gradient between the subendocardium and the midwall increases proportionately. In the
model the inner half of the heart wall plays disproportionately greater role than the outer half
in determining diastolic compliance. These predictions should be helpful in planning experi-
ments designed to increase our understanding of ventricular function in diastole.
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