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ABSTRACT Oxygen tension levels and red cell velocities for the flow of sickle-cell blood in the
capillaries are determined by using the Krogh model for oxygen transport and lubrication
theory for the cell motion. The coupling and interaction between these arises from the red cell
compliance, which is assumed to vary with the oxygen concentration. Microsieving data is used
to establish an upper bound for this relationship. Calculations are carried out for a range of
capillary sizes, taking into account the rightward shift of the oxyhemoglobin dissociation curve
and the reduced hematocrit of sickle-cell blood, and are compared to, as a base case, the flow
of normal blood under normal pressure gradient. The results indicate that under normal
pressure gradients the oxygen tensions and cell velocities for sickle blood are considerably
higher than for normal blood, thus acting against the tendency for cells to sickle, or
significantly change their rheological properties, in the capillaries. Under reduced pressure
gradients, however, the concentrations and velocities drop dramatically, adding to the
likelihood of such shape or flow property changes.

INTRODUCTION

The clinical symptomology of sickle-cell disease is primarily a manifestation of abnormal
events in the capillaries. In this paper we look at some aspects of the flow of sickle-cell disease
blood through the capillaries in order to elucidate the interplay of mechanisms at work.

Sickle blood (blood from persons with sickle-cell anemia) is known to undergo rheological
changes and shape changes if the oxygen level falls low enough. If, as oxygen is released by the
red blood cells, the oxygen tension falls to low levels in the capillaries, the following sequence
of events may occur (1). Rheological changes increase blood viscosity, which leads to a
decrease in velocity of flow, leading to the release of more oxygen. This latter effect is due not
only to the lower velocity but also to the increase in hydrogen ion concentration of tissue and
blood, which shifts the oxygen dissociation curve so as to enhance further the unloading of
oxygen from the hemoglobin. There follows a further increase in viscosity, hence a further
decrease in velocity, and so on. The potential end result of this "vicious cycle" is a static mass
of sickled cells lodged in the capillaries, blocking circulation.

Clearly, the oxygen tension levels in the capillary, which initiate this cycle, are of critical
importance. Sickle blood has a number of characteristics and properties that would tend to
lower oxygen tensions in the capillary. Among the more important of these are: (a) impaired
oxygen-carrying capacity stemming from the rightward shift of the oxyhemoglobin dissocia-
tion curve and subnormal oxygenation in the lungs; (b) a tendency to rheological and shape
changes, which can increase blood viscosity and therefore decrease velocity of blood flow; and
(c) a lower oxygen-carrying capacity due to a reduced hematocrit, so that more oxygen per
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red cell must be given up to satisfy tissue demands. There are, however, aspects of these same
characteristics that tend either to maintain high oxygen tensions in the capillary or to mitigate
against the consequence of low oxygen levels. The rightward shift of the oxyhemoglobin
dissociation curve makes it possible for small decreases in oxygen concentration to liberate
sufficient oxygen to meet tissue requirements. The much lower hematocrit of sickle-cell blood
(25-30% vs. the normal value of -48%) decreases the resistance to flow of such blood in the
capillary and therefore leads to dramatically higher than normal transit velocities of the cells
for a given pressure gradient. (A measure of the effectiveness of this compensatory
mechanism is that there is little difference between the viscosity of completely deoxygenated
sickle blood at a hematocrit of 25% and that of fully oxygenated normal blood at a hematocrit
of 50%.) These higher cell velocities tend to keep oxygen tensions high because there is less
time available for oxygen to be released. Finally, because the rheological and shape changes to
which sickle cells are susceptible require a finite time, even if the tensions fall to low values,
the cells, particularly since they move faster than normal cells, may exit the capillary before
significant changes of this kind occur. Thus the actual oxygen levels and velocities of flow in
the capillary depend on the interplay of these opposing tendencies.
The primary purpose of this paper is to incorporate all of these characteristics of sickle

blood into a model of capillary flow and oxygen transport. We shall show which way the
balance falls, and how it is affected by changes in flow conditions and/or sickle blood
properties.
To analyze the problem of oxygen concentration in the capillary bed we employ the Krogh

model (2). In this model a single capillary is assumed to be the sole supplier of oxygen to a
surrounding annulus of tissue. Solutions must be obtained simultaneously for the blood
velocity and for the oxygen concentration in the capillary and in the tissue. The blood velocity
is determined from a lubrication theory of red cell motion in a capillary (3-6). The key
elements of the analysis are that the oxygen concentration depends on the velocity of flow
whereas the velocity depends on the overall concentration in the capillary. Although there are
many Krogh-type studies of transport in the capillaries in which the first of these dependen-
cies is taken into account, it is the introduction of the second, providing as it does a feedback
mechanism, that distinguishes the approach taken here from previous studies.
The manner in which the dependence of the velocity of flow on the overall oxygen

concentration is calculated clarifies and eliminates a paradox in the vicious cycle (1) of
sickle-cell disease. According to the vicious cycle, the fall of oxygen concentration as the cells
move down the capillary leads to an increase in viscosity and a consequent decrease in cell
velocity. However, since blood is effectively incompressible, one cannot reconcile a difference
in velocities at the proximal and distal ends with the principle of conservation of mass flow
through the capillary.

Although rheological changes in red cells due to reduced oxygen tensions occur very rapidly
(7), shape changes of the red cells, which might be expected to more dramatically affect their
passage through the capillary, occur more slowly, over times larger than the normal transit
times of cells across a capillary. The transit times calculated as part of the present analysis can
be used as a guide to the kinds and magnitudes of the sickling changes in the cells that might
be expected under different physiological conditions.
The only previous work that has attempted a quantitative investigation of the interaction

BIOPHYSICAL JOURNAL VOLUME 29 1980120



between oxygen transport and the dynamics of red cell motion for sickle blood is that of
Lomen and Gross (8). Although in spirit their work is close to that presented here, their
analysis leads to misleading conclusions about the flow of sickle blood. We discuss this fully at
the end of the Discussion.

MATHEMATICAL MODEL

We use the Krogh cylinder model and consider the transport of oxygen only. Cylindrical polar
coordinates x, r, 6 are used (Fig. 1), but it is assumed throughout that the problem is axially
symmetric, so there is no 0 dependence. The tissue element and the capillary are taken to be
concentric cylinders of radii r, and rc, respectively, and of length L.
The problem of oxygen transport can be formulated either in terms of the oxygen

concentration, c, or the partial pressure, P02, of oxygen in equilibrium with a solution at
concentration c. These two quantities are related by Henry's law, c = aPo2, where a is the
solubility constant. Throughout this paper Po2 will be in units of millimeters of Hg, and c will
be in some appropriate set of units, such as a volume fraction.
We now separately consider the capillary and tissue regions, assuming that steady-state

conditions prevail.

Tissue Region: rc c r < r,
We assume that oxygen moves through the tissue by molecular diffusion only and is then
consumed by metabolism. Previous studies of oxygen diffusion and transport using the Krogh
model demonstrate that axial diffusion is negligible in the tissue region surrounding the
capillary (9). To simplify the subsequent analysis we shall assume that the metabolic rate is
constant, equal to A (rate of consumption of oxygen per unit volume of tissue). This
approximation and simplification plus the assumption of steadiness reduce the equation
governing the concentration of oxygen in the tissue to the form

DI (d + 1 C A,(1
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FIGURE 1 Krogh cylinder model and coordinate system.
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where D' is the (radial) diffusivity of oxygen in the tissue. (Whenever the need arises to
distinguish values in the tissue from that in the blood, we shall use t for the former and b for
the latter, either as subscript or superscript.)

Capillary Region: 0 < r -< r

The equation determining the oxygen concentration c in the capillary represents a balance
between convection, diffusion, and production. As for the tissue region, other studies with the
Krogh model indicate that in the capillary axial diffusion of oxygen is usually negligible
compared to axial convective transport (9). In assuming further that in the capillary axial
velocities are much greater than radial velocities, we can write the oxygen balance equation
for the capillary, approximately, as

OChc ' Cl2 lO \
u-= D r2 + -d + d(c), (2)

where u is the axial velocity, Db is the (radial) oxygen diffusivity in blood, and d represents the
production of oxygen due to the dissociation of oxyhemoglobin in the red blood cells.
The kinetics of the oxyhemoglobin dissociation process are very rapid compared to diffusion

rates. The equilibrium state depends on the oxygen partial pressure of plasma external to the
red blood cells and the carbon dioxide partial pressure. We shall assume that this state exists
at every instant and that the fraction of oxygen bound to hemoglobin is always in equilibrium
with the oxygen content of the plasma. Then d(c) = -N(Ds/Dt), where N is the
oxygen-binding capacity of blood and s is the fractional saturation (Fig. 2). The fractional
saturation is assumed to be related to the concentration by the Hill equation, s = KPo'/
(I + KPo'), where K is a constant depending on the ionic strength and pH of the hemoglobin
solution and n is also a constant lying in the range of 2.5 - 2.7.
The Hill equation lacks the theoretical foundation of the Adair intermediate compound

equation (10) and fails to represent adequately the saturation curve at its ends. The Hill
equation is in fact reasonably successful within the range of 20-98% saturation, that part of
the dissociation curve of main physiological interest. It is considerably simpler in form and
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FIGURE 2 Oxygen dissociation curves of human normal hemoglobin and hemoglobin from individuals
with sickle-cell anemia.
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easier to work with. Moreover, since the constant K is equal to (Po2) so, where (Po2)50 is the
value of Po2 at which the hemoglobin is 50% saturated, for the Hill equation, unlike the Adair
equation, the rightward shift of the dissociation curve for sickle blood can be directly related
to a change in just one constant. This facilitates comparisons between normal and sickle
blood.

Using Henry's law, the Hill equation can be written in terms of c as

K'c'
3

1 + K' (3)

where K' = K/la.
Eq. 2 may now be written

O (O2c 1dOc
u (c + Ns) = Db

p + ~~(4)Olx Or rOnl

or
(I nNK'Cn- dc b (2C I c) Su1I+ 'Cn'\2 Or2 rOr(5)

Boundary Conditions
Continuity of oxygen flux at the capillary-tissue interface requires that

Dboc r-r, D' Oc r,,. (6)
Or blood Odr tissue

If we assume that the capillary wall offers negligible resistance to the diffusion of oxygen, then
the oxygen partial pressure is continuous across the capillary wall, or since c = aPo2,

C C
- r-r, = - r-rc , (7)
ab blood a, tissue

where ab is the solubility of oxygen in blood, and a, the solubility of oxygen in the surrounding
tissue. (If the capillary wall offers resistance to diffusion, Eq. 7 must be replaced by another
expression.)
Symmetry at the axis of the capillary requires that

Oc -0. (8)
Or r-O

By assumption, the edge of the tissue cylinder, r,, is chosen so that there is no flux of oxygen
beyond this radius, therefore

Oc -0. (9)Olr r-r,

Boundary conditions Eqs. 6-9 apply for all x.
Probably the most physically realistic conditions at the proximal and distal ends of the
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capillary would be specification of either concentration or axial flux at each end, i.e., for
0 < r < rc, rc < r < rt,

cat x = O and

atx = L, (lOa,b)

or

atx=Oand
Ox

at x =L. (I1a, b)

Eqs. 1 and 5 are to be solved subject to the boundary and end conditions Eqs. 6-8 and either
Eq. 10 or 1 1. The equations and conditions are coupled to the fluid mechanics of the capillary
blood flow through the appearance of the axial flow velocity u in the convective transport term
of Eq. 5.

SOLUTIONS

Tissue

Eq. 1 is to be solved subject to boundary conditions Eqs. 7 and 9. (Note that Eq. 1 does not
explicitly involve x; thus end conditions Eq. 10 or 11 cannot be imposed.) The solution is

c(x, r) = AD (r2 - r)-A r2 ln- + ' ICb r. (12)
4D' 2D' trc ab

Note that Cb Ir,, the capillary oxygen concentration evaluated in the blood at the edge of the
capillary, is still unknown and must be determined from matching with the capillary solution.
It is this term alone which contributes the x dependence to c for the tissue because the first
two terms on the right-hand side of Eq. 12 are independent of x.
From Eq. 12 and the boundary conditions Eq. 6 we readily obtain

O9Cb A 2 2

Or = ~b(r _rl) (13)(9r =, 2rcD ( 13

a constant independent of x.

Capillary
Eq. 5 is nonlinear because of the second term in parentheses on the left-hand side; it is
therefore impossible to solve in closed form. A well-known and often used technique for
treating equations in which the nonlinearity appears as in Eq. 5 is to linearize them by making
an approximation in which the coefficient of Oc/Ox and the x variable are replaced by the
introduction of a new independent variable. If, in the definition of this new independent
variable, the coefficient of Oc/Ox is evaluated at some particular value of r, rather than taken
to be a constant, the method is known as the "modified Oseen approximation" (1 1). Both the
coefficient and the new axial variable are determined as part of the solution.

Adopting this modified Oseen approach we set
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dx
Iu( n+(l+K,c") (14)

where c is the value of c evaluated at some appropriately defined value of r or is some other
appropriately chosen characteristic value of c. (The choice of the right-hand side of Eq. 14 will
be discussed more fully later.) Since the second term is always positive, the right-hand side of
Eq. 14 is finite and greater than zero for u > 0; therefore Eq. 14 can always be solved for x(t),
and this transformation is one to one between x and 4. Eq. 5 can now be written

O9c b1 Ot Oc\
=Db - r-r . (15)

04 r dr O( r

The solution of this equation will be a function c(Q, r). Eq. 14 will determine, with the known
c(t), the transformation x = x(t). This relation together with c(Q, r) determines the solution
c(x, r) to the original problem.

Eq. 15 is solved subject to boundary conditions Eqs. 8, 13, and 10 a. In particular, for this
last condition, we assume that c = co(r) is the specified inlet profile at 4 = 0. (Note that
conditions at x = L cannot be imposed because the omission of axial diffusion in the equation
for the capillary has changed the equation from elliptic to parabolic). The solution is

A r_22_c(4,r)=~(2 2) 2DbUlr,c, r) (r _ r) +4b + kl + Ame m m-) (16)

where the sum on the right-hand side is over all Xm, the positive roots of J, (Xm) = 0, and k,
and the Am are constants, given in term of the profile at 4 = 0, by the expressions

k, =r
r

co(r)r dr -8Db(r2 (17a)

Am rJ(of' (r)jXmr dr- (17b)
c 0(XM) c m~X~,Db0(m)

The tissue solution, Eq. 12, involves the unknown value Cb |,. Determining this from Eq. 16
we obtain the final form of the tissue concentration

A A r
c(, r) = 4D1(r2- r)-2D) r,2In-

a, A I r 2b\
+ Ct |(r2-r2) ( + 4b + kI + E A e-XMD r/ Jo ( 18

ab rc x4D

Eqs. 16 and 18 for the capillary and tissue oxygen concentrations, respectively, are not
sufficient to determine the axial variation until we determine the transformation from 4 to x.
We shall turn to this shortly; first, we note some properties of the solutions already obtained.

PROPERTIES OF THE SOLUTIONS

First, we note that the infinite sums on the right-hand side of Eqs. 16 and 18 are spatial
transient terms that effect the transition between arbitrary initial concentration profiles at 4 =
0 and the universal fully developed profiles far downstream. (The length of this transition or
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developing region will be evaluated below.) These sums decay as 4 co and do not contribute
to the far downstream solution.
The average value of the concentration across the capillary cross section is defined as

Cav = - I c(Q, r) 2irrdr. (19)

From Eq. 16 we find that

cay = Ab (r2-r2) ± (rA -r2)2 + kl. (20)
8D

If we substitute for k1, Eq. 17 a, in Eq. 20, we can write Cay as

Cav = (Cav)t0-A (r2- 1). (21)

Thus c8v decreases linearly with increasing 4 from its initial value at 4 = 0.
The second term in the parentheses on the left-hand side of Eq. 5 represents the

contribution to the local oxygen concentration from oxygen carried bound in oxyhemoglobin
and liberated locally. We need to know how important this contribution is compared to the
oxygen that is convected in dissolved unbound form. For normal blood for the range of oxygen
tensions, 20 mm Hg < P02 < 95 mm Hg

nNK'c'-
5.7 s (1 + K'cC)2 < 194. (22)

(We note that P02 = 95 mm Hg is the normal tension at the arterial end of a capillary,
whereas P02 = 40 mm Hg is the normal venous end value.) The maximum value in this
inequality occurs at approximately Po2 = 20 mm Hg, whereas the minimum value occurs at
P02 = 95 mm Hg. Thus

nNK'c-
(1 +K' cn)2 1 (23)

except possibly near the arterial end of the capillary. These estimates for normal blood depend
on the value of (PO2)50, the value of oxygen tension at which the blood is half-saturated, or
c = 0.5. Sickle blood has a higher (Po2)50 than normal blood; in particular, (Po2)50 is shifted
from -25 mm Hg for normal blood to =40 mm Hg for sickle blood. However, the value ofN is
less for such blood. The effect of these changes is to increase the lower bound in Eq. 22 from
5.7 to about 8.5, so that inequality (Eq. 23) is even stronger for sickle blood.

Apart from the linear terms in 4, the solutions for the capillary and the tissue, Eqs. 16 and
18, depend on 4 only through the spatial transient terms appearing in the infinite sums. To
estimate how important these terms are, we note that the first few roots of J, (Xm) = 0 are
Xm = 3.832, 7.016, 10.173,...; thus the leading term in the sum behaves like
exp(Xf2 Db4/r2), where Am = 3.832. This term will be 0(1) when X2 Db4/r2 = 0(1), or 4 =
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0(r'/ 14.24 Db). If, for purposes of estimation, we take dx/dt > 80 u = constant' so that x
80 ,ut, then in terms of x this estimate is equivalent, nondimensionally, to x/rc 0 [(80
urc)/14.25 DbJ. Taking as typical values for a capillary rc = 5 ,um, u = 300 ,um/s, and Db =
1,000 ,m2/s, this yields x/rc z 0(8). Thus the spatial transients, because of the entrance
concentration profile, decay within a distance of the order of at most 10 capillary radii.

For sickle blood, for 0 < P02 < 95 mm Hg, the maximum value ofN ds/dc occurs at Po2
30 mm Hg and has approximately the value 72, so the above estimate of the distance for the
spatial transients to decay applies to sickle blood also.

Eqs. 16 and 18 represent the solutions for oxygen concentration in the capillary and tissue
as a function of t and r. To obtain the solutions in the physical plane we must solve Eq. 14.
Before considering the question of how to determine the velocity u, let us consider some
deductions immediately derivable from Eq. 14.

It follows immediately from Eq. 14 that x > ut, with the amount that x exceeds ut
depending on the magnitude of the oxyhemoglobin term.

Let us now consider the situation for sickle blood. The rightward shift of the hemoglobin
saturation curve in sickle-cell anemia (Fig. 2) means that at higher oxygen concentrations,
near the arterial end of the capillary, values of Nds/dc are higher for sickle blood than for
normal blood. This behavior can be shown quantitatively as follows: For the higher values of c
that occur very near the arterial end, both for normal and sickle blood, K'cn >> 1, so Nds/dc
nN/K'c" '. It then follows that for a fixed high value of c,

(ds\
tdc Sc Ns -c K'normal
(ds') Nnormal KS-C
dc normal fixed c

This ratio is about 1.4. (Because n is fairly large (2.5 - 2.7), the validity of this particular
approximation decreases rapidly as c decreases.) The effect then of the rightward shift is to
make x bigger than the equivalent x for normal blood. Thus the rightward shift of the
hemoglobin saturation curve is beneficial at least in that it means a given oxygen tension
occurs further down the capillary. On the other hand, any decrease in u will tend to
counterbalance the effect of a larger slope ds/dc, and tend to make dx/dt smaller. Thus u
plays a critical role in determining oxygen tension levels in the capillary. The determination of
u is discussed in the next section.

DEPENDENCE OF FLOW UPON OXYGEN CONCENTRATION

We begin by considering more carefully what the velocity u represents.
In the Krogh model, the fluid under consideration is regarded as a single component

homogeneous fluid. Thus, in applying the model with blood as the fluid, the fact that blood is a
suspension of red cells (and other particulates) is overlooked, and physical parameters and

'This is a very conservative estimate, since 80 is the maximum value of the factor in parentheses on the right-hand
side of Eq. 14 for 40 mm Hg - Po2 - 95 mm Hg and occurs at 40 mm Hg.
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flow characteristics are assigned values which represent the behavior of the fluid as a whole.
Our earlier discussion of the magnitude of the convective terms on the left-hand side of Eq. 5
made it clear that oxygen is transported mainly bound in oxyhemoglobin. Inasmuch as it then
follows that the primary agents responsible for oxygen transport are the red blood cells, it is
reasonable to interpret u appearing in Eqs. 5 and 14 as the red cell velocity, and we shall do so
from this point on.
We now need to determine, for sickle blood, how the red cell velocity varies with oxygen

tension levels. Experimental flow studies of sickle blood, for example filtration experiments,
such as those of Messer and Harris (7) or Usami et al. (12), or viscometric studies, such as
Usami et al. (I 3) and Roselli (14), cannot readily be interpreted in terms of red cell flow in the
capillaries. There is, however, a theoretical model for such flow, assuming red cells move down
the capillary in the so-called parachute shape. This theory, which assumes the existence of a
thin lubricating film between each cell and the capillary wall, was introduced by Lighthill (3),
refined by Fitz-Gerald (4, 5), and recently corrected by Tozeren and Skalak (6). As shown in
the Appendix, it leads to the following relationship between the velocity u, the (hydrostatic)
pressure drop across the red cell Ap, and the compliance : of the red cell,

- [(A*I) (jKrc)12' rc k] k, (24, also A.4)

(The other quantities appearing are defined in the Appendix.)
As indicated earlier, conservation of mass requires that the mass flow velocity be constant

along the capillary. Just above, u was taken to represent the red cell velocity. Since red cells
and plasma have approximately the same density, the mass flow velocity and red cell velocity
are identically the same only if the plasma and red cells move at the same velocity. In fact, the
plasma in the capillary on the average moves slower than the cells. However, the difference in
velocities is small enough (3, 4), perhaps at most a few percent, so that it will be neglected
here. Henceforth, then, no distinction will be made between the red cell velocity and the mass
flow velocity. This velocity should depend only on the total distribution of concentration and
not on any particular local value. The manner in which this dependence is determined is
described in the Calculations section.

In using this model here, we are assuming that the lubrication model applied to sickle cells
enjoys roughly the same domain of validity as it does for normal cells. This could only be
expected to be true for such cells when they are either fully oxygenated, and therefore
relatively underformed, or if, at lower oxygen tensions, they have had insufficient time to
grossly change from the discoid shape. This is probably not a stringent condition. The
underlying premise of this study is that the sickle cells entering the capillary are oxygen-
saturated and of normal shape, and changes that occur do so in response to falling oxygen
tension along the capillary. The processes that are initiated by low oxygen tension and lead to
gross configurational changes of the cell would probably take longer than the normal
residence time of the sickle cell in the capillary. It has been observed experimentally that
properties reflecting the rheological state of the cell change before there are any noticeable
changes in shape. For example, Messer and Harris (7) observed changes in filterability within
0.12 s of sudden deoxygenation of blood from patients with sickle-cell disease, long before any
noticeable shape changes.

BIOPHYSICAL JOURNAL VOLUME 29 1980128



Decreasing oxygen concentration with distance down the capillary will alter the properties
of both the internal contents and the membrane of a red cell. In particular, it is well known
that the hemoglobin within the cell undergoes, under sufficiently low oxygen tensions, a series
of chemical and physical transformations leading to a gel and ultimately to a crystalline
structure. What happens to the red cell membrane under the same conditions is not so well
understood, although there is evidence that it becomes less flexible. The combined effect of
both these changes is to make the cell more rigid and less flexible, characteristics which make
themselves felt at the macroscopic level in terms of increased viscosity (13) and decreased
filterability (7, 12). We do not yet know how to assign to the internal hemoglobin and the red
cell membrane their separate contributions to the overall increased rigidity. On the other
hand, only the red cell compliance ,3 enters the expression for the pressure2 drop across each
cell, Eq. 24. In Lighthill's lubrication model, A is defined as the modulus of elastic compliance
of the rim membrane and enters the mathematical formulation in the linear elastic relation
between the pressure in the lubrication film and the radial displacement of the membrane. As
long as the hemoglobin within the cell is, and remains, a viscous Newtonian fluid, and hence
has no elastic response, it plays no role in determining the instantaneous elastic behavior of the
cell membrane when subjected to a localized external pressure force. It may, however, seem
inappropriate to use a relationship between u, Ap, and : alone to account for the decrease of
velocity of a sickle cell in a capillary when this decrease may be due both to decreased elastic
compliance of the membrane and to changes in the internal hemoglobin. Discussions in the
literature suggest that in the presence of reduced oxygen tension the SS-hemoglobin3 within a
cell becomes more viscous, and that this increased viscosity makes the cell more rigid and
leads to a decrease of cell velocity. Two difficulties arise immediately, however, if one
attempts to make this association between increased hemoglobin viscosity and decreased cell
velocity. First, after the cell membrane has reached an equilibrium configuration the only
state of the fluid within the cell consistent with the assumption of steady flow is a state of
uniform rest (15). Motion of the interior fluid is caused by the distortions to which the cell is
subjected if it must deform to enter the capillary. However, these "entry" motions decay very
rapidly. Second, even if there is motion of the interior fluid, all theoretical (16, 17) and
experimental (18) investigations of liquid-filled membranes or droplets moving in narrow
tubes indicate that the velocity of such objects becomes nearly independent of internal
viscosity when it exceeds a small multiple, 5 or so, of the viscosity of the external medium.
Thus, because the ratio of hemoglobin viscosity to plasma viscosity for a normal cell is about 5,
the effect of increasing hemoglobin viscosity upon the cell velocity is minimal.

If, on the other hand, the gelation and crystallization of SS-hemoglobin within the cell
cause it to exhibit some elastic properties, however, small, then these will alter the elastic
response of the cell to external pressure. The sickling of the hemoglobin may also lead to

2Throughout the remainder of the article, pressure, whenever it appears without a modifier, will be assumed to refer
to hydrostatic pressure. Since the oxygen level is primarily specified in terms of concentration c, rather than partial
pressure Po2, there should be no ambiguity in using this abbreviated terminology.
3SS-hemoglobin is the designation for the hemoglobin found in the red cells of individuals who are homozygous for the
gene responsible for hemoglobin S (HbS) production, and therefore have sickle-cell disease. Individuals heterozygous
with respect to this gene have sickle-cell trait; the hemoglobin in their red cells is a mixture of hemoglobin A (HbA)
and hemoglobin S and is denoted by the symbol AS. Normal hemoglobin is denoted by AA.
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interactions with the membrane ( 19) that affect the elastic response of the cell. We may think
of 13 in the u-Ap-13 relation above, therefore, as representing either one or both of these other
effects in addition to changes in the membrane compliance itself under reduced oxygen
tension.
We come now to the relatioship between ,3 and c. A good deal of recent work has attempted

to describe the kinetics of part or all of the processes that take place between the initial
deoxygenation of SS-hemoglobin and the final crystalline state (20-22). A wide gap, however,
separates our understanding of these processes from our ability to predict the variation of
macroscopic rheological behavior with oxygen concentration. Our considerations will there-
fore necessarily be ad hoc and speculative. We do hope that the principal features and
characteristics of the problem will emerge even with the use of primitive relationships.
We shall assume that ,B and c are related by

= () i ( 2 5 )(25)

where j is some positive constant, f3, is the compliance of a normal cell, assumed constant, and
cO = 28.5 x I0-' ml 02/ml plasma, the concentration at the arterial end of the capillary. (This
expression is assumed to hold only for those values of c found in the capillaries, so the perhaps
unrealistic behavior as c -- 0 implied by Eqs. 24 and 25, namely that u -- 0, is not
encountered.) Eq. 25 may be regarded as an ad hoc representation of the expected
relationship between compliance and concentration over the narrow ranges of values of both
these quantities in the capillaries. Greater justification for this particular choice is given
below.
The value j = 0 in Eq. 25 represents those cases where compliance and concentration are

not coupled, or cases where, although they are coupled, and perhaps even strongly, the
characteristic time or times for significant sickling changes are so large that in fact the
compliance changes little. It would be useful if we could obtain a reasonable upper bound for
j. As suggested earlier, there appears to be nothing available in the literature which directly
relates to this quantity. This leads us to make a speculative argument as follows. According to
Fitz-Gerald (4) f3 is inversely proportional to S, the "resistance to bending." Thus, instead of a
,B-c relationship, we can write a resistance-concentration relationship, of the form

SO (CO) ((Po2)o (26)

where (Po2)o is the value of Po2 when the cells are fully oxygenated. Fig. 4 shows on a log-log
plot the solid curve shown in Fig. 3 as the best fit by Usami et al. (12) to their data, obtained
by microsieving, on the relationship between relative resistance and P02. (The circled points in
Fig. 4 are points read off their solid curve; the solid curve in Fig. 4 represents our best fit to
these points.) If one interprets their (nondimensional) R as being equivalent to S/SO, then Fig.
4 should represent the relationship given in Eq. 26. Excluding the 30 mm Hg point, because it
lies near the lowest values of P02 encountered in our calculations and occurs in our work near
the distal end of the capillary, and specifying a power-law relation between R(or S/S0) and
Po2, which we see from Fig. 4 is a good approximation to the other points, we find that j = 2.0
represents the best fit with a very high significance ratio. This suggests that j = 2 may be a
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reasonable upper bound for this parameter. That this value ofj is an upper bound stems from
the fact that, in the Usami et al. (12) miscrosieving experiment, at each specified Po2 the
HbSS blood was allowed sufficient time to equilibrate with the oxygen tension. If one assumes

a finite lag time between deoxygenation and the effects resulting therefrom, then one should
expect that, in the capillary flow an expression of the form in Eq. 26 with j = 2 will predict
resistance higher than that to be expected at any instantaneous value of Po2. Thus the
equilibrium expression of Eq. 26 with j = 2 should represent an upper bound for S and
therefore a lower bound for ,B at any value of Po2 (or c). Therefore, we will carry out
calculations for 0 < j < 2, covering the range between the case where compliance and
concentration are uncoupled up to the equilibrium coupling case.

CALCULATIONS

Before presenting the final forms of the equations we introduce nondimensional variables. It is
convenient to nondimensionalize the independent variables using as the characteristic velocity
the (constant) velocity of a normal red cell u0 and a typical capillary length 1. (Thus il/u is the
time it takes a normal red cell to traverse the capillary of length 1.) Nondimensional x and t
are then defined by

(27)

For the sample calculations to be reported in this paper, we have used for c(t) the average
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value of c across the capillary, Eq. 21. In nondimensional form c(t) can be written

Cav( ) = a - b4 = c(t), (28)

where a = (cajt.0 and b = A (r2/r2 _ 1)1/u0.
Using the definition of s and Eq. 28, Eq. 14 can be rewritten nondimensionally as

x= (I+ N -) = (29)
d4 uo' d ' u0 b d4)

Since u has been assumed to be constant along the capillary, this can be integrated
immediately, to yield

x-- (O) u - -bS(t)) (30)

assuming that 4 = 0 when x = 0. Substituting for s and eliminating c(t) using Eq. 28, we
obtain the final form of the transformation between 4 and x

u [ N| (0) K'(a - b( ](1x =i[~+/ {s() (31)

Since, from this point on, only s(c), and not its slope, appears in the analysis, the use of the
Hill equation, whose slope departs first from the true dissociation curve, rather than the Adair
equation, becomes an even better approximation.
We shall concern ourselves here only with the average value of c across the capillary;

henceforth, whenever c appears, it is to be interpreted as Cay. That this is not an unreasonable
approximation is supported by the numerical results of Reneau et al. (9), which indicate that
the c(Q, r) profile, at least for the normal case, is very flat over most of the cross section of the
capillary. Thus, from this point on, c and c are equivalent quantities. Also, since from now on,
only the concentration in the blood appears, c is to be interpreted as having the units milliliter
02/milliliter plasma.

At this point we shall describe the broad outlines of the solution procedure and the
philosophy underlying it. Our primary aim is to compare the sickle with the normal case. The
base normal case assumes that, at the arterial end of the capillary, Po2 = 95 mm Hg, and at
the venous end, Po2 = 40 mm Hg. The characteristic velocity uo, introduced above, is taken to
be the actual normal red cell velocity, the actual length of the capillary is then determined by
solving Eqs. 28 and 31 simultaneously. For an assumed hematocrit, the total (hydrostatic)
pressure drop across the capillary for the normal case is calculated by adding the contribution
from the intervening plasma regions to the sum of the pressure drops across each cell. This
total (hydrostatic) pressure drop is assumed to have the same value for the sickle case.
Underlying this is the more fundamental assumption that the pressure drop across the
capillaries is primarily controlled by factors external to the capillaries, such as the state of
dilatation of the arterioles, and further, that under normal conditions the capillary pressure
drop is the same for the sickle cell-diseased individual as for the normal.
The calculation for the sickle case is begun by choosing a value of u, the (constant) sickle

cell velocity. (The capillary length is that calculated above for the normal case.) The oxygen

BIOPHYSICAL JOURNAL VOLUME 29 1980132



concentration and the total (hydrostatic) pressure drop across the capillary for this case are
then calculated. If this calculated total pressure drop is not equal to that for the normal case
we choose another value for u and repeat the entire calculation. This iteration on u is carried
out until the total pressure drop for the sickle case agrees (to a specified accuracy) with the
normal value (which remains unchanged throughout the iteration). In this way we determine
the velocity of the sickle cells. Thus, the oxygen concentration in the capillary affects the cell
velocity through its effect upon the pressure gradient available to drive the cells. As part of the
solution we also determine the concentration c along the capillary, the comparison of this
quantity for both the normal and sickle cases being one of our principal interests.
The second major part of the calculation consists of observing the effect of decreasing

(hydrostatic) pressure drop across the capillary upon the flow in the sickle-cell case. The
normal case is dropped, the pressure drop is systematically decreased by 5% increments, and
the solution is obtained for each such case. Because of the complex interaction between Ap, u,
and c, u decreases by an amount much different from 5% for each case. We continue
decreasing the pressure drop by 5% increments until we reach the case for which the pressure
drop has been decreased by 50%, unless at some earlier point the solution predicts a zero value
of u, in which event the calculation terminates.

Returning now to the details of the calculation, we note first that we can identify c0
(appearing in Eq. 25) with (ca,Jto. For normal blood, both have the value 28.5 x 10-'
(corresponding to Po2 = 95 mm Hg). For a variety of reasons, the oxygen concentration of
sickle blood at the arterial end of the capillary is usually low (23), normally between 21.0 and
27.0 x 10' (70 mm Hg < P02 < 90 mm Hg). For sickle blood we have used the value c0 =
(cav) .0 = 25.5 x 10-4 (Po2 = 85 mm Hg), a value at the high end of this range. There are a
number of constants appearing in Eqs. 28 and 31 which must be specified before the
integration can proceed. In lieu of better information, the constant A is assigned the value 5 x
10-4 ml 02/ml-s, the value of oxygen metabolism in the brain. There is considerable question
regarding an appropriate value for r, and how this quantity varies from tissue to tissue. For the
sample initial calculations we use r, = 10 rc, which lies well within the range of extreme values
represented in the literature. For n we use the value n = 2.7. (At a pH of 7.35, n for sickle cell
blood is closer to 3.0, rather than this normal blood value 2.7 [24]. However, using the value
2.7 causes the percent saturation for sickle cell blood to differ from the actual value by a
maximum of 4% at any physiological value of c and generally much less than this amount.)
The oxygen-binding capacity of blood, N, is usually taken to have the value 0.2 ml 02/ml
blood. We use this value for normal blood; for sickle-cell blood, we use this value reduced by
the ratio of the sickle cell to the normal hematocrit. The quantity K' can be represented as
K' = [a(PO2)50] ' = milliliter plasma/milliliter 02. Because of the rightward shift of the
hemoglobin saturation curve in sickle-cell anemia, K' is different for normal and sickle blood.
For normal blood K' = 2.32 x 108. For sickle blood, using the value (Po2)50 = 40 mm Hg,
K' = 7.70 x 107. (We use for the solubility constant, a = 3 x 10-5 ml 02/ml plasma - mm
Hg.)
The only constants which have not yet been assigned values are r,, 1, and u0. We carry out

calculations separately for the three capillary radii r, = 3.5, 3.0, and 2.5 ,tm. For typical
normal red cell velocity we take u0 = 500 ,m/s; we set I = 600 ,tm. However, as indicated
above, there is no a priori way of knowing if, at this arbitrarily chosen value of 1, the value of c
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will be 1.20 x 10-3 (or Po2 = 40 mm Hg), the oxygen concentration at the venous end of the
capillary under normal conditions. Calculation of the actual capillary length will be described
below.

Consistent with our earlier discussion we write Eq. 25 in the form 3/13 =- (c/cJ)i, where
CO = (Cav)t0. According to Fitz-Gerald (4), for the normal cell, a = r2/ 15S = /O, where S is the
"resistance to bending" and is -0.0185 dyn/cm; thus we can write 13 = (r2/15S) (c/co)j. If
this is substituted in Eq. 24 we obtain

AP =|[ /)((Kr.)I/2) r'] (15S) ()k k) (32)

Since we expect values of (Krc)"l2 to be close to unity (3, 4), we use this value throughout the
calculations. Eq. 32 is the final form of the expression used for the calculation of the pressure
drop across each cell. In this form it applies only to sickle blood; for normal blood we use this
same expression with the c/co term missing, and with u set equal to uo.
The calculation of the total pressure drop across the capillary must include the sum of the

drops across all the individual cells and the contribution from the plasma regions separating
cells. We assume that the plasma behaves as a Newtonian fluid and that the flow is Poiseuille,
so the pressure change across each such region of length Az is given by

AP 8_8 1i
-2 (Uav)p = r

U, (33)Az rc

where (uav)p is the average velocity in the plasma regions. The equality of the last two parts of
this equation results from our approximation that the average velocity and the red cell velocity
are the same. In making this equivalence, we are neglecting the effect of plasma leakback
(3, 4, 6), which is responsible for the average plasma velocity being less than the red cell
velocity. However, the difference between these is generally <10%. Moreover, the contribu-
tion of the plasma regions to the total pressure drop is at least one order smaller than that of
the cells, so any small error in the former is further mitigated.
To calculate the total pressure drop due to the cells and intervening plasma, we must

determine the number of cells and plasma regions in the capillary. In doing so we must take
into account the major difference in hematocrit between normal blood and sickle-cell blood.
We use the value H = 0.45 for the former and H = 0.25 for the latter. (H represents fractional
hematocrit, i.e., the ratio of the volume of red cells to the total blood volume, rather than the
more traditional percentage hematocrit, for which the values would be 45% and 25%,
respectively.) We also take into account that the volume of a cell remains constant. If VRBC is
the volume of a red cell (assumed to be the same value for normal and sickle blood), then the
number of cells N in a capillary of length L is given by

(irr2L\
( VRBC ) H. (34)

If we assume, crudely, that each cell is approximately a right circular cylinder of height w,
then w = VRBC/7rr . (The value 1 x 100 cm3 has been used for VRBC [25].) The total pressure
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drop across all the plasma regions is then given by

NtAp ! AtNVRBc(I- 1)u. (35)

We assume that the true capillary length (L) is that at which, with the constant velocity u0,
the oxygen concentration in the normal case reaches the specified value C(L) = 1.20 x 1O-3 at
the venous end. The procedure in this case is as follows: we solve Eq. 28 for (L, the value of t at
which this value of C(L) is reached,

(UO3 (Cav)~-O '(L) (6
L1);(r,)2 (36)

Having determined (L, we then evaluate Eq. 31, using values of the constants appropriate for
the normal case, for this value {L and thus determine a corresponding -L. This now determines
XL 1 = L, the actual length of the capillary.
We now describe the solution procedure in detail. We begin by choosing a value of u. With

{L and XL calculated, the transformation between t and x for both the normal and sickle cases

is determined from Eq. 31, in which the different values of K' are used for the two cases, and
in the normal case u/u0 is set identically equal to one. Eq. 28 is then used to calculate c(t) for
0 ' t ' {L and, through the transformation, as a function of the normal and sickle cell x. With
the assumed values of normal and sickle fractional hematocrit the number of cells in the
capillary of length L for the two cases is calculated. Next the total pressure drop across the
plasma regions for both cases is calculated using Eq. 35. At this point in the numerical work it
is convenient to rescale x so that it lies between 0 and 1 not in the initially assumed length 1,
but in the capillary of actual length L. Defining this new variable by X, this is accomplished by
setting X = X/XL. Next the location of the center of each red cell is determined for each case,
assuming one cell has just fully entered the capillary and one just fully exited, from the
expression

XRBc = (r- 1)N + - -, r = 1, 2, ..., N, (37)
N 2 L

where X(R) c denotes the center of the rth cell. We now interpolate among the tabulated values
of c(t) and the transformation ux = x(t) to find the value of c at the points XtC for the normal
and sickle cases. Eq. 32 is then used to calculate the pressure drop across each cell for the
normal and sickle cases. (For the normal case, with Eq. 32 modified as described below that
equation, Ap is the same across each cell; for the sickle case Ap is different for each cell
because c is.) The total pressure drop due to all the cells is then obtained for both cases by
summation over the N cells of all these individual pressure drops. The final total pressure drop
across the entire capillary for both cases results from adding this total cell pressure drop to the
total pressure drop across all the plasma regions calculated above.

This series of calculations is carried out for three capillary radii, rc = 2.5, 3.0, and 3.5 ,um,
and for each of these radii, for j = 0, 0.2, 0.5, 1, and 2.
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RESULTS AND DISCUSSION

We recall that the calculation was begun with a nominal assumed capillary length of I = 600
,um, and that the actual length was determined in the course of the calculation. This length,
which is independent of rc, turns out to be 457 ,um. The values of the normal total pressure
drop across the capillary, denoted by AP, for the three capillary radii considered are:

1.04 x 104 dyn/cm2 = 7.88 mm Hg for rc = 3.5,um

(AP)total = 1.24 x 104 dyn/cm2 = 9.30 mm Hg for rc = 3.0,um. (38)
11.50 x 104 dyn/cm2 = 11.25 mm Hg for rc = 2.5,um.

Fig. 5-7 show c vs. X (0 < x < L), i.e., the concentration along the entire length of capillary,
for the three capillary radii and various choices ofj and reduced pressure gradients. (In these
and subsequent figures n%AP represents n% of the pressure gradient of the equivalent normal
case.) In choosing the j and pressure gradients shown we have attempted to illustrate
"typical" as well as extreme cases.
We can see from Figs. 5-7 that, for some of the cases when the pressure gradient across the

capillarv in the sickle case is the same as in a normal capillary, the 02 concentration generally
remains somewhat above that in a normal capillary, however strong the coupling of the
compliance of the red cells with the 02 concentration. i.e., whatever the value of j. For the
three capillary radii, in fact, the lowest concentration for any j < 1 at the distal end is 1.39 x
10-3 or about 46 mm Hg, as against 1.2 x 10-' or 40 mm Hg for the normal case. Thus, in
these cases the effects of the rightward shift of the oxyhemoglobin dissociation curve and the
higher cell velocity overwhelm any detrimental rheological changes. Maintaining high
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FIGURE 5 Oxygen concentration variation with (nondimensional) distance along capillary for a number
of values of j and total pressure drop across the capillary (capillary radius, rc = 3.5 x 10-4 cm).
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FIGURE 6 Oxygen concentration variation with (nondimensional) distance along capillary for a number
of values ofj and total pressure drop across the capillary (capillary radius, r, = 3.0 x 10-4 cm).
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FIGURE 7 Oxygen concentration variation with (nondimensional) distance along capillary for a number
of values ofj and total pressure drop across the capillary (capillary radius, r, = 2.5 x 10-4 cm).
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concentration levels has at least two beneficial, interactive, consequences: (a) there is little
tendency for the cells to begin undergoing the sickling process; and (b) their velocity of
passage through the capillary remains so high that even if sickling begins there is little time
for it to progress very far before the cells exit. We shall discuss this latter point in some further
detail later.
The same statement about the concentration remaining near or above the normal case

applies for any j for slight reductions (say up to 10-15%) in total pressure drop. For larger
pressure reductions, for any value ofj, the situation changes dramatically, and the concentra-
tion levels fall below the normal, and in the case of very large values of these parameters, very
considerably below. Thus, for large pressure reductions with some minimum coupling between
concentration and cell compliance, the combined and coupled effects of lessened cell velocity
and compliance overwhelm the rightward shift of the oxyhemoglobin dissociation curve.

Fig. 8-10 show, for the three capillary radii and a number of values of j, the variation of
u/u0 (the ratio of the velocity of sickle cells under conditions of reduced driving pressure to the
velocity of normal cells subject to normal pressure gradients) with pressure drop. We note that
at normal pressure the cell velocities for all the cases considered are between 1 and 1.7 times
the velocity of a normal cell; this result is a direct consequence of the difference in
hematocrits. We note further that for any value ofj there is a steep decrease in cell velocity
with decreasing pressure drop. The nonlinearity of the relationship between u and AP (unlike
for example, Poiseuille flow) is obvious in these figures. Thus, for example, a halving of AP
results in a velocity decrease by a factor of two to three or more. The early termination of
some of the curves in these figures reflects situations for which the next 5% decrease in AP
would lead to stagnation of the flow, and so indicates flows whose velocity has decreased by
even larger factors. Although most of the curves in Figs. 8-10 exhibit similar behavior, the
steepness of the j = 2 curves for the 3.0- and 2.5-,im capillaries (Fig. 9) is striking; for the
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FIGURE 8 Variation of red cell velocity with total pressure drop across capillary for a number of values of
j (capillary radius, r, = 3.5 x 10-4 cm).
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FIGURE 9 Variation of red cell velocity with total pressure drop across capillary for a number of values of
j (capillary radius, r, - 3.0 x 104 cm).

2.5-Mm capillary, for example, a decrease of 10% in pressure drop results in a 35% decrease in
velocity.
Usami et al. (12) used a microsieving or filtration technique to study the deformability of

sickle cells as a function of oxygen tension. Their principal results are summarized in Fig. 3.
The ordinate, relative resistance, is defined as the ratio of the pressure necessary to force a
HbSS red blood cell suspension through a polycarbonate sieve with micropores 5 ,um in
diameter to the pressure necessary to force a cell-free Ringer solution through the sieve at the
same flow rate. Usami et al. identify a Po2 of 80 mm Hg as the value below which a noticeable
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FIGURE 10 Variation of red cell velocity with total pressure drop across capillary for a number of values
ofj (capillary radius, r, - 2.5 x 10-4 cm).
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increase in the relative resistance R becomes evident. Fig. 3 illustrates the rapid increase in R
that occurs as P02 is reduced below this value. Earlier work by this same group of investigators
(13) had suggested that 60 mm Hg was the critical value of P02 below which significant
rheological changes occurred. However, this was based on measurements of apparent viscosity
in a coaxial cylinder viscometer. Although measurements in such a device would undoubtedly
be influenced by changes in the deformability of HbSS erythrocytes, measurements in a
filtration experiment would appear to be more sensitive to deformability changes. That is, in
the latter experiment, much of the resistance to flow probably results from the necessity to
distort individual red cells to enable them to enter the narrow pores, and thus, although it
cannot definitely be inferred from the data, much of the pressure increase with deoxygenation
may be due to the increasing resistance of the cell membranes to configurational changes.
Since it is just this latter effect that is most relevant to the present analysis, 80 mm Hg
appears to be the more appropriate determinant of the onset of cell deformability changes.
From the solutions obtained one may readily determine for each case the point in the

capillary at which P02 has decreased to a value of 80 mm Hg (or a concentration value of
2.4 x 10-3). Then, with the value of red cell velocity u appropriate to the case, it is possible to
calculate the time that the red cells will remain in the capillary, after reaching this value,
before exiting. The significance of this time, which we shall call residence time, is as a
measure of the time available for morphological and rheological changes associated with
sickling to occur. Short residence times are advantageous, since even if the concentration falls
to low values, it is quite possible that little change will occur in the deformability of the cell
during its transit through the capillary. Figs. 11-13 show, for the three capillary radii and a
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FIGURE 11 Residence times of red cells at oxygen tensions below 80 mm Hg as a function of
(nondimensional) total pressure drop across capillary for various values of j (capillary radius, r. = 3.5 x
10-4cm).
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FIGURE 13 Residence times of red cells at oxygen tensions below 80 mm Hg as a function of
(nondimensional) total pressure drop across capillary for various values of]j (capillary radius, r, - 2.5 x
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number of values for j, the variation of residence time with pressure drop across the capillary
(this latter quantity is made nondimensional with respect to the pressure drop in the normal
case). For all three capillary radii, the time for a normal cell at the normal pressure level to
transit the entire length of capillary is 0.915 s. All the curves show a very steep rise as AP
decreases. This is evident even for low values ofj and becomes quite remarkable for larger j.
For the cases illustrated in these figures, over the pressure range shown, the residence times
increase by a factor of two to more than three. The larger times are comparable to and in some
cases exceed the times quoted in the literature for significant rheological changes to occur in
sickle cells.

It was noted earlier that the oxygen concentration of sickle blood entering the capillary is
usually low (23), lying in the range 21.0-27.0 x 10-4 (70 mm Hg < P02 < 90 mm Hg). In all
the calculations reported thus far, a value at the high end of this range, 25.5 x 10-4 (Po2 = 85
mm Hg), was used. To see the effect of a lower entrance value of concentration, we have run a
case (r, = 2.5,um, j = 1.0) for the value (cav)&0 = 22.5 x 10-4 (Po2 = 75 mm Hg). The
variation of c as a function of distance along the capillary is shown in Fig. 14 for the normal
case and sickle blood at normal and reduced pressure drop. A comparison of the curves in Fig.
14 with the corresponding ones in Fig. 7 shows that they are qualitatively the same, although
the curves in Fig. 14 are less steep so that the differences in concentration between the cases in
these two figures are much less at the distal end of the capillary than at the proximal end. The
corresponding velocities differ only slightly.

Since the lower hematocrit of sickle blood plays such a major role in these results, we have
also run the r, = 2.5 ,um, j = 1 case with a slightly higher hematocrit, Hs-c = 0.30. At normal
pressure drop the values c vs. x for this case are essentially indistinguishable from those for the
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FIGURE 14 Oxygen concentration variation with (nondimensional) distance along capillary for sickle cell
(ca).J.@ - 2.25 x10-3 (r, - 2.5 x10O4 cm, j _ 1).
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corresponding case with HsIc = 0.25. With the pressure drop reduced 35%, the concentration
along the capillary is everywhere lower for the higher hematocrit, reaching a maximum
difference at the distal end of 7.7 mm Hg. As might be expected, the velocities for this case are
much lower (see Fig. 10).
At the end of the Introduction we referred to the differences between this investigation and

that of Lomen and Gross (8). We are now in a position to comment in more detail about these.
First, Lomen and Gross do not take into account the major difference between the hematocrits
of sickle and normal blood; this leads to their predicting values of cell velocity and oxygen
concentration along the capillary very much lower than those found here. Second, Lomen and
Gross use exclusively the Po2-cell deformability relationship suggested by the Usami et al.
( 12) experiments. As discussed earlier, the use of this data (corresponding to our j = 2) under
the nonequilibrium conditions likely to prevail in the capillaries will probably overestimate the
effect of this relationship. Third, Lomen and Gross assume that the clearance of each cell, a
crucial parameter in the lubrication theory of red cell motion (3, 4), has a constant value along
the capillary. However, since ,3, the compliance, is different at different points in the capillary
one would also expect the clearance of each cell to be different. Fourth, Lomen and Gross use
the lubrication theory of Lighthill-Fitz-Gerald to calculate the relationship between resistance
to flow and cell compliance. Our work uses values calculated (30) from the corrected theory
by T6zeren and Skalak (6). Finally, Lomen and Gross carry out all their calculations
assuming the cell velocity is constant, and present graphs of the variation of resistance with
entering Po2 level for different values of cell velocity. This is the inverse of what would occur
physiologically. It is unlikely that there is a physiological control mechanism which maintains
constant cell velocity. Given that the major resistance to arterial flow occurs in the
microcirculation, and that the controls at this level (arteriole dilatation, etc.) directly affect
pressure drop across the capillaries, it is more physiologically relevant to vary pressure drop
and determine its effect upon Po2 concentration and cell velocity, as done in the present
investigation. The net effect of all these differences between the two investigations is to change
the results and conclusions significantly. Thus, while the figures in Lomen and Gross show
resistance ratios (of sickle to normal blood) larger than one, and by implication suggest that
the flow of sickle blood is always sluggish and subjected to low oxygen concentration levels,
our results indicate that under many conditions sickle blood may flow at velocities, and be
subjected to Po2 concentrations, much higher than the normal, due to the interplay between
the various detrimental and compensating factors that characterize sickle blood.

CONCLUSIONS

Our results show that under normal pressure conditions the combination, for sickle cells, of a
rightward shift in the oxyhemoglobin dissociation curve and a much lower hematocrit is very
effective in maintaining higher than normal oxygen concentration along the entire length of
capillary, and red cell velocities one to more than one-and-a-half times larger than for normal
cells under the same pressure drop. Both of these effects are beneficial, tending to keep the red
cells away from the threshold of oxygen tensions that mark the beginning of the sickling
process, and moving so rapidly that little time is available for this process to proceed very far
in any case. The same trends in concentration and cell velocity hold under moderate decreases
in pressure gradient.
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The picture changes dramatically if the pressure gradient across the capillary, driving the
cells, decreases by larger amounts. Velocity is impeded, permitting more oxygen to be released
from the cells, thereby bringing the concentration level to much lower levels, which in turn
further decreases the velocity of flow. The severity of these changes depends on the magnitude
of the pressure gradient decrease, the capillary radius, and the degree of coupling between
compliance and concentration.

These results suggest that the feedback interaction between oxygen concentration and
velocity of flow throught the capillary can be important for sickle blood. This mechanism,
leading to stasis or near-stasis of flow, is often cited as the so-called "vicious cycle" of
sickle-cell anemia. What remains unclear in such discussions is whether the red cells are
slowed for a sufficiently long enough time for a significant part of the sickling process to be
completed, and why sickle-cell crisis, which would seem the result of the mechanism above
causing blockage of flow through large numbers of capillaries, occurs only rarely. The present
results indicate that under ordinary conditions there is little reason to expect cells to undergo
any further sickling changes while traversing the systemic capillaries. However, under
abnormal or unusual circumstances involving decreased arteriole-venule pressure differences,
conditions conductive to sickling obtain and residence times become large enough to allow
significant changes in the cells to occur before they exit the capillaries.

Although the calculated hydrostatic pressure drops across the capillaries (see Eq. 38) are
about three times that experienced by Poiseuille flow with viscosity equal to that of plasma,
they are considerably lower than the values usually given in the literature for capillary bed
pressure drop (26, 27), although there is very large scatter in the data (28). A number of
factors may be responsible for, or play a role in, this discrepancy:

(a) Within the lubrication theory gross simplications or inadequate knowledge may
contribute to incorrect quantitative predictions. Probably the most important of these is the
use of a simple linear elastic theory to model the complex elastic response of the red blood
cells. Moreover, the compliance a appearing in this simple theory, or the elastic constants
required if one attempted a more accurate modeling, vary over very wide ranges (15).

(b) Recent in vivo studies suggest that the values for hydrostatic pressure drop across
individual capillaries may be less than those traditionally quoted (29), or that these latter
values may be abnormally high due to the plugging of capillaries by leukocytes due to
shock (30).

(c) Since all the sickle cases are compared to the flow of normal blood, we are in effect
using Eq. 24, the only place where lubrication theory enters the analysis, to calculate the
ratio

(AP)s-c Us-c Il/k #Fs_c AI-kUk/ (39)

(AP) normal U normal J normal

Although absolute values of pressure drop are quoted they play no essential role in the
calculations. The values of the exponent (1 - k)/k are such that the dependence of the
ratio of pressure drops on the erythrocyte compliance is weak. The dependence on the
velocity predicted by Eq. 24 is supported by a substantial measure of observational
evidence (31). In fact, there is much to affirm the status of lubrication theory as "the most
convincing theoretical model of red cell motion in narrow capillaries" (28), and to accept
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its principal predictions about the dependence of pressure drop on certain critical
parameters.
In summary, possible inadequacies in the prediction of hydrostatic pressure drop across the

capillaries arise from deficiencies in our theoretical and experimental knowledge about the
flow of erythrocytes in the capillaries and not from the present analysis, nor should they
invalidate, qualitatively, any of the results or predictions derived from it.
A number of effects have been omitted from the analysis. Among the more important are

the following: (a) the finite times associated with sickling changes; (b) decreased deformabil-
ity of sickle cells due to past sickling-unsickling history (19), aging (1), or, more generally, the
apparent lessened deformability, in comparison to normal cells, of HbSS cells even when fully
oxygenated (32); (c) the influence of mean corpuscular hemoglobin concentration on the
degree to which decreasing oxygen levels lead to sickling and concomitant changes in the
rheological properties of the cells; and (d) the influence of changes in pH. Efforts are
currently under way to incorporate some of these factors into the analysis.
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course of this work, and to Jeannine Lamar for doing the programming and calculations.
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APPENDIX

In this Appendix we shall use the Lighthill-Fitz-Gerald (3-5) lubrication theory of red cell
flow in the capillaires, with the recent correction due to T6zeren and Skalak (6), to derive a
relation between the velocity of a red cell u, the pressure drop across the cell Ap, and the
compliance of the cell ,B. Fig. 15, based on new calculations of the corrected lubrication theory
by Aroesty et al. (33), will be used to obtain the required relationship. We first recall the
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FIGURE 15 Variation of velocity parameter A with resistance parameter D according to lubrication
theory of capillary flow.
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following definitions introduced in the theory:

r2 (Krc) 1/2

D_[P( g) -P(g)]rC(KrC)1/2 (1D - [(-) (Al)

E- [p(-g) -p(g)J,

where f# and rc are as already defined, U is the velocity of the pellet (or red cell), ,u is the
plasma viscosity, p(g) is the pressure ahead of the pellet and p( -g) that behind it, and K iS the
curvature of the gap profile at the point of contact with the tube (or capillary) under the
reference pressure p0.4 The solid curves in Fig. 15 show the variation of A with D for a
deformable red cell for several tube or capillary radii (assuming a red cell of standard
dimensions). Inasmuch as, to a good approximation, these curves are straight lines in this
log-log plot (the broken lines in Fig. 15 show explicitly the straight line approximations used),
we can write, approximately, A a Dk, where k' is a (different) constant for each value of rc.
According to Eq. A. 1, E = AD, so this proportionality can be rewritten as A a Ek, where k =
k'/(k' + 1). Finally, because of the common point of intersection in Fig. 15, we can set

A = (E:k) Ek, (A.2)

where the asterisk denotes values of A and E at the intersection point. From Fig. 15 we find
these values to be A* = 7.49 x 10-2, E* = 1.079. and the values of the exponent k to be

1.52 for rc = 3.5 ,um

k= 1.78forrc=3.0,gm (A.3)

2.22 for rc = 2.5 Am.

Substituting for A and E in Eq. A.2 using the definitions given in Eq. A. 1 we obtain

IE*IAiu\IIk k2 1-ki

A RA*Ilk)(Krc )1/2) r k # k (A.4)
where Ap = p(-g) -p(g) is the pressure drop across the red cell. (Note we use u rather than
U in the text for red cell velocity.)
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