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ABSTRACT Lateral mobility of molecules on cell membranes has been recently studied by fluorescence photobleaching
recovery (FPR) techniques. The interpretation of these results in terms of diffusion along the membranes is based on
the assumption that the surface is planar, although biological membranes may have blebs and microvilli. To study the
effect of nonplanarity on the diffusion rate, the diffusion equation along curved surfaces was derived and was solved
numerically for a “wavy” surface of the form A4 cos kx cos ky. Calculations show that for k=10xr um~' and a
bleached spot of 1 um in diameter, the time dependence of the intensity of fluorescence in the bleached spot depends on
A at A<0.5 um, while at higher values of 4 (1 and 2 um) the dependence is weak. If one calculates diffusion
coefficients from FPR measurements and assumes that the membrane is planar, the resulting diffusion coefficient is
not less than about half of the real one. Because of the tortuous shape of the spot boundary, increasing the microvilli
length from 0.5 um to 1 or 2 um does not change the diffusion rates. These considerations are valid for times when the

diffusion is dominated by molecules that were initially located close to the spot boundary.

INTRODUCTION

It has been demonstrated in recent years that molecules
can move laterally on biological membranes. This
phenomenon was first observed by Frye and Edidin (1) by
fusing two cells, each having a differently labeled surface
molecule; the mobile molecules from the two different cells
mixed with each other (heterokaryon method) and a
diffusion constant was calculated from the rate of mixing
(2, 3). An additional demonstration of the possible mobil-
ity of molecules on cell surfaces was the experiment
performed by Taylor et al. (4) in which cell receptors were
capped. By cross-linking membrane receptors by multival-
ent ligands it first was possible to aggregate the cross-
linked mobile molecules into patches and then into one
region (a “cap”).

A more quantitative approach involving fluorescence
photobleaching recovery (FPR) was developed later (5-9).
In these experiments, either naturally or artificially
marked fluorescent molecules are probed. Using laser
light, a small area on the membrane (usually with a
diameter of 1 um) is bleached. Bleached molecules move
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out of the area in which they were initially located and
unbleached molecules move into the bleached area. From
the measured fluorescence intensity in the bleached spot,
at different times a diffusion constant is calculated. Appli-
cation of the FPR method to study diffusion in planar
membranes, at least from the theoretical point of view, is
clear. An analytical solution of the diffusion equation on a
plane with a circular bleached stain as the initial condition
can be found, even if the bleaching time cannot be
neglected. The difficulty is, however, that in many cases
biological membranes are not planar, but have blebs and
microvilli. In such cases, diffusion constants measured by
FPR represent mobility on projected flat planes of real
nonflat membranes.

The purpose of this work is to discuss the effect of
surface curvature on the observed diffusional motion of
molecules. The motion of single molecules along a
membrane should not of course be affected by the topogra-
phy of the surface, as long as the curvature does not
change the intermolecular interactions. But, as is
expressed in the following sections, we seldom look at the
diffusion of single molecules but, rather, at changes of
composition in macroscopic areas that contain many mole-
cules. Such macroscopic areas are, for example, the
bleached spot in fluorescence photobleaching recovery
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measurements or areas on membranes that have a momen- : A

tarily different composition than the rest of the cell surface
(e.g., after fusion with an endogeneous or exogeneous
vesicle). The diffusion of molecules in and out of macros-
copic areas is affected not only by the shape of the area but
also by the form and length of its boundary. These effects

are studied in the next sections.

In the accompanying paper, Wolf et al. (10) present
FPR measurements of the diffusion of a lipid analogue.
They found that the rate of fluorescence recovery is similar
in microvillous surfaces and in those that have much
smaller protuberances. As discussed in the Discussion
section, these results seem to agree with the present
theoretical analysis, which was performed independently

(see also reference 11).

DIFFUSION IN CURVED MEMBRANES
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In this section we present a mathematical description of diffusion along

curved surfaces, based on a diffusion equation. This equation is solved for

a simple “wavy” curved surface, which can represent a membrane with ky B
microvilli. Numerical results that describe the disappearance of tagged
molecules from a patch with a circular projection on the xy plane are
given at the end of this section. )
The first step in the calculation is the determination of the diffusion F;O'b'%den
equation along a curved surface. The curved surface can be represented ey \: ® 3n @ ® ® ®
by z = f{x,y). The resulting diffusion equation for this surface is (for the
derivation see Appendix I) ® ® ® ® ® ®
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FIGURE 1 A A two-dimensional representation of the surface z = 4 cos
(2.1) " kx cos ky (e.g., Eq. 2.3) for A = 0.75 um k = 2x/(0.2 um). This figure
was generated by G. Knott using the MLAB program (12) at the

where 3 f/dx = fx means partial derivative with respect to x, etc., and computer facilities of the National Institutes of Health, Bethesda, MD. B,

R = (l .+j;2 +fyz)|/2'

the locations of the microvilli’s peaks of the system represented in
(2.2) Fig. 1 A. The forbidden boundary passes through points in which the
value of z is 0.

If the surface is planar, i.e., 3f/dx=08f/dy=0 the diffusion equation along

a plane is obtained (see Appendix I).

To solve this diffusion equation it is necessary to specify the shape of
the surface along which the molecules are moving. Cell membranes
usually have blebs and microvilli, and specifying their exact mathemati-
cal shape is a formidable task. Therefore we choose a surface which is
mathematically simple but has a structure which should resemble micro-

villous membranes,

z = A cos kx cos ky,

egg carton (see Fig. 1 A). It is a square lattice of microvilli, but when
rotated by 45° (see Fig. 1 B) it looks like a distorted hexagonal lattice.
Initially the surface is covered with a uniform distribution of tagged
molecules. These molecules move randomly on the plane of the
membrane. Macroscopic areas contain many molecules whose movement
is described by the diffusion equation (Eq. 2.1). We considered an area
that has a circular projection on the xy plane with a radius of 0.5 um.
2.3) Assuming that we can tag the molecules that are initially confined to this
spot (e.g., by bleaching the fluorescent markers attached to them) it is

where A is the amplitude and k is the wavenumber (2x/wavelength). possible to study their diffusion out from this circular area (the “bleached
This surface is periodic along x and y and is similar to the surface of an spot™). By solving the diffusion equation (Eq. 2.1 ) for the situation in
288 BIOPHYSICAL JOURNAL VOLUME 38 1982



which the molecules inside the circular spot are bleached at time zero, in
other words, with the initial conditions

C xX+yP=rk
C(x,y) = (2.4)

0 X+y*>n,

we obtained the number of the bleached molecules still remaining in the
spot at subsequent times. This number is given by the following expres-
sion:

J(@t) =[] Cleyn)l + (8f/dx)* + (3f/dy)*]"*dxdy
X2+ ¥y < rld 2.5)

The diffusion equation was solved numerically. A numerical solution, as
described in Appendix II, is not continuous in time and space. The
concentration of bleached molecules is given for points in the x,y plane
separated by 1/60 pm and for time intervals, At, of 6.94 x 103s for D =
10~"%m?/s. The calculation was carried out for k = 10x um™' which
corresponds to 0.1 um thick microvilli.

The solutions were then integrated over a circular spot of 1 um in
diameter to yield the number of bleached molecules in this spot at
different times (0, At, 2At, 3At,...). This number, divided by the
number of bleached molecules in the spot at time 0, yields the fractional
concentration of the tagged particles in the circular spot. We call this
entity J(r)/J(0).

The fractional concentrations of the tagged particles within the spot
were calculated for several membrane topographies. For a planar
membrane for which the amplitude of the surface, A, is zero, the
fractional concentration was calculated for 1,550 time intervals (up to
6.94 x 10~ x 1,550 s for D = 10'° cm?/s). For curved membranes of
different amplitudes (which have the same number of microvilli per unit
area but with different lengths) e.g.,, 4 = 0.1, 0.5, and 2 um, the
fractional concentration was calculated for 250 time intervals. In addi-
tion, the calculation was carried out for 3,533 time intervals for the case
where 4 = 1 um. The calculations were performed in a CDC-CYBER
computer (Control Data Corp., Minneapolis, MN) and took 100 h CPU
time.

The results of these fractional concentrations are given in Fig. 2 for the
first 250 time intervals. It is evident from Fig. 2 that the rate of
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1

1 1
100 200
bleaching time number of time steps
FIGURE 2  Fractional concentration of tagged molecules originally in the
circular spot at time t=0 as a function of time for different surface
topographies (length of microvilli 4 = 0, 0.1, 0.5, 1, and 2 um). One time
step is 6.94 x 1073s.

disappearance of bleached molecules from the circular region, in which
they were originally located, depends strongly on the shape of the
membrane for planar membranes (4=0) or ones with short microvilli
(0<A<0.5 um). This rate of disappearance is almost independent of the
shape of the membrane for intermediate and long microvilli (amplitudes
>0.5 um). The curve describing the disappearance of the bleached
molecules on a membrane with 4 = 5 um is situated nearer to the curve
with A=10 um than to the curve with 4=2 um.

We also examined the possible effects on the diffusion coefficient
computed by considering a microvillous membrane to be flat. The reason
for this calculation is that in the interpretation of the measurements of
the FPR experiments in terms of diffusion along a membrane, the
membrane surface is considered to be flat. We calculated the value of the
diffusion constant that will bring a disappearance curve for a microvillous
membrane with an amplitude of 4=1 um into correspondence with a
curve for diffusion on a planar membrane. The results are presented in
Fig. 3. It is evident that for this case considering the microvillous
membrane to be flat introduces a diffusion constant that is 2-2.5 times
smaller than the calculated diffusion constant.

The results presented in this section represent calculations for 250-
3,533 time steps. Computations for longer times require much more
expensive computer time. The conclusions that can be drawn for later
times beyond the present calculations are discussed in the next section.

DISCUSSION

The macroscopic topography of the surface should not
influence the motion of single molecules if the diffusion
constant remains the same (i.e., no restrictions are added
to the molecular dynamics by bending of the membrane or
by changes in the membrane composition that may be
required to make the surface curved). But changing the
membrane topography, e.g., from a flat membrane to a
membrane with macroscopic blebs, can change the rates of
diffusion in and out of macroscopic areas. This may result
from interference with the dynamics of single molecules,
but also by changes in the boundary conditions necessary

1.0
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0.8 (3) A= 1 microvillous membrane with
/

diffusion constant D

sla 0.7
S5
06
(2) A= 1 microvillous membrane with
(1) A=0 diffusion constant 2.79 D
05 :
planar membrane with
diffusion constant D
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FIGURE 3 The effect of taking the membrane as planar on the measured
diffusion coefficient. Fractional concentration of tagged molecules origi-
nally in the circular spot at time 7=0 as a function of time for 4=1 um
(curve 1) and for a planar membrane 4 = O (curve 3) having the same
diffusion coefficient are presented in this figure. Curve 2 is for the same
topography as curve / (A=1 um) but with a different diffusion coeffi-
cient (2.79D) so as to match more or less the planar case (curve 7).

AIZENBUD AND GERSHON Molecular Diffusion on Nonplanar Biological Membranes 289



for solving the diffusion equation. In the last section the
effects of changes in the amplitude (or in other words, the
length of the microvilli) were calculated. When the length
of the microvilli is increased, the area of the membrane
enclosed in the circular bleached spot is increased by the
same factor. This can be easily seen if one considers a
microvillus to have an approximate shape of a cone.
Keeping the base fixed, the upper surface area of a cone
depends in a linear fashion on its height (A, the microvillus
length). When the length of the microvilli, or A, is
changed, not only is the area of the membrane enclosed in
the circular bleached spot increases, but the length of the
boundary between the spot and the rest of the surface
increases concomitantly. If this happens, the molecules
that were originally in this area would have more ways to
leave, and the outside molecules would have more chance
to enter through the elongated boundary. The ratio
between the area of the circular spot on the surface 4
cos kx cos ky and its boundary length is given in Fig. 4
for k=10 um™'. The length of the boundary of the
circular spot and its area are nonlinear with 4 at low
values of 4 (up to 4=0.3 um) and then become linear.
Thus, at large values of the amplitude, A>>2x/k, the spot
surface area and its boundary length are both linearly
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FIGURE 4 The A dependence of the ratio of the spot area and the spot

perimeter for a spot on a surface z = A4 cos kx cos ky having a projected
circular shape in the xy plane.
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proportional to A. Similar behavior was found for k=20~
um~' where this ratio reaches a constant value of 0.36
already at 4=0.2 ym. In the system analyzed here, with
the characteristic dimensions close to those of natural
situations, a large number of the microvilli are intersected
by the spot boundary. Under these conditions an increase
in A would not result in much change in the diffusion rate
of molecules to and from the bleached area, at least for
times when the diffusion flow consists mainly of bleached
molecules that were initially located close to the bounda-
ry.

The observation illustrated in Fig. 4, namely, that the
ratio of the length of the boundary of the bleached spot to
its area reaches a constant value for long microvilli, is valid
for other surfaces. In Appendix III, we show that the
preceding statement holds for surfaces that can be mathe-
matically described by an expression that is of the form of
A times a function of x and y and which has the following
two features. The first characteristic is that most of the
areas contained in the spot are not parallel to the xy plane.
The second feature is that most of the spot boundary has
lines that are not parallel to the xy plane. (These proper-
ties are rigorously described in Appendix III). Thus, for
such surfaces with long microvilli, the time dependence of
the fractional concentration of the bleached molecules is
expected not to depend strongly on the microvilli length; at
least for the lengths and the times considered in these
calculations.

The calculations presented here are performed for a
specified length of time because of computing cost limita-
tions. For very long periods after the initial bleach, one
expects to encounter a situation where the diffusion of
molecules initially located near the boundary of the
bleached spot becomes relatively unimportant as
compared with the diffusion from regions deep in the spot,
which are far away from the boundary. In such long times,
the time dependence of the fractional intensity of the
unbleached molecules in the spot is expected to depend on
the microvilli length. The question arises as to how long in
time the conclusions, drawn from these calculations, are
valid. If one extrapolates the results to longer times, the
relative intensity for A=1 or 2 um falls to the value of 0.5
in about 1,750 time steps. This time interval corresponds
to 12 s for D=10""" cm?/s and 0.12 s for D=10"cm?/s.
The former value corresponds to diffusion half times of
proteins whereas the latter corresponds to that of lipids. In
addition, a characteristic diffusion time over a distance of
1 pm is of the order of 50 and 0.5 s for D=10""° and
10~%cm?/s, respectively. So for shorter times, one would
expect that the diffusion out of the bleached spot would be
dominated by molecules that were initially located in the
neighborhood of the spot boundary. This situation is
anticipated to be valid in many experiments where the
diffusion constant is calculated from the time in which the
intensity of the bleached molecules in the spot decays into
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half of its initial value. These statements should be in
effect for larger microvilli lengths as long as about half of
the bleached molecules can diffuse out in the times consid-
ered above. We would like to point out that this analysis
does not exclude the possibility that changes in surface
topography might contribute to changes at the immobile
fraction (at extremely long times).

It is interesting to compare this two-dimensional case
with diffusion of molecules along a line (one dimension)
represented by z=A cos kx . The spot on which our
attention is focused is, for example, a line on the x axis
from x=—0.5 um to x=+0.5 um. Molecules can diffuse in
and out of this spot by crossing the two points (x=+0.5
and —0.5 um). When the length of the one-dimensional
microvilli, 4, is changed the length of the membraneous
line, contained in the spot, is changed accordingly, but the
boundary between the spot and the rest of the membrane is
unchanged. Thus, in contrast with the two-dimensional
case considered here, in one dimension the rate of diffusion
of molecules in and out of the spot will decrease as A4
increases.

Recently, Dragsten et al. (13) have found little or no
difference in the rate of photobleaching recovery of lipid
probe molecules in lymphocytes with or without microvilli.
In the accompanying paper, Wolf et al. (10) present data
on the diffusion of a lipid analogue on mouse egg surfaces.
These cells have two types of surfaces: About two-thirds
of the cell is microvillous and the remainder, as seen on the
scanning electron microscopy level of resolution, appears
to be smooth, as shown by Eager et al. (14). They found
that the rate of diffusion is similar in both types of
surfaces. If the surfaces described as devoid of microvilli
have small protuberances (as was shown in a transmission
electronmicrograph in reference 14), which cannot be seen
at the scanning electron microscopy level, then those
results seem to be compatible with the present theoretical
calculations, which were performed independently (see
reference 11).

To sum up, in this work we derived a diffusion equation
for curved surfaces and calculated the fluorescence photo-
bleaching recovery vs. time for a model surface of A
cos kxcos ky (k=107 um~'). We arrived at the following
conclusions: (a) If we consider a surface with microvilli of
length 1 um to be planar then the resulting diffusion
coefficient is found to be not less than about half of that of
a planar surface, although the microvillous surface can be
as much as 21 times larger than the flat one. (b) Because
of the tortuous shape of the spot boundary, changing the
length of the microvilli from small (0.5 um) to longer ones
(1, 2 um) does not change the rate in which the bleached
molecules leave the spot. (c¢) These considerations are
valid for short times, i.e., when the diffusion out of the
bleached spot is dominated by molecules that were initially
located in the neighborhood of the spot boundary. (d)
These calculations may represent experimental situations

where the diffusion coefficient is calculated from the half
decay time, as is usually done in spot FPR.

APPENDIX 1

Diffusion on a Curved Surface

In this Appendix we derive the diffusion equation on a curved surface.
Let us consider a surface z = f(x,y) in three-dimensional Euclidean
space with Cartesian coordinates x, y, z, and let S be some arbitrary part
of this surface, bounded by closed curve I'. We assume, that surface
f(x,y) and curve I" are smooth enough for our further calculations.

We can write the equations of curve I' as follows:

X = x(s)
¥y =y(s)

z = f[x(5), p(8)] = n(s), (L1)

where, by s, we mean a natural parameter of I'; i.e., the length of I' from
some arbitrary, but fixed point.

Now we introduce three important vector fields: 7° a unit vector,
tangent to curve I'; m’, a unit vector, normal to surface z = f(x,); n°, a
unit vector, normal to curve I and tangent in the surface z = f{x,y).

It can be easily seen, that these vectors have the following coordinate
representation in each point:

To = (x.n y.vafxx: +.f:vys)
m’ = (f./R.S,/R. — 1/R)
n’ = 7" x m°
= {( Vs + f:vfxxs +f:v2ys)/R’
_(xs +./:\'2xs +.f;r.f;'ys)/R'

(.f;ys_f:vx:)/R} (1'2)

where

R=(+f2+f)" (1.3)

If some substance, distributed on a surface z = f{x,y) [we describe this
distribution by the concentration C(x,y,t)], can be transported only by a
diffusion mechanism, the conservation of mass equation has the following
form:

@/ar) [, [ Cx.p.0ds = — (diffusion flow).  (14)

The left-hand side of Eq. 2.4 can be rewritten as follows:

%f; fc(x,y,t)ds=L S 6—C(’;’t—y")Rdxdy,

where S’ is the projection of S on the xy plane. At the same time

(1.5)

(diffusion flow) = f; [-D grad C(x,y,t),n°]dl'

- éde +Qdy, (L6)
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where D is the diffusion coefficient, I is the projection of the curve I" on
the plane xy, and

P=DI[C.f. f, — C(1 + fD]I/R.
0= D[C.(1+f}) — C, [ f,)]/R.

Using Green’s formula

(L.7)

j;: Pdx + Qdy = j; f(aQ/ax — 0P/dy)dxdy, (1.8) -

the definitions in Eq. 1.7, and identity 1.5, after some simple, and not too
long calculations, we finally get from Eq. 1.4

L S = plicat + 12 + 6,1 + 13
~2C, £ f)/R:
— G0 + 13 + £ i1+ 1)
+ fo(=2L,f D1/R
= Gl A+ LD + £, (1 +£2)
+ fo(=2£f D /RN dxdy - .

Because of the arbitrariness of S, and then of S’, Eq. 1.9 is equivalent to
the differential equation (Eq. 2.1).

In the special case, when the surface is a plane z = f{x,y) = constant,
all derivatives of f(x,y)vanish, and Eq. 2.1 is obviously reduced to the
usual diffusion equation

(L.9)

C, = D(C, + C,). (1.10)

The solution of our problem in the planar case (i.e., the solution of Eq.
1.10 with the initial conditions (Eq. 2.4), can be obtained analytically.
That is,

@)
—r¥ar o p
crn=¢__

') 4r Z

A(7),
£ (ky? ) (L11)
where r'=r/ry, 7=Dt/r,%, C'=C/C, and'
A7) = j(:l e % xkdx = — 4r e V¥
+4rk A, (7). (1.12)

In this case the intensity of the bleached molecules can be easily
evaluated as follows:

) = " 200 €, tyar. (113)

'"This solution can be easily found by using, for instance, the Green
function of the planar Cauchy problem of Eq. 1.10 with D=1; that is,
G(r—7,t)=(1/4xt)exp{—(Ir—r12)/4t}.

By using the initial condition 2.4 we can write the solution as follows:

1
C(rt) = Cx,p.t) = It ,L”zs, f exp

-+ (-
-

] dédn

exp[—r*/41] rp
=T 4wt _./0.l exp[—p?/4t] 2xl, (E) pdp

and by expanding the Bessel function of imaginary argument, Iy, in
Taylor’s series we get Eq. I.11 and 1.12.
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It is interesting to consider the one-dimensional case. If nothing depends
on one of the coordinates (e.g., on y) Eq. 2.1 reduces to the following
equation

CXX fo;fxx
=D - . I.14
C=Plry s (1+fi)’] @19
Changing variable x to
-/ 2172 L15
s= [T+, (L.15)
we can rewrite Eq. .14 as was expected, in the following form,
C,=DC,, (1.16)

which is a usual one-dimensional diffusion equation. This result could be
predicted intuitively.

APPENDIX II

Numerical Calculations
In this appendix we discuss the numerical solution of Eq. 2.1 for the
surface described by Eq. 2.3. By substituting Eq. 2.3 into 2.1, we get
Cu(1 + o’cos’usin’) + C,,(1 + o’cos’ sin’u)
— 2C,a’sin u cos u sin v cos v
[1 + o’(sinu cos® + sinv cos’u)]

9

ar’

a’k cos u cos v [2 + o [(sin’v + sin’u)]
[1 + o? (sin®u cos’ + sin’ cos’u)]?

- [Cicosvsinu + C,cos usinv] (IL.1)
where

a = Ak
u=kx
v=ky

=Dt (IL2)

and C, is C/dx, C,, = 3°C/dx%, etc.
If we denote the radius of the bleached spot by r,, the following 1xitial

conditions exist:

Co x2+y25r(2)

C (IL.3)
0 xX*+y’>n
where C, is the initial concentration of the tagged molecules.
To express this problem in a dimensionless form, we introduce
X =xfry ¥y =y[ry 7=Dt/r (I1.4)

Now, Egs. II.1 and I1.3 can be rewritten in the following form:

Cer (1 + o cos’u sin’v) + C,, (1 + o cos’ sin’u)
— 2C,, sin u cos u sin v cos v
or [1 + o (sin®u cos’v + sin’v cos’u)]

a?(kry) cos u cos v[2 + o’ (sin’u + sin’v)]
[1 + o?(sinu cos® v + sin’ cos? u)]?

« [Cycosvsinu + Cycos usinv] (ILS)
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Co x*+y*=<1
Cog=1{ " (1L6)

0 x?+y*>1

Egs. I1.5 and I1.6 were solved numerically, using a nine-point explicit
scheme (15). That is, we constructed a net with steps 4 along x,y and
substituted in Eq. IL.5 the following approximate values:

C, = {C(jh,ih,r+ A7) — C(jh,ih,7)}/Ar
Cyx = {C[(j+ Dhiih) — 2C(jh,ih7)
+ C[(j—1)h,ih,r]}/ R
C,y = {C[ jh,(i+1)h,7] — 2C( jh,ih,T)
+ C[jh(i—1)h,r)}/R?
Cyy = {Cl(j+ 1)h,(i+ Dh7] — C[(j—Dh(i+1)h,7]
+ Cl(j—1h(i—1)h,7]
— Cl(j+1)h(i—1)h,7]}/4h
C, = {C[(j+1)h,ihs] — C[(j—1)h,ih,r]}/2h

C, ={C[jh,(i+1)h,r] — C[ jh,(i—1)h,7]}/2h. 1.7)

These derivatives are for a point x=jh and y=ih on the surface described
by Eq. 2.3.

This substitution leads to a formula that expresses C(jh,ih,v+ A7) as
some function of concentration C at nine points for time 7. Because we
know C for any point at 7=0, we can calculate C everywhere at time Ar
with the help of Eq. I1.7 and then, starting from time Ar calculate C(x,y)
for time 2Ar, and so on. The stability of this calculation scheme demands
that (15)

Ar/h* <1/4. (1IL.8)
The interval of calculation along xy was h=1/60 um and At = ry’Ar/
D=ry*/(3,600D). The intensity of the bleached molecules in the bleached
spot was calculated numerically according to Eq. 2.5.

We would like to add a few words about accuracy. To avoid truncation
error, calculations must be performed with “double precision” in IBM
computers or with normal precision in CDC (13 digits). The analysis of
cumulative errors (except these which are coming from instability) is
very difficult. Some estimates can be obtained by comparison of numer-
ical and analytical solutions in the planar case (the agreement in our
calculations is better than 1%) and by changing spatial step, h. We
estimate the possible errors by 5% at most.

APPENDIX III

In this Appendix we summarize some mathematical aspects of this work.
1. Let us consider membranes that can be described by the equation

z = f(xy) = AF(x.y),

where F is independent of A, and let us assume the following.

(a) F(x,y) is such that points (x,y) which are the solutions of the
equation F(x,y) = F, = constant form in our spot lines of finite length for
any F,.

(b) The equation z = 9(s) = 5, = constant (here 7 is the z projection
of the boundary, see Eq. I.1) has a finite number of roots for any 7, Then
the following equation can be easily proved:

(IIL1)

lim (spot area/spot perimeter)=constant,  (IIL.2)
A—©

where the constant that appears in the right-hand side of Eq. II1.2 is 4
independent. The result is true for randomly but closely distributed
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microvilli and for any closely packed microvilli. This result is not true if
the boundary of the spot is located on the lines z(x,y)=constant (see, e.g.,
Fig. 1 B).

2. We would like to add a few words about k and 7, dependence. The
ratio in the right-hand side of Eq. I11.2 is k dependent. However, for large
enough k (for instance our k is large enough), this dependence is very
weak. It is a general remark for statement I, and seems to be true for
statement 2. The dependence on r; is also predictable. The constant ratio
in the right-hand side of Eq. I11.2 is proportional to r,. One can note that
changes of r, or k are connected through scaling.
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their consistent attention to our extremely long computations. The
plotting of Fig. 1 by MLAB and Gary Knott are heartily acknowledged.

Received for publication 19 May 1981 and in revised form 17 November
1981.

REFERENCES

1. Frye, L. D., and M. Edidin. 1970. The rapid intermixing of cell
surface antigens after formation of mouse-human heterokaryons.
J. Cell Sci. 7:319-335.

2. Edidin, M. 1975. Rotational and translational diffusion in
membranes. Annu. Rev. Biophys. Bioeng. 3:179-201.

3. Huang, N. W. 1973. Mobility and diffusion in the plane of cell
membranes. J. Theoret. Biol. 40:11-16.

4. Taylor, R. B., W. P. A,, Duffus, M. C. Raff, and S. de Petris. 1971.
Redistribution and pinocytosis of lymphocyte surface immunoglo-
bulin molecules induced by anti-immunoglobulin antibody. Nat.
New Biol. 233:225-229.

5. Poo, M.-M., and R. A. Cone. 1974. Lateral diffusion of rhodopsin in
the photo-receptor membrane. Nature (Lond.). 247:438—441.

6. Edidin, M., Y. Zagyansky, and T. J. Lardner. 1976. Measurement of
membrane lateral diffusion in single cells. Science (Wash. D.C.).
191:466—468.

7. Schiessinger, J., P. E. Koppel, D. Axelrod, K. Jacobson, W. W. Webb,
and E. L. Elson. 1976. Lateral transport on cell membranes:
mobility of concanavelin A receptors on myoblasts. Proc. Natl.
Acad. Sci. U. S. A. 73:2409-2413.

8. Wolf, D. E., J. Schiessinger, E. L. Elson, W. W. Webb, R. Blumen-
thal, and P. Henkart. 1977. Diffusion and patching of macromole-
cules on planar lipid bilayer membranes. Biochemistry. 16:3476—
3483.

9. Smith, B. A., W. R. Clark, and H. M. McConnell. 1979. Anisotropic
molecular motion on cell surfaces. Proc. Natl. Acad. Sci. U. S. A.
76:5641-5644.

10. Wolf, D.E., A. H. Handyside, and M. Edidin. 1982. Effect of

microvilli on lateral diffusion measurements made by the fluores-
cence photobleaching recovery technique. Biophys. J. 38:295-
297. .

11. Aizenbud, B. and N. D. Gershon. 1980. Diffusion of molecules on
biological molecules of nonplanar form. Fed. Proc. 39:1990.

12. Knott, G. D. 1979. MLAB. A mathematical model. Comput.
Programs Biomed. 10:271-280.

13. Dragsten, P., P. Henkart, R. Blumenthal, J. Weinstein, and J.
Schlessinger. 1979. Lateral diffusion of surface immunoglobulin,
Thy-1 antigen, and a lipid probe in lymphocyte plasma
membranes. Proc. Natl. Acad. Sci. U. S. A. 76:5163-5167.

14. Eager, D. D., M. H. Johnson, and K. W. Thurley. 1976. Ultrastruc-
tural studies on the surface membrane of mouse egg. J. Cell Sci.
22:345-353.

15. Berezin, I. S., and N. P. Zhidkov. 1965. Computing Methods. Vol. 2.
Pergamon Press, London.

Molecular Diffusion on Nonplanar Biological Membranes 293



