
PROTEIN CONFORMATION FROM ELECTRON SPIN

RELAXATION DATA

J. P. ALLEN, J. T. COLVIN, D. G. STINSON, C. P. FLYNN, AND H. J. STAPLETON
Department ofPhysics and Materials Research Lab, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801

ABSTRACT Electron spin relaxation data from five ferric proteins are analyzed in terms of the fractal model of protein
structures. Details of this model are presented. The results lead to a characterization of protein structures by a single
parameter, the fractal dimension, d. This structural parameter is shown to determine the temperature dependence of the
Raman electron spin relaxation rate, which varies as T3"2'. Computations of d are made using x-ray data for 17
proteins. The results range from d = 1.76 for lysozyme to d = 1.34 for ferredoxin. These values are compared with
values of d obtained from the present electron spin relaxation data on five ferric proteins. Typical results are d = 1.34 ±

0.06 from relaxation data and 1.34 ± 0.05 from x-ray data for ferredoxin; d = 1.67 ± 0.03 from relaxation data and 1.66
± 0.05 from x-ray data for ferricytochrome c. The data thus support the theoretical model. Applications of this spin
resonance technique to the study of changes in protein conformation are discussed.

I. INTRODUCTION

In this paper we present strong evidence that the fractal
model of Stapleton et al. (1) provides an accurate descrip-
tion of Raman electron spin relaxation rates in ferric
proteins. This model relates protein structure, as charac-
terized by a fractal dimensionality d (2), and the density of
vibrational states p(w), which varies with frequency as
'd- , to the temperature dependence of the Raman relaxa-

tion process, which then varies as T"'. Our model is
generally applicable to systems of arbitrary fractal dimen-
sion d; it reduces to well-known results for structures such
as paramagnetic salts, characterized by d = 3. Protein
structures, however, are characterized by nonintegral val-
ues of d. The value of d can be calculated directly from
x-ray structural data, or can be obtained alternately from
the temperature dependence of the Raman relaxation rate,
according to the theory discussed here. We have analyzed
x-ray data for several proteins including ferricytochrome c
with d 1.66 ± 0.05 and ferredoxin, with d - 1.34 ± 0.05.
Our model predicts that Raman relaxation rates in these
proteins should vary as T632 ± 0.10 and T568 ± 0.10, respec-
tively. Among the experimental data we present are results
from three different research groups on ferricytochrome c
and ferredoxin. The experimentally observed Raman
relaxation rates in these two proteins vary as T6.34 ± 0.06 and
T5.67 ± ° ", in excellent agreement with our model.

Although the fractal dimensionality d is but a single
parameter, it is nevertheless a useful indicator of protein
conformation because it provides a quantitative measure of
the degree to which a structure fills the space in which it
resides. In this sense, it is, perhaps, less immediately
accessible than other structural parameters, such as the
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radius of gyration, which can be measured optically. The
polypeptide backbone of myoglobin meanders through
space in such a way thatits fractal dimensionality is 1.66 +
0.04, according to x-ray data. This is very close to the
theoretical value 5/3 associated with a self-avoiding ran-
dom walk (SAW3) in three-dimensional Euclidean space
(E3). A straight line backbone would have d = 1; if the
backbone passed through every point of a lattice in E3, d
would equal 3. This paper shows that the values of d can be
measured by spin-lattice relaxation and x-rays to obtain
identical results, and that changes in protein structure with
solvent conditions can therefore conveniently be monitored
by relaxation measurements.

In section II we review the early relaxation data on
ferricytochrome c (cyt c) from horse heart (3) and cytoch-
rome P-450 from Pseudomonas putida (P450) (4) which
first indicated that electron spin-lattice relaxation rates of
low-spin Fe3" in proteins varied much more slowly with
temperature than the expected T9 power law. We also
present new data for cyt c, lyophilized ferricytochrome c
(cyt c-ly), low-spin myoglobin (Mb), myoglobin azide
(MbN3), and consider also the data of Gayda et al. (5) on
ferredoxin. In section III we summarize the theory of
Raman relaxation rates and extend it to include the
vibrational spectrum of structures that have a nonintegral
dimensionality. For structures of fractal dimension d, the
resulting Raman relaxation rate of Kramer's ions (i.e.,
those with an odd number of unpaired spins) is found to
vary with temperature as T3+2d.

Fractal dimensions are discussed in more detail in
section IV and a simple counting operation is described by
which the dimension of a fractal structure can be deter-
mined. We then apply this technique to various proteins for
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which x-ray structural data exist. In section V we use
scaling arguments to prove that the vibrational density of
states varies as Wd- 1. Section VI reviews some of the
problems in the extraction of relaxation rates (1/ T,) from
line width (1/T2) data. Conclusions and acknowledge-
ments appear in section VII.

II. RELAXATION DATA

General Results
As a result of experimental and theoretical research on electron spin-
lattice relaxation over the past two decades, the various relaxation
mechanisms and their characteristic temperature dependences are now
rather well understood. Numerous review articles are available (6-9). It is
of particular interest here that the Raman relaxation rates of all Kramer's
doublets, such as low-spin Fe3+, are known to vary with temperature T as
T9 at low temperatures. For covalently bound low-spin Fe3+ this has been
confirmed using the diamagnetic crystalline host K3Co(CN)6 (10, 11).
The first evidence that anomalies existed for Fe3+ spin relaxation in
proteins appears to have been published in 1973 by Mailer and Taylor (3),
who studied single crystals of ferricytochrome c at a microwave frequency
of 24 GHz. Fig. 4 of reference 3 shows the data they used to obtain
relaxation rates between 8 and 18 K. They used a novel technique that
measured the phase lag of the resonance signal under conditions of
adiabatic fast passage with high frequency magnetic field modulation.
This phase lag manifests itself through a change in the output signal of a
phase sensitive detector, larger than that expected for thermal spin
populations. An unfortunate error occurred in the figure originally
published, where the straight line drawn through the data was labeled as
representing a T7 power law. Only recently was it discovered instead that
the line represents a 7`° variation with temperature. Nevertheless,
neither T' nor P' behavior was anticipated by theory for this low-spin
hemoprotein.

Additional evidence of unusual relaxation behavior in proteins,
published in 1976 by Herrick and Stapleton (4), involved low-spin Fe3+ in
frozen solutions of cytochrome P-450 from P. putida. These relaxation
results, shown in Fig. 2 of reference 4, covered the temperature range
from 1.75 to 13 K by means of a pulse-saturation/recovery technique.
The low temperature Raman rate was again observed to vary with
temperature much more slowly than the r law. At that time, and based
in part on the apparent fit of the Mailer and Taylor data in Fig. 1 to a 7
law, the authors proposed a two-dimensional model to explain the results
of spin-lattice relaxation data from hemoproteins. The rationale, which
will be clarified by the theoretical development in section III, was that the
T7 variation could be associated with an effective phonon density of states
that varies as the first power of frequency w, rather than as w2. A linear
dependence on frequency is characteristic of the state density in two-
dimensional structures. Attention was drawn to a possible connection
between this result and the planar structure of the heme group with which
the iron is associated. Because the data for P450 fell below a strict T7
dependence, it was necessary to include the appropriate transport integral
(see section III) with a rather low Debye temperature of 75 K.

Recent data on additional systems established that a simple power law,
of the form 1, fits all these Raman relaxation data and that n is close to
6.3 for hemoproteins. Fig. 1 shows how well r' fits the data for four
low-spin ferric systems: P450 (n = 6.27 ± 0.06), MbN3 (n = 6.29 ±
0.08), Mb (low-spin, liquid state pH = 1 1.7, n = 6.22 + 0.09), and cyt c (n
= 6.34 ± 0.06). Also shown in Fig. I is a straight line corresponding to a
T power law. It should be noted that the cyt c data in this figure combine
our pulse-saturation/recovery data (limited to rates under I0 s-'), taken
on a frozen solution (liquid state pH = 6.8) up to a temperature of 8.5 K,
with the Mailer and Taylor data from single crystals of cyt c between 11
and 18 K. This determines n more accurately. It proved necessary to
reduce the phase-lag rates by a factor of0.106 to bring the two sets of data
into agreement.
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FIGURE I Relaxation rates for four low spin hemoproteins from this
work and references 3 and 4. The data from cyt c (Ol, 1/T1 = 4.85T +
0.0221 T634), Mb (A, 1/T1 - 2.79T2 + 0.007267T6 2), MbN3 (0, 1/T1

3.11T + 0.00617T6-), and P450 (0, 1/Ti = 0.152T + 0.000910T627)
are separately fit to the sum of a direct process, varying with temperature
as T or T2, and a simple TX power law. The best fitting values of n are

indicated. Standard errors in n are typically 1%. The straight line
represents a T9 power law. For Mb and MbN3, 2/3 of the data between 5
and 1 I K are not displayed in order to improve visual clarity in the region
of overlap. Every third point, determined sequentially by temperature, is
shown. The straight line represents a T9 power law.

It seems possible that the Mb result, n = 6.22 ± 0.09, may represent a

real change of protein conformation in the low-spin state in a highly basic
solution. The remaining three systems yield an average value of n = 6.30
± 0.07. It will be shown below, on the basis of a fractal model of relaxation
and of x-ray structural data from cyt c and high spin Mb, that a value of n
= 6.32 ± 0.10 is expected for these hemoproteins. We also present, in Fig.
2, the relaxation data of Gayda and co-workers (5) on a 2-iron-2-sulfur
ferredoxin from the blue-green algae Spirulina maxima. This plot
includes data obtained by pulse-saturation/recovery and continuous wave
(cw) saturation only up to a temperature of 20 K, which eliminates the
two highest cw relaxation rates from their original plot (one was only an

estimated value). In contrast to the hemoproteins, the fit of a Tn power
law to these Raman data now yields n = 5.67 ± 0.11. We show below,
using x-ray structural data on 8-iron-8-sulfur ferredoxin from Peptococ-
cus aerogenes, that the fractal model proposed here predicts n = 5.68
0.10 for this iron-containing, nonheme protein.

Fig. 3 shows that the protein environment, as distinct from its
structure, has no effect on the Raman relaxation rate. It does, however,
influence the temperature dependence of the direct relaxation rate that
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FIGURE 3 Data showing the effect of lyophilization on the relaxation
rate of ferricytochrome c. Our data, corresponding to rates under 104 s-',
correspond to a frozen solution of cyt c (A, 1/T, 4.85T + 0.0221 T634),
and a lyophilized sample, cyt c-ly (O, 1/T, = 16.1 T2 + 0.0241 T6333).
The net Raman rates are within 7% ofeach other at T = 8 K. The effect of
lyophilization is to change the direct relaxation rate from T to T2 and to
increase it by 664% at T = 2 K. For this figure, 2/3 of the data between 5
and 11 K are not displayed in order to improve visual clarity in the region
of overlap. Every third point, determined sequentially by temperature, is
shown.

frequency dielectric absorption data on metmyoglobin crystals (15) that
virtually all the water is adsorbed on the protein.

Further evidence that indicates that the Raman rate in these proteins is
little affected by sample history is furnished by relaxation data from a
reconstituted frozen solution of myoglobin azide (labeled MbN3-R).
These data are compared with our earlier results for MbN3 in Fig. 4. The
reconstituted sample was prepared by freeze-drying a frozen solution and
then redissolving it. The two sets of relaxation data were taken by
different researchers. Furthermore, the g-values and microwave frequen-
cies given in Table I indicate that the two measurements were performed
on slightly different portions of the frozen solution spectrum. Neverthe-
less, the temperature dependence of the Raman rates is unchanged within
the experimental uncertainty because the two cases lead respectively to n
= 6.28 ± 0.06 and n = 6.29 ± 0.08. Also, the magnitudes of the Raman
relaxation rates agree to within 10%, and even this difference is probably
associated with slight anisotropies in the Raman rate. For example, the
measured Raman rates for MbN3 at gff = 2.21 and 1.71 were respectively
1.5 and 2.5 times larger than at gf = 2.75. Attempts to measure

relaxation rates on freeze-dried MbN3 were unsuccessful because of the
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FIGURE 2 X-band relaxation data from reference 5 on a reduced
2-iron-2-sulfur ferredoxin from the blue-green algae S. maxima.
Included are pulse-saturation/recovery data and overlapping cw satura-
tion data. Our best fit of these data to the sum of T2 and T' power laws
results in n = 5.67 ± 0.1 1. This agrees closely with the fractal model that
predicts n = 5.68 ± 0.10 on the basis of x-ray structural data. Here, 1/ T,
= 0.861T2 + 0.00359 T567.

dominates at the very lowest temperatures near 1 K. The lower curve of
Fig. 3 is taken directly from the cyt c data in Fig. 1 and therefore involves
data from both a single crystal and the frozen solution. The upper curve of
Fig. 3 shows our data for a freeze-dried sample of cyt c. In the fitting of
relaxation data from this lyophilized sample, the Raman rate exponent
was fixed at n = 6.333, which corresponds to a fractal dimension of 5/3.
This was necessary because these data occupy only a limited temperature
range. It is therefore apparent from the figure that the protein environ-
ment does not influence the Raman relaxation rate. At low temperatures,
however, the relaxation rate of the freeze-dried sample exhibits a T,
rather than T, temperature dependence. An identical temperature depen-
dence occurs (Fig. 1) in the direct relaxation process for Mb in a highly
basic, low-spin state and (in Fig. 2) for ferredoxin. The evidence therefore
appears to establish that the protein environment affects the temperature
dependence of the direct relaxation rate alone and does not influence the
Raman process. If AT and DT` represent the unbottlenecked and the
bottlenecked direct relaxation rate of a spin system, then the condition for
a bottleneck is DT <« AT (12, 13). Unless lyophilization drastically
increases the spin-phonon coupling at the microwave frequency, the
necessary inequality is not satisfied for cyt c. We are led to speculate that
the relaxation may, instead, be due to the presence of localized tunneling
states (14) created by the removal of water. It is known from microwave
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FIGURE 4 Data indicating the degree to which our relaxation measure-
ments on frozen solutions of proteins are independent of sample history.
Data shown along the upper curve involved a reconstituted frozen solution
of myoglobin azide (MbN3-R), which had had an additional stage of
freeze-drying before use in the spectrometer (O). The standard errors in
Tn Raman fits were 0.06 and 0.08 for the upper and lower curves,
respectively. For this figure, 2/3 of the data between 4 and 11 K are not
displayed in order to improve visual clarity in the region of overlap. Every
third point, determined sequentially by temperature, is shown. O,
MbN3-R, 1/T, = 4.60T + 0.00688T7628; A, MbN3, I/TI = 3.11T +
0.00617T629T

appearance of a substantial high-spin component in the EPR spectrum,
and the fact that the overlap of low- and high-spin spectra leads to
spin-spin relaxation through the Orbach process of the high-spin species.

An interesting result was also obtained from our relaxation measure-
ments on cyt c in a frozen solution that had a pH of 13.2 prior to freezing.
This corresponds to type V cyt c (16, 17), an unfolded, low-spin system,
that is thought to have OH- as the sixth iron ligand. Our relaxation data
showed no evidence of a detectable Raman relaxation mechanism up to a
temperature of 22.6 K where our measurements stopped. The relaxation
rate varied no faster than T2 over the entire range of our measurements.

Experimental Details
All of our relaxation measurements were made using the pulse-
saturation/recovery technique. The spectrometer used broad-band
(dc- 10 MHz) superheterodyne detection and signal averaging. Saturat-
ing pulses were generated by passing microwaves through a variable
attenuator in series with a 50 dB solid-state microwave switch, shunted by

TABLE I
CONDITIONS FOR THE RELAXATION
MEASUREMENTS

Sample Comment v g

GHz
Myoglobin Low spin 9.374 1.865
Myoglobin Azide 9.251 2.754
Myoglobin Azide Reconstituted 9.306 2.683
Cytochrome c pH = 6.8 9.459 2.938
Cytochrome c pH = 13.2 9.421 2.362
Cytochrome c* Single crystal 24 -

Cytochrome c Lyophilized 9.487 2.465
Cytochrome P-450t 9.496 2.423
Ferredoxin§ x-band -

*Results from reference 3; tresults from
reference 5.

reference 4, §results from

a wave-guide arm containing two 1 5-dB cross-guide couplers, a variable
0-75-dB attenuator, and a microwave phase shifter. The monitor power
level used to observe the recovery of the resonance signal could thus be set
independently of the pulse power level. A second 50-dB solid-state
microwave switch, operating 1800 out of phase with the first, protected
the sensitive superheterodyne receiver from high microwave power levels.
The two switches were controlled with a pulse generator containing model
555 timer chips and models 74123 and 74121 monostable multivibrators
(Texas Instruments, Inc., Dallas, TX). The generator could be triggered
by a pulse at the end of each time sweep from a Fabri-Tek 1070 signal
averager (Nicolet Instrument Corp., Madison, WI ).

After signal averaging, the recovery was displayed on an oscilloscope
either directly or after logarithmic amplification. An approximate value
of the relaxation rate was obtained immediately by the latter procedure.
The contents of the Fabri-Tek memory were then transferred to paper
tape or a magnetic floppy disk for subsequent analysis on a DEC-20/60
(Digital Equipment Corp., Maynard, MA) computer. The signal recover-
ies were truly exponential over the full recovery period only for the MBN3
samples. The relaxation rates we report for other samples are representa-
tive of the recovery rates when the signal had returned to a value between
40 and 90% of its thermal equilibrium value. Care was taken to insure
that the rates were independent of both the duration and the intensity of
the saturating pulses.

The frozen protein solutions were in direct thermal contact with a
cylindrical TE,I, mode microwave cavity made from copper. Teflon
baffles held the samples in regions of large HI2. The cavity was thermally
insulated from a liquid helium bath by a thin-wall stainless-steel wave
guide and by a surrounding vacuum-tight isolation can, made of brass,
into which helium exchange gas could be introduced. The cavity tempera-
ture was measured with a calibrated germanium or carbon-glass resis-
tance thermometer that was part of an ac bridge circuit. Error signals
from the bridge circuit controlled the direct current (0-65 mA) in a 500-Ql
heater coil wound around the cavity. Microwave coupling to the cavity
was varied with a Gordon coupler (18).

Protein Preparation
Horse heart cyt c (type VI) and sperm whale Mb (type II) were
purchased from Sigma Chemical Co., St. Louis, MO, and used without
further chemical purification. MbN3 was prepared by dissolving Mb in a
pH = 7.0 phosphate buffer solution containing 0.5 M NaN3 until a
10-mM concentration of Mb was reached. A 10-mM low-spin myoglobin
solution was prepared by first dissolving it in a phosphate buffer of pH
6.8. The pH was then adjusted to 11.7 by slowly adding 1 M NaOH. A
10-mM solution of low-spin, folded cyt c was prepared by dissolving it in a
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phosphate buffer of pH = 6.8. A 3-mM solution of low-spin, unfolded cyt
c was prepared by dissolving it in hydrochloric acid and then changing the
pH from 1 to 13.2 by the slow addition of a 1 M NaOH solution. All
solutions were centrifuged to remove undissolved material.

To prepare a lyophilized sample of MbN3, a frozen solution of it was
held in vacuum for 36 h at a temperature of -10C. The 10-mM solution
of reconstituted MbN3 was prepared by dissolving the lyophilized sample
in a phosphate buffer of pH 7.1. A lyophilized sample of cyt c was
prepared in a similar manner from a frozen solution, although the
temperature, in this case, may have briefly reached room temperature.
The EPR spectra of these samples were found to agree with.published
results (19-22).

III. RAMAN RELAXATION PROCESS

In the Raman relaxation mechanism, a high-energy
phonon scatters inelastically off a paramagnetic spin and
causes a spin flip and a corresponding change in the energy
of the scattered phonon. This process is faster than the
direct (one phonon) process when the temperature is high
enough to populate the higher energy phonon states (hw
>> gtBTH. The two phonon process is dominant because
all high energy phonons can take part while only those with
energy g,RBH are available for the direct process. Physi-
cally, the relaxation process involves a modulation of the
ligand electrostatic field by structural vibrations. This
perturbs orbital electronic states that are coupled to the
spin via the spin-orbit interaction. In general there are two
contributions to a two-phonon relaxation rate. One comes
from the use of first-order time-dependent perturbation
theory and an orbit-lattice Hamiltonian, 9fOL, which is
second order in strain (i.e., second order in phonon creation
and destruction operators). The other arises from the use of
second-order time-dependent perturbation theory with an
orbit-lattice Hamiltonian, which is first-order in strain.
Only the second approach yields a nonzero result for a
Kramer's ion, because the 91OL operator is time even and
therefore cannot connect the two states of a Kramer's
doublet. A weak H2T7 Raman rate is predicted for a
Kramer's ion, but little confirming evidence has been
reported (23, 24).

The critical factors in a computation of the Raman
relaxation rate can be reproduced by adopting the follow-
ing simplified, phenomenological orbit-lattice Hamilton-
ian:

WOL=Ze.~~~Q=Z ( hw, \1/2WOL=6vQ= (2Mz2) (ba- b:) R'aV9, (1)

which, in the long wavelength limit, is closely related to
that used by Orbach and Tachiki (25). In Eq. 2 e is a
strain operator and is a time-even tensor operator that
acts upon electronic wave functions and has, for notational
simplicity, a single index Q. Various phonon indices includ-
ing polarization are included by a single greek index. bt
and b, are creation and destruction operators for phonons
of index a. Rg, is a dimensionless, geometrical coupling

factor between a phonon of index a and the tensor compo-
nent VQ, but is independent of the phonon frequency wa. M
is the total mass and v is the velocity at which vibrations
propagate in the protein.

The expression for the relaxation rate is

(2)

where W(n-m)3 is the transition rate from In> to Im> and
1 > and rl> are, in this case, the Kramer's conjugate states
of the ground doublet. Because W( 1 -- 1) = W(I 1) for
a Raman process, the relaxation rate becomes

I 4ir 1= vi
T, h f

E (f 1oIm )( m llOLIi)I2 (E -Ef), (3)
m Ej -Em

where Ek is the energy of state k and .(x) is the Dirac delta
function.

The initial, intermediate, and final states li>, Im>, and
If> are each a product of electronic and phonon states.
Because the intermediate phonon states can be created or
destroyed in either order, there are four intermediate states
to be included in the summation over m in Eq. 3 for each
excited doublet Ij> and IJ> of the Fe3+ ion. The pertinent
states are

i > = I I > I.n,-L.nA , >
If> =,I >II....nA- ....nx+ ..>
m I , =lij>I ....n,.-l ....ni, ...>

lm3>= j ->I ....n ..n,,n,+ >

m4> Ii
> ....n ...n,\n+ lI*>,....> (4)

where n,, is the thermal pkaonon occupation number,
(eAw2kB- 1) 1

Ifj and j are a pair of Krarnr's conjugate states, Q is
the time-reversal operator, and VQ is a time-even operator
(26), then

QVQQ-1=Vt Qj=j, QJ=-j
(1, VJ) (J, V9 1) = (QVQQ'Qj QI) (QVTQ-'Qt, QJ)

= (1, V9j) (j, VQ1). (5)
It is then easily shown that Eq. 3 becomes

1
=

rh
T1 M2v4 ZAwxwn,(nx + 1)

(RQARQ',- RQPRQ.) (A 1 h -4A + ho,)
(1ISVsI]) <(jIVQ II) I2x (h-w - hw., -g9BH), (6)

where Aj is the energy of the jth excited doublet. In the
static limit, with w, and w, both zero, 1/T, vanishes for
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Kramer's ions. Because the pertinent phonon energies are
nonzero, but are nevertheless much smaller than Aj, the
energy denominators combine to yield h (w +wj)/A2. The
w-independent coupling factor term, jRQARQ,. - RQgR\I2
can now be averaged incoherently over polarization and
spatial index (6) and removed from the summation (inte-
gration) over phonon modes. In addition the small fre-
quency difference w, -c, = gitBH/h between the perti-
nent phonons can be ignored, so that our expression
becomes

1 4rh2
22 22

-] 2M2V4 E (RRX RRQj. + RRI RR')X),T1 M2Vv,"
(I(I Vlj) (jl VI I)12) (4

lwmax (4 4p2(W)ehkT
J h/kBT \1)2de (7)

(ehw/kB

As we shall later prove, the density of vibrational states,
p(w), varies with frequency as wd`I where d is the fractal
dimension. An evaluation of the integral in Eq. 7 then leads
to the temperature dependence

= T3+2dJ2 + 2d (e/ T), (8)

where 0 = hwmax/kB and J"(x) is a transport integral (27)
defined as

Jn (X) ,(e z dz. (9a)

It has the limiting values

lim J"(01/T) = nl(n)t(n), T << 0, (9b)

and

lim Jn(0/ T) cx (0/ T)- 1, T >0> , (9c)

where r(n) is the Gamma function and {(n) is the Riemann
zeta function.

These results reproduce the well-known dependence of
Raman relaxation rates on temperature as observed in
ordinary solids, i.e., d = 3, T`o' 71 at low temperatures,
T1' a T2 at high temperatures, and T` oca T9 J8(0/T) at
intermediate temperatures. Computation of the transport
integrals for noninteger values of n is discussed in the
Appendix.

IV. FRACTAL DIMENSION

when G. Peano (28) demonstrated a continuous mapping
from the real line to an area in two-dimensional space. This
continuous curve passes through every point in the area,
and consequently allows every point in the area to be
specified by one parameter, the distance along the curve.
Several rigorous definitions of dimensionality have been
developed (29) to overcome this difficulty. A particularly
simple and useful definition is the "fractal" dimension
(2).

The fractal dimension is defined for those objects that
exhibit self-similarity. A self-similar object is invariant
under a transformation of scale. The unit square in the
plane is self-similar. When all lengths Q are scaled by a
factor s = 2, the square remains identical to the original,
except for size, and four of the scaled squares stacked
together produce an object identical to the original square.
The fractal definition of dimension, d, relates the number,
n, of copies of a scaled object needed to cover the original to
the scale factor, s, by the relation

dnfc s. (10)

In the example of the square, d = 2, in agreement with
intuition.

The definition of fractal dimension requires objects to
have a regularity seldom found in nature. The definition
can, however, be extended to irregular figures through the
concept of statistical self-similarity, when some statistical
distribution function describing the properties of the object
(rather than the object itself) exhibits self-similarity. An
example of some significance in the present work is the
random walk in two or more dimensions, that exhibits the
property of self-similarity, and that can therefore be
assigned a fractal dimension. The components of the
vectors connecting points on a random walk N steps apart
are Gaussian random variables of mean zero and standard
deviation a(N) = 9N' 2, where Q is the step size. It is easily
shown that the standard deviation of the vectors connecting
points N/n steps apart in a walk of step size Q is the same as
the standard deviation of the vectors connecting points N
steps apart in a walk of scaled down steps, Q/s in size,
where s = n'/2. That is

a,(N) = ao(N/n) = n'12ao(N), (1 1)

where the subscripts 0 and 1 refer to the original and scaled
walks, respectively. Because n of the scaled vectors cover
the original, the fractal dimension is obtained from Eq. 10
in the form

In common usage a geometric figure is often said to be
d-dimensional if d is the minimum number of parameters
required to specify the location of all the points that make
up the figure. For example, two parameters may be needed
to specify the location of a point in the interior of a square,
hence a square is two dimensional. This definition was
shown to be inadequate toward the end of the 19th century

d = log(n)/log(s) = log(n)/log(n'/2) = 2. (12)

The self-avoiding random walk is similar to the random
walk except that the curve is constrained to avoid self-
intersection. It is often used as a model for polymers. The
constraint on self-intersection prevents the curve from
reaching certain regions of space and complicates a calcu-
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lation of the dimensionality. No exact expression for this
quantity has been discovered. Renormalization group the-
ory methods (30, 31) and numerical experiments (32, 33)
yield values of the fractal dimension of a self-avoiding
random walk in E3 that are within 2% of 5/3.

A simple example will best show how the fractal
dimension of a structure is calculated. Fig. 5 contains a
curve in two-dimensional Euclidean space (E2) known as a
Koch island (2), Its fractal dimension of 5/3 can be
computed knowing that n = 32 and s = 8. To compute d
numerically, one would draw circles of various radii R
about an arbitrary point on the curve. From this origin,
proceeding in both directions, the total number n of steps
would then be counted until the curve cuts the circle at
radius R. The results, defining the variations of n with R,
would then be fit to a power law n a Rd. The upper portion
of Fig. S makes clear which elements are counted for the
circles indicated. Using this method, and averaging the
results from various origins evenly distributed throughout
the structure, one would find a fractal dimension of 1.66 ±
0.01 for the Koch island, in good agreement with the exact
value of 5/3. (Note that if, by error, all elemental steps
within each circle are counted, including those from the
reentrant portions of the curve, the calculated d is 6%

FIGURE 5. The lower curve represents a Koch island (N = 32, S = 8, d =
5/3) in a two-dimensional Euclidean space with a series of circles
centered at an arbitrary element of the curve. The upper figure shows only
those elements that should be counted within each circle when computing
the fractal dimensionality according to the method described in the text.

smaller than 5/3.) A similar error with protein structures
can cause 35% discrepancies.

Proteins lack rigorous self-similarity but a value of d
can nevertheless be obtained from x-ray data (34-51) by
drawing spheres of radius R about an arbitrary a-carbon
on the polypeptide backbone, and counting the number of
a-carbons to the intersection, as in the example provided
above. The resulting value of d depends somewhat on our
choice of an origin; the results were therefore averaged
over various origins evenly distributed throughout the
entire backbone. To eliminate end effects, the procedure
was terminated whenever either end of the backbone was
found within the sphere and whenever the number of points
exceeded a specified maximum N. The fractal dimensions
found in this way for 17 proteins are listed in Table II, with
the minimum value of N for which d remains within the
listed standard error. As a check against any systematic
error, d was calculated for Mb using independent sets of
x-ray data at different temperatures. The resulting
changes in d were <0.02, well within the listed standard
error of ± 0.04 for Mb.

The data of Table II indicate that the hemoproteins
Mb, cyt c, and the alpha and beta chains of hemoglobin
(Hb) all have fractal dimensions close to 5/3. This is the
value associated with a SAW3. Our relaxation data on
hemoproteins are consistent with this value of d because d
= 5/3 leads to a Raman rate that varies with temperature
as T16331. Fig. 6 gives conventional (d = 3) Raman fits of the
pulse-saturation/recovery data from Fig. 1. Debye temper-
atures near 55 K are required, and the theoretical result
exhibits a curvature that is not apparent in the data.

TABLE II
FRACTAL DIMENSIONS OF SOME SELECTED PROTEINS

Protein Fractal Nnin Referencesdimension d

Myoglobin (ferric) 1.66 ± 0.04 115 35
Cytochrome c (ferric) 1.66 ± 0.05 80 36
Ferredoxin 1.34 ± 0.05 30 37
Hemoglobin (alpha, ferric) 1.64 ± 0.03 90 38
Hemoglobin (beta, ferric) 1.62 ± 0.04 90 38
Cytochrome c550 (ferrous) 1.69 ± 0.05 90 39
Cytochrome c551 (ferric) 1.47 ± 0.04 45 40
Cytochrome c2 (ferric) 1.71 ± 0.05 80 41
Cytochrome bS (ferric) 1.62 ± 0.06 70 42
Lysozyme 1.76 ± 0.05 90 43
Trypsin (Ca2,) 1.54 ± 0.05 120 44
Carboxypeptidase A (Zn2+) 1.56 ± 0.04 130 45
Papain 1.76 ± 0.06 115 46
Ribonuclease s 1.35 ± 0.05 55 47
Chymotrypsin alpha 1.36 ± 0.05 95 48
Chymotrypsin gamma 1.35 ± 0.05 70 49
Rubredoxin (ferric) 1.49 ± 0.06 35 50
HiPIP (8 iron/sulfur) 1.52 ± 0.05 45 51

The fractal dimension of several proteins based upon x-ray structural data
and the computational method described in the text. Also listed are the
minimum values of the parameter N for which d remains within the listed
standard error.
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ean dimension of 3, 2, or 1. We now show that this result
remains valid for arbitrary fractal dimension d.
We present here an elaboration of our earlier proof (1).

Suppose that an elastic object consists ofN identical units
AJI of mass M, linked to form a body that is homogeneous and

isotropic. Its linear extent L is given by Ld (x N, where d is,
by definition, the fractal dimensionality of the object. For a

/ / small bulk deformation that maps the body onto its analog
of volume N( 1 -e), the decrease of length AL is AL = LEd;

uf/ / the elastic energy is Nce2/2, with c the appropriate elastic
constant describing each element in proportion to the
number of elements and the elongation squared.

Consider now the configuration space of the N units. In
this space, the deformation described above is a straight
line along some axis. The elastic energy is a function of the
displacement, 4, from the potential minimum and is
rfMw22/2 with w the lowest vibrational normal mode fre-
quency. A new change to cyclic boundary conditions of the
object will make each element project equally on 4. Sup-
pose this projection has the value AL. Then use of the
N-dimensional Pythagorean Theorem gives 42 cx N(AL)2 cc
NL2E2, and hence, by equating the expressions for the
elastic energy, one obtains

W (X (c/M)"/2L-' ox (C/M)112N-I d (13)

2- 3 4 5
nlR̂ (K)

10 15

FIGURE 6 A conventional (d = 3) Raman fit of the pulse-saturation/
recovery data (I/T1 s 104 s-') of Fig. 1. Debye temperatures near 55 K
are required to reduce the effective log-log slope from 9 to 6.33, and this
causes the curves to fall short of the data at higher temperatures. Refer to
the caption of Fig. I for a designation of the undisplayed data. 0, cyt c,

6.34T + 0.129E-7 T9J8(48.1/T); A, Mb, 3.15 T2 + 0.242E-8 T9
J8(53.6/T); 0, MbN3, 3.73 T + 0.240E-8 T9 J8 (54.3/T); O, P450,
0.230T + 0.347E-9 T9 J8 (57.0/T).

Ferredoxin differs from the case of heme proteins. Its
fractal dimension is d = 1.34 ± 0.05 from x-ray data, and d
= 1.34 ± 0.06 from the relaxation data of Gayda et al. (5)
(see Fig. 2).
We note that the distribution of a-carbons in proteins

has been examined by DeSantis et al. (52). These authors
determine the total number of a-carbons within spheres,
without restriction. These results are then displayed in an

interesting way as a function of R'3 where R' corresponds,
not to real space, but to a space that has been transformed
in such a way that the a-carbons are redistributed isotropi-
cally. Unfortunately, the fractal dimension measures the
distribution of the backbone in real space and the fractal
properties that play an important role in the present work
were therefore overlooked in the earlier research.

V. VIBRATIONAL DENSITY OF STATES

It is, of course, well known that the density of vibrational
states p(w), varies as wd- when d corresponds to a Euclid-

This expression is physically reasonable because it shows
that the time of propagation is proportional to the linear
extent of the object.

The variation of w with N can be used to deduce the
state density by means of the following scaling argument.
When m objects of size N/m are linked to make N, the
minor change of boundary conditions leaves the total
density of states unperturbed at m times the value for one

object. Thus

PN(W) = MPN/m(W), (14)

in which the subscripts identify the size. We now need to
show how the density of states varies when the normal
mode frequencies are scaled.

Consider the distribution function for the normal
modes, P(w), normalized so that f P(w)dw = 1. Defining
P(w,m) PN/m(w) for a scaling factor m, the basic scaling
assumption (53) is

P(XAW,XbM) = XP(W,M), (15)

where X is arbitrary and a, b are to be determined. The tth
moment of the distribution about the origin is

,u(t,m) = f P(w,m)w'dw. (16)

Whence from Eq. 15

,1(t,XbM) = f p(XaW,XbnM)(XaW))td(XaW)
XaG+a+ ,Iu(t,m). (17)

Because X is an arbitrary parameter, we may set X = - I/b.
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/hT2= InT+ 1(/2T,

ji(t,l) = m- (at+a+ l)/bU(tm) (18)

But the distribution function is normalized and therefore,
setting t = 0, g(0,1 ) = 1. It follows that a = - 1, and thus
from Eq. 15

P(W/X,Xbm) = XP(W,m). (19)

With X still arbitrary, one may again set X = m- k/b to find

PN/m(w) = m /bpN(m l/bw). (20)

The value of b is now determined from the N depen-
dence of w in Eq. 13, where a scale change described by Eq.
20 produces a frequency change by a factor of m-'/d. Thus
b = -d. The factor of m- /d, on the right of Eq. 20 takes
account of a reduction of the frequency interval between
normal modes caused by the size change. With

PN/m(w) = m-/dPN(Wm- Id)

for the T, contribution to T2 holds when spin-spin (T7)
contributions to the line width are included.

Second-order processes make a calculation of T2/T,
complicated because the possibility of self-energy contribu-
tions exist in which the initial and final spin states remain
the same, while the phonon states change. This can occur
with real intermediate states, as in the Orbach process, or
with the virtual intermediate states of the Raman mecha-
nism.

For an Orbach process involving a Kramer's ion for
which the energy levels and transition frequencies are well
separated, the pertinent relationships are (55)

1 4BIB2 1

T, (B + B2) e/T-_1 '
(25)

and

(21) 1 (B±+ B2)
T2 eAlT -I1 'Eq. 14 now yields

PN(M) = m' /dPN(WM l/d) (22)

and the substitution of an WIP power law for p(w) gives p =
d- 1, which is the desired result. The variation of p(w) as
wd- therefore holds for arbitrary fractal dimension d.
Note that the convenient boundary conditions from which
Eq. 13 is derived do not change p(w) but merely shift the
spectrum of eigenvalues by part of the mode spacing.

VI. LINE-WIDTH DATA

There are numerous pitfalls to avoid in any measurement
of T, from the temperature dependence of the line broad-
ening, and the problems increase when measurements
must be made on powdered crystals or frozen solutions.
The techniques used to obtain the ferredoxin relaxation
rates at temperatures >46 K, are described by Bertrand et
al. (54). It is often assumed that T, = T2 when the line
width is dominated by lifetime broadening, and this
approximation was one made in the ferredoxin work. In
general, however, the T2/1T ratio under these conditions
depends upon the nature of the paramagnetic ion (Kram-
ers or non-Kramers) and on the relaxation process
involved. Theoretical papers by Culvahouse and Richards
(55) and Stedman (56, 57) deal with the complexities of
this problem. The Weisskopf-Wigner (58, 59) relationship
indicates that the full width at half maximum 2/T2 is the
sum of the transition rates out of the two states involved in
the absorption line, i.e.,

2/T2= Wa + Wb, (23)

where a and b denote the two states of the doublet. For the
direct process WJ + Wb is equal to 1/ T, by definition, so
that the usual NMR expression of Bloembergen (60)

where B1 and B2 involve different matrix elements. It is
possible to have a phonon bottleneck in the Orbach process;
this has no effect on T2, but it reduces the value of 1/ T,
measured by pulse-saturation/recovery (55, 61).

For Kramer's ions, the self-energy terms of the nonre-
sonant Raman process apparently vanish and 2/ T2 = 1 / TI.
For a non-Kramer's T7 Raman process, 2/T2 = 1/TI + r
where F is the self-energy contribution. Kemple and Sta-
pleton (62) have estimated T2/T, to lie between 0.9 and 1.8
for such a process in Ho'+-doped yttrium ethyl sulfate.

Fig. 7 shows the ferredoxin data over the temperature
range from 1.225 to 132 K. Relaxation rates for tempera-
tures >46 K were obtained from line width studies. Curve
I corresponds to the fit reported by the original investiga-
tors (5) to the form

1/TI = 0.9 T2 + 3.5 10 '° T9 J8(60/ T)

+ 7.3 1o0 e350/T (26)

This fit assumes a conventional (d = 3) Raman process and
requires a Debye temperature of 60 K to reduce the slope
of the log-log plot from 9 to agree better with the experi-
mental value of 5.67. The low value of 0 = hwmax/kB = 60
K in turn requires that the Orbach relaxation mechanism
involve a localized vibrational mode. Curve 2, which has
the form

1/IT = 0.874 T7 + 0.00341 T5.666

+ 4.40 1010 e-348/T (27)

fits the data equally well. It eliminates the need to invoke
local vibrational modes because no Debye temperature is
required, and it can be assumed to exceed 348 K. It is
interesting to attempt to fit the data of Fig. 7 without the
inclusion of an Orbach relaxation term. The data are then
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equally well fit by the function

1/T1 = 0.865 T2 + 4.94 10-5T5666J4.666(610/T), (28)

if all the relaxation rates derived from line width data are
reduced by a factor of 0.2404 and a Debye temperature of
610 K is included in the appropriate transport integral. It is
unlikely that such a reduction is proper because a domi-
nant Raman relaxation mechanism >46 K requires that all
the relaxation rates obtained from line width data in Fig. 7
be doubled, not reduced by a factor 4. By contrast, a
dominant Orbach relaxation mechanism implies that the
line width data of Fig. 7 are either correct or too high since
the T2/ T, ratio in that case can lie anywhere between 0 and
1 depending upon the unknown value of two matrix
elements.

VII. CONCLUSION

In this paper we have presented experimental and theoreti-
cal evidence that a fractal model provides an excellent
description of the Raman relaxation mechanism in pro-

2

2 3 4 5 10 15 3 50 11
llFAUE (K)

FIGURE 7 Complete ferredoxin data, from reference 5, including line
width data taken between 46 and 132 K. Curve I is that reported by the
authors and involves a conventional (d = 3) Raman fit with a Debye
temperature of 60 K and an Orbach process involving a localized
vibrational mode with an energy of 350 K. Curve 2 is our fit of the data
with a fractal Raman process (d = 4/3) as determined from x-ray data,
and an Orbach process with an excited state energy of 348 K.

teins. The model predicts that the Raman process will vary
with T as T372" at low temperature, with d the fractal
dimension of the protein. Computation of d is simple if the
protein structure is known; it is strongly influenced by the
protein configuration. We have outlined a procedure for
calculating d and have tabulated its value for several
paramagnetic and diamagnetic native proteins. These val-
ues fall in the range between 4/3 and 7/4, which is
reasonable when compared to the theoretical result d =
5/3 for a self-avoiding random walk in three dimensional
Euclidean space. Structures that differ substantially in
detail can, however, share the same fractal dimension, so
that no randomness of protein structures is implied by this
result. We have not yet established that this model of spin
relaxation in proteins is valid for ions other than iron
attached to the protein; nor have we determined when this
relaxation process will be dominant.

It has proved possible to calculate values of d from
spin-lattice relaxation rates or from x-ray results, with an
uncertainty in each case of -3%. The mean values
obtained by the two different techniques agree within 0.6%
while the values of d vary among the different proteins by
20%. These results constitute a remarkable confirmation of
the theory because the determinations of d require no
adjustable parameters.

Our results lead us to suggest finally that low tempera-
ture spin-relaxation measurements can be used in future
experiments as a sensitive probe for small changes in
protein (or other molecular) conformation. The need for
detailed x-ray analysis can therefore be eliminated in
appropriate cases.
To provide a useful probe, the paramagnetic species in

the spin system must relax via a dominant Raman process
over a reasonably large temperature interval at low tem-
perature. No conformational information can be obtained
if an Orbach process is dominant. If the measurements are
taken at excessively high temperatures, the Raman relaxa-
tion rate will vary more slowly than T3+2d, eventually
approaching the classical T2 limit of a two phonon process.
The systems analyzed in this paper contain only low-spin
iron, with no Orbach process; or antiferromagnetically
coupled Fe2+ - Fe3+, for which a weak Orbach process
may be present.

APPENDIX

Modified Transport Integrals
Following the development of Rogers and Powell (27), we have computed
the values for the transport integral for noninteger n. These are required
for the experimental determination of the appropriate Debye tempera-
ture. An integration by parts gives

Jn(x) = exI + nJO eZ-1 (Al)

For large values of x, the integral term is rewritten by separating it into
two integrals and expanding the denominator yielding
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J.(x) = 1 + nF(n)'(n) - n z"-e-szd (A2)

The limiting value as x increases without limit is nr(n)'(n). For nonin-
teger n, the third term of Eq. A2 cannot be written as a simple series but
rather the integral was computed directly using a gaussian quadrature
approximation. For small values of x, both terms of Eq. Al may be
rewritten, using a Bernoulli Expansion that for x < 27r gives

jn x)_ xI -[1 _l)S-, Bs (2$ I )xz~]
n-1 S~_ (2s)! (n + 2s -1) '

where B, are the Bernoulli numbers. The limiting asymptotic value as x
approaches zero is

Xn--I
lim Jn(x) = (A4)
x-0 n- 1
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