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ABSTRACT  This is the first of two papers on an analytical and experimental study of the flow of the erythrocyte
membrane. In the experiment to be discussed in detail in the second paper, preswollen human erythrocytes are sphered
by aspirating a portion of the cell membrane into a small micropipette; and long, thin, membrane filaments or “tethers”
are steadily withdrawn from the cell at a point diametrically opposite to the point of aspiration. The aspirated portion of
the membrane furnishes a “reservoir” of material that replaces the membrane as it flows as a liquid from the nearly
spherical cell body to the cylindrical tether. In this paper we show that an application of the principle of conservation of
mass permits the tether radius (~200 A or less) to be measured with the light microscope as the tether is formed and
extended at a constant rate. A static analysis of the axisymmetric cell deformation and tether formation process reveals
that the tether radius is uniquely determined by the isotropic tension in the membrane and the elastic constitutive
(material) behavior of the tether itself. A dynamic analysis of the extensional flow process reveals that the tether radius
must decrease as the velocity of the tether is increased and that the decrease depends on both the viscosity of the
membrane and the elasticity of the tether. The analysis also shows that these two factors (membrane viscosity and tether
elasticity) are readily decomposed and determined separately when flow experiments are performed at different

isotropic tensions.

INTRODUCTION

Recognition that a lipid bilayer is a major structural
component of biomembranes has led to the view that a
membrane has a liquidlike character. Usually, the liquid
nature of the membrane is pictured in terms of “local” or
molecular phenomena such as the lateral or rotational
motion of specific molecular marker particles surrounded
by the long-chain polar hydrocarbons of the planar bilayer.
Ultimately, however, if a membrane is liquidlike then it
must flow as a continuum. That is, as long as the
membrane is not geometrically constrained in some way,
an observable deformation and rate of deformation must
occur when an external force acts on the membrane. Such
studies of the macroscopic flow behavior of membrane
when characterized by an appropriate constitutive relation
will lead to measurements of the surface viscosity of living
membrane.

In the analysis presented here, an axisymmetric geo-
metrical situation has been created to produce extensional
flow of membrane when acted on by an external force. As
shown in Fig. 1, a swollen but initially nonspherical
erythrocyte is aspirated into a pipette until the cell forms a
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sphere that is outside the pipette and a membrane tongue
(a cylinder with hemispherical cap) within the pipette
(Rand and Burton, 1964; Evans et al., 1976). At a point on
the erythrocyte opposite to the point of aspiration, a small
spherical bead has been allowed to adhere to the mem-
brane. The bead, in turn, is held by a second pipette with a
strong aspiration pressure. When the second pipette is
withdrawn at a constant rate with an electromechanical
linear translator, a long, thin, apparently hollow membrane
cylinder or “tether” is extracted from the spherical cell
body (Hochmuth et al., 1982).

The formation of the tether is anticipated, since tethers
have been extracted from flaccid erythrocytes that were
allowed to adhere to a glass surface and were subsequently
acted on by a fluid shear force (Hochmuth et al., 1973;
1976). However, in the original tether experiments of
Hochmuth et al. (1973) the excess surface area for the
tether comes from the surface of a flaccid erythrocyte. In
the experiments analyzed here, even though the cell body is
essentially a sphere, an excess of membrane for the tether
is readily supplied by a reservoir of material in the pipette.
The recognition of this fact leads to a method for measure-
ment of the tether radius during the process of tether
formation.

In our analysis of the original tether-flow experiments
(Evans and Hochmuth, 1976), we assumed an axisymmet-
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FIGURE 1 Line drawing depicting the aspiration of a preswollen cell into
a pipette until it forms a sphere, and subsequent extraction of a thin
membrane filament or tether. P, pipette pressure; P, reservoir (outside)
pressure; P, internal hydrostatic pressure; f, external force on the tether;
R,, pipette radius; and R,, maximum cell radius (at the equator).

ric configuration as an approximation of the true and quite
complicated cell geometry. In the present situation
depicted in Fig. 1, both analysis and experiment are
geometrically congruent.

The idealized model of the membrane flow process to be
analyzed here is shown in Fig. 2. The membrane enclosing
the cell body is modeled as a liquid. The liquid membrane
flows at a constant rate onto a tether which translates as a
rigid body. The tether is modeled as an elastic solid; i.e., it
will elongate in response to an increasing force. Three
conditions are satisfied at the junction of the liquid mem-
brane and the elastic tether: (@) The velocity is continuous;
i.e., the velocity of the membrane equals the velocity of the
tether. (b) The rate of deformation is continuous and equal
to zero for both membrane and tether. (c) The axial forces
are equal; i.e., the meridional tension in the membrane
times the circumference of the membrane at the point
where it joins the tether is equal to the net axial force
acting on the tether.

An analysis of the model illustrated by Fig. 2 predicts
that larger positive flow rates produce small tether radii
and that larger negative flow rates, when the tether flows
onto the cell, produce larger tether radii. As we will show,
these analytic predictions agree with experimental obser-
vations and, also, permit the experimental data to be
“collapsed” onto a single curve. Thus we propose the model
illustrated in Fig. 2 as the simplest one we can formulawe
that predicts and describes the experiments. H_wever,
there are certain assumptions implicit in the model that are
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FIGURE 2 Model of the membrane flow process. The liquid membrane
of the erythrocyte flows onto an elastic tether. A change in the force on
the tether produces an elastic response of the tether and a viscous response
of the membrane.
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only correct in an approximate sense. In particular, we
have assumed that the liquid membrane enclosing the cell
body is very thin in comparison to the radius of the tether.
In reality, the thickness of the membrane relative to the
tether radius can be significant. For an analysis of the flow
of a thick membrane we would have to define local
azimuthal and meridional stresses (forces per area) rather
than tensions (forces per length). Such membrane stresses
would equal the axial and circumferential stresses in the
tether at the point where the membrane of the cell body
flows into the tether. In addition, it may be necessary to
treat the thick membrane as a multicomponent lamellar
structure with viscous slip between adjacent layers and,
possibly, a bending resistance within a given layer and
between adjacent layers. Clearly, such a model would be
one of great complexity with several elastic and viscous
constants. On the other hand, the idealized model repre-
sented by Fig. 2 characterizes the flow of the membrane
with a single viscous coefficient, and the analytical predic-
tions of the basic model agree closely with experimental
observations (Hochmuth et al., 1982).

STATIC DEFORMATION

The membrane of a sphered and tethered erythrocyte
which is held in a pipette (Fig. 1) is acted upon by various
pressures and forces: a tether force f, an outside pressure in
the reservoir P,, an aspiration pressure in the pipette P, an
internal pressure P, and a force resultant (not shown)
between the cell membrane and the pipette wall. To
determine how these forces interact with each other and, in
so doing, specify the equilibrium shape of the erythrocyte,
a free-body diagram is created by making a cut through
the cell membrane with a plane that is perpendicular to the
z-axis of symmetry (Fig. 3). By making such a cut, the
internal force resultants or tensions in the membrane are
revealed. The membrane tension 7 shown in Fig. 3 is
assumed to be isotropic as though the membrane were a
two-dimensional liquid. For the erythrocyte membrane,
which has a definite surface shear rigidity (Evans, 1973),
this assumption is appropriate as long as the cell has been
pulled with a strong aspiration pressure into a spherical or
nearly spherical shape. In particular since the erythrocyte

FIGURE 3 Intrinsic coordinate system and free body diagram of the cell
body. s, , z are meridional, radial, and axial coordinates; 6, angle between
outward normal and horizontal; ¢, circumferential angle; R,, tether
radius; and T, isotropic tension in the membrane.
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membrane has a surface elastic shear modulus of 0.006
dyn/cm (Waugh and Evans, 1979), membrane tensions on
the order of 0.1 dyn/cm or greater (which correspond to
aspiration pressures of ~0.001 atm or greater) permit the
erythrocyte membrane to be treated as a two-dimensional
liquid.

This “liquid-membrane assumption” together with the
equation of membrane equilibrium along the meridian s
(dT/ds = 0) implies that T is constant everywhere in the
membrane as long as there is no net flow in the membrane
or no external fluid flow over the surface of the membrane.
Thus, a force balance in the z direction (which is essen-
tially an integration of the law of Laplace for the situation
shown in Fig. 3) immediately yields:

(T'sin 8) 2xr = (AP)xr’ + f° (1)

where £ is the static tether force (the tether force at zero
velocity), 8 is the angle between the outward normal and
the horizontal, and the wall pressure difference, AP, =
P; — P,. A series of cuts through the pipette, tether, and cell
body at its maximum radius gives the following expres-
sion:

R 0 R

(AP)=E — f s (AP)=2

(AP), = R. =#R, - R,

¥ 1 - R,/R, 1 — R,/R,
and
= (AP)R,/2

T ~——FP — 2
I RR )

where AP is the overall pressure difference (AP = P, — P,;
Fig. 1). The tether-force term, f°/7 R, can be neglected in
the calculation of (AP), and T from the experimental
measurements of AP, R, and R, since the force term is
several orders of magnitude less than the overall pressure-
difference term for all cases analyzed here.

Eq. 1 can be arbitrarily, but conveniently, scaled with
respect to the maximum cell radius R.. Thus, let 7 = r/R,,
£ =f%AP),-7R? and evaluate T at r = R.(6 = ©/2):

sin § = T+/u? 3)

Eq. 3 has the essential features of the geometry of the cell
and reveals a very important fact: viz, the existence of the
tether. For as long as f'is finite (if f = 0, then Eq. 3 is just
the equation for a spherical surface), Eq. 3 admits two
solutions for 7 when 6 = «/2 (when the surface is tangential
to the horizontal). The obvious solution is # = 1 (r = R_) at
0 = w/2. However, as F decreases, the membrane will
eventually turn the corner and § — /2 as # — f,°. This
means that the cell forms a tether at this point and the
radius of the tether, r = R?, is given by R® = f.% or

RO___S°
R.~ (AP), xR}

In dimensional form,
0 0 0
Rlo = f = —f ~ f-—. 4)
AP, R, 2xT — f/R. 2xT

In all cases analyzed here, T >> f°/2xR. and, thus, the
cell surface is essentially spherical except in a small region
near the tether (Fig. 1)." Eq. 4 reveals that the characteris-
tic dimension in this problem is given by the ratio of the
tether force to the isotropic tension. The geometric dimen-
sions of pipette radius R, and cell radius R are used to
calculate the isotropic tension in the membrane from a
measurement of the pressure difference (Eq. 2). However,
under static conditions the tether radius depends only on
the force on the tether and the isotropic tension in the
membrane as indicated by Eq. 4.

At first glance, Eq. 4 appears to indicate that the tether
problem is not unique. That is, for a given T (i.e., a given
aspiration pressure AP, Eq. 2) there exists an infinite
number of tether radii depending on the value for f.
However, experimental observations of tethered cells
reveal that this is not the case (Hochmuth et al., 1982). At
a relatively low tension the cell body is somewhat elongated
in the z direction and the tether appears as a faint shadow,
stretched between the cell body and its point of attach-
ment. At higher tensions the cell assumes a more nearly
spherical shape and the tether disappears since its diffrac-
tion pattern becomes unobservable. Lowering the tension
(pressure) reveals the tether again as a faint shadow and
creates an elongated cell body. It appears that the tether
radius is a function of the tension in the membrane and,
thus, that the tether radius depends on the tether force
according to Eq. 4. That is, the tether has elastic behavior,
in contrast to the rest of the cell membrane which is
modeled as a liquid since the isotropic tension in the
membrane is much greater than the shear modulus. Teth-
ers of relatively large radii (~0.1 um) in the flow-channel
experiments of Hochmuth et al. (1973) were also observed
to have this elastic behavior. With this assumption of
elastic constitutive behavior, f = f(R)); that is, the tether
force is a unique function of the tether radius. Since T is
imposed in the experiment and since R, can be measured,
as discussed in the next section, then the elastic behavior of
the tether, f = f(R), can be determined in principle from
Eq. 4. Intuitively, it is expected that the tether force will be
inversely related to the tether radius and, in fact, the
original observations of Hochmuth et al. (1973) for rela-
tively large tethers indicate this is the case.

In general, the static shape of the cell can be obtained
from Eq. 1 along with various equations from differential
geometry (those which relate r, 6, s, and z) and two

'The work of Hochmuth et al. (1973) with flaccid erythrocytes indicates a
tether force on the order of 10¢ dyn. In the present work the tether force
is on the order of the isotropic tension (~0.3 dyn/cm) times the tether
circumference (10~ cm). Thus, the tether force still is on the order of
107 dyn. Since T ~ 0.3 dyn/cm and f°/2aR, ~ 10~ dyn/cm (R, ~ 3
um), T >> f°/27R..
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FIGURE 4 Results of the analysis of the static deformation of a tethered
red cell at constant membrane surface area, constant internal volume and
constant distance from pipette to the point of attachment of the tether.
A-D illustrate the effect of an increase in the dimensionless tether force f
f = f/AP-mR;? where AP = P, — P, Fig. 1). Note the increase in the
tether radius, the increased deformation of the cell body and the
movement of the membrane “tongue” down the pipette as f is increased.

constraints: the total surface area and volume of the cell
remain constant during the deformation process. The
solution for the overall shape of the cell is discussed in
detail in Appendix A. The results of one such numerical
calculation are shown in Fig. 4. Here, f° is a dimensionless
force given by the tether force f scaled with respect to the
overall suction pressure drop AP and the cross-sectional
area of the pipette 7R, f° = f°/(AP-wR,?).? Fig. 4 shows
that as the suction pressure is increased relative to the
tether force (as f decreases), the tether becomes smaller
and more material is aspirated into the pipette. (Compare
Fig. 4 D to A). During this aspiration process, the overall
surface area and volume are held constant, as is the
distance from the origin of the tether to the mouth of the
pipette. A particular case (Fig. 4 D where f = 0.3) is
matched to an actual erythrocyte with tether as shown in
Fig. 5. The match is not perfect since the erythrocyte is
somewhat more elongated and its tether appears to be
smaller than the relatively large tether in Fig. 4 D.

*After a certain amount of algebraic manipulation it can be shown that
[ is given by £.° = (S/RII(R. =_1)/(R. — f)] ~ (f°/R.). where
R. = R/R,.f.0 = f°/(AP,xR2),and f° = °/(AP)x R, . Typically, {0 is
about one-third to one-fourth as large as f°.
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FIGURE 5 Comparison of a tethered erythroycte at a membrane tension
~0.1 dyn/cm with the particular result shown in Fig. 4 C.

TETHER RADIUS

At first thought it would seem to be almost impossible to
measure in situ something as thin as a tether. However, the
method of tether formation presented in this paper and
depicted in Figs. 1, 4, and 5 permits the tether radius to be
measured as the tether is being formed. In essence, a
reservoir of membrane material is created within the
pipette. As the tether is extracted from the cell body, the
material in the reservoir is depleted. Since this process
occurs at constant total surface area (the membrane
surface area is constant at constant isotropic tension; Evans
et al., 1976) and constant internal volume, it can be shown
readily (Appendix B) that the decrease of material (sur-
face area) within the pipette is essentially balanced by an
increase in membrane material in the tether:

—27R,dL, ~ 2R, dL,
(Decrease of material (Increase of material
in pipette) in tether)

where —dL, is the decrease in length of the aspirated
portion of the membrane within the pipette and dZ, is the
increase in tether length. The solution of this equation for
the unknown tether radius gives
dL
). (s)

Ry (g7

As shown in Appendix B the assumption of a spherical cell
body of radius R, allows Eq. 5 to be written as an
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equality:

As we show in our next paper (Hochmuth et al., 1982) Eq.
6 provides a means for the accurate measurement of the
tether radius, even though the tether radius is less than the
wavelength of light.

SCALE

For the problem of membrane flow from cell body to
tether, there are essentially only three scaling parameters:
a characteristic tether radius at zero velocity, RY% a
characteristic isotropic tension in the membrane, T and a
membrane viscosity, . The scaling of variables with
respect to these three parameters is denoted by a circum-
flex (). Thus, the dimensionless tether radius is R, = R,/
R?. The dimensionless azimuthal and meridional tensions
areT,=T,/Tand T, - T, /T. Since the tether force at
zero velocity is f° = 2rRT(see Eq. 4), the dimensionless
tether force is f = f/f°. Finally, as we will show, the
natural scale for the tether velocity V, is ¥, = 2nV,/R° T.

MEMBRANE FLOW

In practice, tethers are formed at a finite rate and, thus,
membrane material must flow continuously from cell body
to tether as shown in Fig. 6. In this case the tension in the
membrane is not constant but increases in the direction of
flow (along the meridian s in Fig. 3) and produces a
positive tension gradient.

To gain insight into the essential nature of the flow of
membrane material from cell body to tether (Fig. 6), an
approximate but relatively straightforward analysis of this
flow problem is given here. Consider that the membrane
material external to the tether forms a circular but flat
sheet rather than the curved surface shown in Fig. 6. This
sheet lies entirely in a plane perpendicular to the tether (z)
axis. In this case, the equation of continuity (conservation
of mass) immediately gives the velocity profile in the

Membrane

Pipelte
Cell Body

Y Flow

FIGURE 6

Illustration of the flow of membrane material from cell body
to tether. Since mass is conserved, the membrane tongue moves slowly
down the pipette as more membrane material flows onto the tether. The
ratio of the rate of movement of material down the pipette to the velocity
of the tether is proportional to the ratio of the radius of the tether to the
radius of the pipette.

membrane material that flows onto the tether:
v, = ———, (7N

where r is the radial distance from the z axis, v, is the
velocity in the r direction and V, is the tether velocity.
There is a negative sign in Eq. 7 since o, is positive in the
positive r direction and V, is positive in the positive z
direction. Eq. 7 demonstrates that most of the flow occurs
in a small region around the tether where r — R,.

In order to relate the local velocity field to local tensions
in the membrane, a certain type of constitutive or material
behavior must be assumed. The simplest or first-order
linear approximation is that membrane material flow is
governed by a Newton’s law of viscosity relationship:

T,=T+ 2y 9o (®)
or
where T, is the tension in the radial direction and T is the
isotropic tension in the far field where dv,/dr — 0. The
isotropic tension T is imposed by the aspiration pressure
AP and is readily calculated (Eq. 2).

The field equation for 7, is obtained by the substitution

of Eq. 7 into 8:
T,-T + ﬁ@ . 9)
r
The radial tension relative to the isotropic component
increases rapidly as r decreases to its minimum value (r —
R).

Eq. 9 describes a sheet flowing into a cylinder (tether)
which then translates as a rigid body in a direction
perpendicular to the plane of the sheet (as long as R,
remains constant). At the circumferential line where the
sheet joins the cylinder it is assumed that the radial tension
is continuous. (In reality, the membrane material under-
goes a continuous turning of the corner (Fig. 6) and the
radial tension is, clearly, continuous along the entire arc
length). Thus,

Tr|r=R.27rRt =f(Rt)' (10)

Compare Eq. 10 to 4, where V,— 0, and note in the present
case that the local radial tension is substituted for the
isotropic tension.

The evaluation of Eq. 9 at r = R, and the substitution of
Eq. 10 into 9 yields, after some algebraic manipulation,

f (R,) _ 29V,
2«T T °

Eq. 11 is readily scaled by dividing both sides by the tether

radius at zero velocity, R, and using the relationship given

by Eq. 4:

R, - (1)

(12)

where R, = R/R®, f = f/f° and V', = 2qV,/R® T.
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Eq. 11 shows that under the dynamic condition of flow,
the tether radius depends on both the elastic constitutive
behavior of the tether and the viscous behavior of the
membrane surface as it flows onto (or off of) the tether.
Also, it is important to note that the velocity term in Eq. 11
has a sign. That is, when a tether is being extracted from
the erythrocyte, ¥, > 0 and when the tether is being
absorbed by the erythrocyte, V, < 0. Thus,

f o vl

R =—2— 4+ o,
T oaT T T * %

Eq. 11 is derived for an idealized flat-surface approxi-
mation to an actual curved surface as shown in Fig. 6. An
analysis for a general curved surface involves the applica-
tion of Newton’s law of viscosity to the equations of
membrane equilibrium in which there exists nonisotropic
tensions along a principal axis system. This is essentially
the approach taken in a previous study (Evans and Hoch-
muth, 1976) of the flow of membrane material from
flaccid erythrocytes (AP ~ 0, T ~ 0 and f'is produced by a
fluid shear stress in a flow channel).’ This more general
analysis is discussed in Appendix C. A result of this
analysis is shown in Fig. 7. Here, the solid lines show the
numerical integration of the equations of membrane equi-
librium and flow (Appendix C) for particular values of the
tether force f relative to the force at zero velocity f% f —
f/f°. The slope of these constant-force lines at the origin
are shallower, by a factor of 1:1.6, than the —45° slope
predicted by Eq. 12. Thus, for Eq. 12 to agree with the
numerical solution at the origin (as V', — 0), Eq. 12 must
be modified as follows:

Rl =f - Vl/C (13)
where C ~ 1.6.

The solid, constant-force lines shown in Fig. 7 do not
model the experimental situation. Observations of Hoch-
muth et al. (1973, 1982) indicate that as the force on the
elastic tether is increased, the tether radius will decrease. A
simple first-order phenomenological expression (Hoch-
muth et al., 1982) that describes an inverse relation
between force and radius is given by

f=1/R. (14)

For this particular case, the relation between the tether
radius and the tether velocity is shown by the dashed line in
Fig. 7. The slope of this line at the origin is exactly one-half
that of the constant-force line.

The shape of the liquid membrane as it flows from the
maximum cell radius to the tether is shown in Fig. 8 for the
force-radius relation given by Eq. 14. (For the sake of
illustration, we have chosen an abnormally large value of

*It is interesting to note for T = 0, Eq. 11 reduces to f = 4anV,; thus the
viscosity determination is independent of the radius.of the tether, as first
noted by Evans and Hochmuth (1976).
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FIGURE 7 The solid lines denote the change in dimensionless tether
radius with dimensionless tether velocity at different values of the
dimensionless force. The slope of these lines at the origin is ~—1/1.6. The
dashed line is derived from a specific elastic relation between the
dimensionless force and the dimensionless tether radius: f = 1/R,. The
results to the right of the dotted line through the origin produce an
azimuthal tension, T,, which is negative. In this figure, lé, = R/R/, f =
f/f°and V= 29V, /TR where the 0 superscript denotes the value at zero
velocity (R, — R%and f — f° = 2aR°T as V,— 0).

0.1 for the ratio of the tether radius at zero velocity, R’, to
the cell radius R;; i.e., R’/R. = 0.1. The results are slightly
dependent on this ratio until it becomes about an order-
of-magnitude smaller.) For the situation depicted in Fig.
8, the scaled local values of the meridional tension, Tm,
azimuthal tension, T,,,, and the fluid shear, évs/és, are
shown in Fig. 9. In terms of these scaled variables,
Newton’s law of viscosity is given by

T.—T, a5
2 6 (15)
where T, = T,/T, T, = T,/T, b, = 2q0,/R°T and § =
s/R®. Since the maximum value for the dimensionless

FIGURE8 The shape of the liquid membrane at two different dimension-
less tether velocities, ¥V, = + 1.0 (V, = 2nV./R,°7'), for the force-radius
relation given by Eq. 14. For the sake of illustration, the ratio of the tether
radius at zero velocity, R’, to the maximum cell radius, R., is set equal to
0.1. This value is about an order-of-magnitude larger than the experimen-
tal situation.
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fluid shear shown in Fig. 9 is on the order of the dimension-
less tether velocity, the maximum value for the dimen-
sional fluid shear or shear rate will be on the order of the
tether velocity divided by the tether radius.

As the tether velocity is increased, the minimum value
for the azimuthal tension will decrease until it becomes
negative; i.e., the membrane becomes loaded in compres-
sion in the azimuthal direction. (Note in Fig. 9 that the
minimum value for 7"4, is almost zero when ¥, = 1.0). This
compression in the azimuthal direction could lead to an
unstable buckling or wrinkling of the membrane. Negative
values for T » exist in the region to the right of the dotted
line through the origin of Fig. 7. However, few experiments
are performed in this region since the tether either breaks
or detaches at large values of V.

In order to obtain an expression for the viscosity 5, Eq.
13 in dimensional form is differentiated with respect to ¥,
at constant 7 and then rearranged:

2L ()
CT_ ZWTth v, T
The tether elasticity term can be evaluated at zero tether

velocity where f° = 2rRT (Eq. 4) and

a _ &
dR, dR?’

(16)

Eq. 16 provides the means for the measurement of tether
viscosity. In order to make this measurement, both the
change in tether radius with tether velocity and the tether
elastic behavior, f = f(R,), must be known. In addition,

2.0f

LV, =410
1.5F
10F
0.5F

L

) 0.5

2.0r
V,=-10
1.5¢ Tg 2=
1.0F :
Tm

0.5+ A A

0 0.5 0 s

FIGURE9 The dimensionless meridional tension, 7 m» azimuthal tension,
T + and viscous deviatory component, dv,/ds, for the geometry depicted in
Fig. 8. (T = To/T, Ty = T,/T, ¥, = 2qv/RT, § = s/RY). The axial
distance z is scaled with respect to the maximum cell radius: z = z/R..
Note that T,, = T, = T at the beginning and end of the flow process.

Eq. 16 provides an estimate of the lower bound for the

viscosity: _
CT IR,
" (T)( ‘aV.)f‘

An alternate form of Eq. 16 which is slightly more useful
in the calculation of a value for n can be obtained by
expanding the tether-force term (Eq. 10) and evaluating it
at the static state:

f = 21rRl Tr Ir-R‘
df o dT -
—— = 2= T.
(dR‘)Rl_Rlo 27|'Rt deo + 27

Thus, Eq. 16 becomes

C 0( dT ) (aR,)
=y RA\GRNav )
In the paper to follow (Hochmuth et al., 1982), Eq. 17 will

be used to calculate a value for the membrane surface
viscosity 7.

a17)

YIELD

The tether formation studies of Hochmuth et al. (1973)
suggest that the erythrocyte membrane possesses a “yield”,
i.e., a point where the absolute value of the elastic shear
resultant exceeds a certain critical value and the mem-
brane begins to flow (Evans and Hochmuth, 1976). The
yield shear resultant, 7,, represents an upper bound for
elastic behavior and its value, at most, is approximately an
order of magnitude larger than the shear modulus: 7, ~
0.06 dyn/cm. Thus, for the experiments described in the
next paper (Hochmuth et al., 1982), the maximum value
for the dimensionless yield will be: T, = T,/T ~ 0.2 since
T ~ 0.3 dyn/cm. If the value of T, is significant, then there
would be a discontinuity in the tether radius at the origin
(Fig. 7; V, — 0) since yield is an absolute value function.
That is, if the tether velocity approaches zero through
positive values, then Eq. 4 (or Eq. 10) with the addition of
the yield term becomes

2R [T(1+T,)] = f°*, V,— 0. (18)

For a negative velocity, the limit is
27R [T(1-T )] =f°,V,—0". (19)
The simple elastic behavior described by Eq. 14
SN =1/(R/R)
permits Eqgs. 18 and 19 to be combined:
R™ /R = [(1-T )/ +T 1" (20)

If the value for Ty is as large as 0.2, then there would be a
20% difference in the tether radius at the origin. However,
the experimental results given in the next paper (Hoch-
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muth et al., 1982; Figs. 7 and 9) indicate that the radius is
continuous at the origin.

Even if the value for Ty is significant, the calculation of
a value for the viscosity of the membrane still follows
directly from Eq. 17 as long as the velocity of the tether is
limited, say, to only positive values. Intuitively, this is so
because in any steady-flow situation the membrane has
yielded at every point on its surface. In fact, under a static
condition where the elastic tether is in equilibrium with the
membrane of the cell body, flow is incipient and the
membrane is just on the verge of yielding. A finite yield
simply adds a constant force component to the isotropic
component and their sum is exactly balanced by the elastic
force in the tether. An additional increase in tether force,
with a concomitant decrease in tether radius, produces a
flow in the cell body. Since the viscosity is calculated from
derivatives of functions, an additive constant such as yield
simply drops out of the equation.

To demonstrate mathematically that yield is not an
important factor in the calculation of membrane viscosity,
a yield term can be included in an approximate analysis
similar to that given by Eqs. 7-12. Thus, Eq. 9 becomes

_ VR
T.=T+T,+ "rz‘ )

V>0, (21

where T, is the yield shear resultant. Eq. 10 remains
unchanged while Eq. 11 becomes

_ S W
YT+ T, TU+T)’

V>0, (22)

where 7, = T,/T. Note that Eq. 22 reduces to Eq. 18 for
V, — 0*. Subsequent differentiation of Eq. 22, after
incorporation of the correction term C, leads to the relation
given by Eq. 17 since the term (1+7’y) appears as a
homogeneous term on both sides of the equation; i.e., it
cancels out.

DISCUSSION

The analysis of membrane flow given in the previous
section and Appendix C neglects viscous dissipation in the
surrounding fluid relative to the dissipation in the mem-
brane as membrane material flows from cell body to tether.
An integration over the membrane surface area of the local
rate of dissipation shows that the overall rate of dissipation
in the membrane, Wm, is given by

Wm~nK2

where 7 is the membrane surface viscosity and V, is the
maximum (tether) velocity. (For flow of a membrane disk,
the constant of proportionality is 4). For the bulk fluid, an
integration over the volume shows that

W~7Ir Va2R

where W is the rate of dissipation in the bulk phase, 7 is the

78

bulk fluid viscosity and R is the characteristic distance,
perpendicular to the membrane surface, over which signifi-
cant volumetric dissipation occurs. Thus, the relative rate
of dissipation is

W aR

w,  n
A maximum value for R would be on the order of the cell
radius, R = 3 um, and a maximum value for 7 would be

the value for hemoglobin viscosity, n; = 0.1 dyn-s/cm?® As
we will show, 7 ~ 3 x 107> dyn.s/cm. Thus, at worst,

W 107'x3x10°* 10-2
W,  3x10°
and the dissipation in the external bulk phase can be
neglected since dissipation in the membrane is at least 100
times greater.

In addition, the analysis presented here also assumes
that the viscous drag on the tether is negligible compared
with the tether force f and, thus, the force (and radius)
along the tether is constant. For a filament or tether drawn
concentrically through a surrounding cylinder of radius R,
the drag f;, on the tether is given by

Jo = —m V. L/In(R/R),

where 7, is the viscosity of the surrounding fluid and V;, L,,
R, are tether velocity, length, and radius. In general,
In(R/R,) ~ 10 and for ¥, = 1 um/s, L, = 50 um and »; =
0.01 dyn.s/cm?,

10°2.107*.50.10"*

-10
o S x 107"° dyn,

fo~

which is 2,000 times smaller than the tether force f.
Therefore, viscous drag on the tether can be neglected in
the analysis.

In the analysis it is assumed that the membrane is very
thin in comparison to the tether radius. Clearly this is only
an approximation since the tether radius is ~200 A or less
and the membrane thickness is ~50 A. Also, it is likely that
a great deal of “slip” occurs between the inner and outer
layer components of the membrane as the nearly planar
membrane is pulled into a small cylinder with a radius
<200 A. In essence, the process of tether formation causes
the inner layer to be compressed and extended from the
tether into the cell body. In addition the proteinaceous
inner surface of the membrane (e.g., spectrin) will also be
highly deformed and compressed as it is pulled into the
tether. In fact, this compressive process may be responsible
for the highly viscous flow of the membrane ( ~ 3 x 10~*
dyn-s/cm) as well as the highly elastic behavior of the
tether (Hochmuth et al., 1982). Future analyses should
attempt to account for these various subprocesses as they
occur within the overall deformation process analyzed
here.
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APPENDIX A

Analysis of Static Deformation

In the analysis to follow, various scaled parameters and variables are
introduced. In general a bar (=) denotes a scaling with respect to the
pipette radius R, (with the exception of the isotropic tension T) and a
tilda (~) denotes a scaling with respect to the cell radius R.. For
example,

- r ~ r
r=— r=—
R, X

= _R R R

"R PR,
- f -~ S
So=r5——3 N~I=—T 3’

(AP), xR, (AP), 7R,

where AP, = P, — P, (Fig. 1). Conversion from one scale to the other is
accomplished by multiplying or dividing by an appropriate ratio; i.e.

i R 2 — f.. Conversion between the dimensionless wall force, f w and
the absolute force, f, is given in footnote 1:
fR-1
f w55 7 (Al)
Rc Rc - f

where f = f/(AP)xR,? and AP = P, — P, (Fig. 1).

The deformed cell shown in Figs. 1 and 3 consists of three different
geometric parts: (a) a cylindrical membrane with hemispherical cap, (5)
a deformed but nearly spherical cell body acted on by a tether force fand
a wall pressure drop AP, = P; — P,, and (c) a cylindrical tether.
Deformation and displacement caused by an increase in the tether force f
(with respect to AP,) or an increase in the tether length will occur at
constant membrane surface area and constant internal volume. The
geometry of the tether and the aspirated portion of the membrane is fixed,
as is the radius of the tether (Eq. 4: R, = f,,). At zero tether velocity, the
geometry of the membrane that encloses the cell body (Fig. 2) is specified
by the equation of membrane equilibrium at constant isotropic tension
(Eq. 3). However, the numerical solution for the shape of the cell body is
greatly simplified when it is recognized that the spatial variable r can be
expressed explicity in terms of a single independent variable, the arc-
length s. Thus, all calculations for the axial distance, area, and volume are
reduced to simple integration with, say, Simpson’s rule.

The explicit relation between r and s is obtained by integration of

d
& —cos 6

ds
1 —F2\I12
1 —fwz)
If necessary, Eq. A2 is readily solved for 7(3).

_ Thearclength from the maximum cell radius (7 = 1) to the tether (7 =

fuis:

with Eq. 3 being used to eliminate cos 6:

o
I

+ f.)sin™! ( (A2)

5=(1+ 1) (x/2).

In like manner, the arc length to the pipette (7 = kp) can be obtained with
Eq. A2.

In general, the following differential relations permit the calculation of
local and overall (pipette-to-tether) axial distance z, area 4 and volume
V:

dz =sinfds (A3)

dA = 2xrds (A4)

dV = xr’dz = xr’sin 8 ds (AS)
where sin 6 is obtained from Eq. 3 and r(s) is given by the inversion of Eq.
A2.

For the situation shown in Fig. 3, the solution proceeds as follows:

(a) Pick an overall distance from the pipette to the point of attachment
of the tether. In this case (Fig. 3) this distance is 15 times the pipette
radius.

(b) Establish the overall surface area and volume for f w=0.

(¢) Pick a finite f . and a particular cell radius R.. Obtain the overall
cell-body length (Eq. A3) and the tether length (subtract the cell body
length from [a], above).

(d) Calculate the volume of the cell body (Eq. AS) and the tether
(since the tether radius is known: R f ) and then fix the extension of
the membrane into the pipette so that the volume equals the fixed value
given in (b) above.

(e) Finally, calculate the surface area of the cell body (Eq. A4), the
tether, and the extension into the pipette (since the distance into the
pipette is now given in [d] above) and sum these three values to obtain a
value for the total surface area.

(/) If the surface area calculated in (e) does not agree with that given
in (b), return to (c) with a new guess for the cell radius R.and repeat the
calculation until convergence to the correct surface area is obtained.

APPENDIX B

Measurement of the Radius of a Tether
Extracted from a Spherical Cell Body
For small tether forces, the cell body will be spherically shaped as shown

by Eq. 3 and Fig. 3 4 and B. In this case, the total surface area of the cell
membrane and the volume enclosed by the membrane are

A= 27R,L, + 47R? — wR} + 2wR L,  (B1)
— — —
pipette cell body tether
— pr——— ——
V=1 11'1'\",3 + 1rR,,2 L,+ % 7R} +aRZL.. (B2)

R and L denote radius and length and the subscripts p, c, and t denote
pipette, cell, and tether. The derivatives with respect to L, of Egs. B1 and
B2 at constant area and volume give

2R, 3L ® + 8wR, R 2mR -0
PdL, dL, ' (B3)
1er2 ji 47R? ZZ wR>=0. (B4)
The elimination of dR./dL, between Egs. B3 and B4 gives
Rl=(l—%)-R,,(—j—i’:), (B5)

which is Eq. 6 in the text. In like manner, an expression for the change in
cell radius with tether length can be obtained:

dR. 1 (R, R,/R.
d, 4\RJ\1 - R,/R.)’
where the approximation 1 — R,/R, = 1 has been made. Eq. B6 shows

that the change in cell radius with cell length is negligible. For example,
typical values for the geometric ratios in Eq. B6 give

(B6)

drR, 1002 %
dL, "4 3 1- %
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Thus an increase in tether length of 50 um results in an increase in cell
radius of only ~0.05 pm.

It is interesting to compare an actual calculation obtained from the
analysis of static deformation (Appendix A) to the slope predicted by Eq.
BS. Thus, when Eq. BS is rearranged together with the relations given by
Eq. 4 (Rf = f,) and footnote 1, the following expression is obtained:

——"=][_ - (B7)

When f= 0.15 and R, = 4, Eq. B6 predicts

dL,
— =2 _0.156.
dL,

A numerical integration similar to the one discussed in Appendix A
gives

dL,
— —®_0.148,
dL,

which indicates only a negligible error (~5%) when Eq. BS, based on a
spherical cell body, is used to calculate tether radius.

APPENDIX C

Analysis of Continuous Axisymmetric Flow

When V, = 0 (¥, = tether velocity), the equation of membrane equilib-
rium along the meridian indicates that 7 — constant. When membrane
flow occurs from cell body to tether, the equations of membrane
equilibrium are still applicable although the flow itself causes a deviation
from the isotropic state. Thus, the axial force balance (see Eq. 1 and Fig.
3) and the equation of membrane equilibrium along the meridian
(Flugge, 1973; Evans and Hochmuth, 1976) are

T,.-2xrsin 0 = (AP), «r’ + f (C1)

dT, d
rE  (To = T,) — =0, (C2)

ds ds

where T, is the principal force resultant (force per unit length) in the
meridional direction and 7, is the resultant in the circumferential
direction. It is interesting to note that the derivative of Eq. C1 with respect
to r, when combined with Eq. C2, readily yields the law of Laplace,

T, T,
— + — = (AP),
R "R, (aP)

with R, = sin 0/r, R,, = ds/df and cos 6(dr/ds) = 1 (see Fig. 3). Thus,
Egs. C1 and C2 implicitly contain the law of Laplace.

Newton’s law of viscosity expressed in terms of the shear resultant,
(T —T,)/2,is

Tw— T, 2%

2 ds €3

where v, is the velocity along the meridian s and 7 is the coefficient of
surface viscosity. The equation of continuity (conservation of mass) is

v,
= (C4)

r

since 2wry, = constant.
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The combination of Eqs. C2-C4 along with the differential geometric
relation,

d
& — cos 6,

i (C5)

immediately yields

dT,, RV
—_ 4y

ds (€6)

——cos? 4.

If the geometry of the surface is specified (e.g., a flat surface with § = 0
and ds = —dr), then this equation is readily integrated.

The division of both sides of Eq. C1 by 2=xr and differentiation of the
result with respect to r yields

dé d
T,,,cosOd—+sin0£=(A_P)_“’_L'
r

dr 2 27r? (€N

The substitutions of dr from Eq. C5,dT,,/ds from Eq. C6 and T, from
Eq. C1 yield, after some rearrangment,

_d§_ 8aRV, sin” 6 cos 0
ds RZ(AP), P+ fu/P
(1 = f,/F) sin b
*+fu/P)

where 7 = 7/R., 5 = 5/Ro, fw = f/(AP), wR2 and AP, = P, — P, The first
term in Eq. C8 represents the effect of flow on the shape of the membrane
while the second term represents the static shape (¥, — 0, see Eq. 1).

The results from the simple disk-flow analysis (Eq. 11) leads to a
natural “scale” for the coefficient which multiplies the first term in Eq.
C8. To this end, Eq. 11 is scaled with respect to the tether radius at zero
velocity; i.e., R, — R%and f— f° = 2x TR as V,— O:

(C8)

Rt =f - Vl (C9)
where R, = R/R®, f = f/f®and ¥, = 2qV,/RC T. Just as the bar (-)
denotes scaling with respect to the pipette radius R, and the tilda (~)
denotes scaling with respect to the cell radius R,, the circumflex (-)
denotes scaling with respect to the tether radius at zero velocity, R,. For
various fixed values of £, Eq. C9 represents a series of parallel lines with
—45° slopes. However, only a single point on any partlcular line
represents the experimental situation (e.g., R=1at f =1land ¥, =0).

When scaled with respect to R’, the first-term coefficient in Eq. C8
becomes

8nRV, 4RV,
R2(AP), TR?

= Z(kto)zkti/t = (klO)ZQl

where R = R®/R. and Q. = 2RV . The dimensionless force term in Eq.
C8, f . can also be rescaled with respect to R":
f w = Rlof

where f/ = f/2xRCT. Thus, Eq. C8 is rewritten as

PN A in2 _~o~-2.0
_d0_(RIPQisincosd (1 ROF/Msing
ds FFE+ RSP F+ R f [F
Also,
d—f= —cos 6. (C11)
ds

In order to accomplish the simultaneous integration of Eqgs. C10 and
C11, an initial value is assigned to R’ (R = R’/R, = 0.01, 0.005, etc.).
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However, the result will be essentially independent of the particular value
for i?,° as long as R? is small since in this case the only characteristic
dimension in the problem is the tether radius (Eq. 11). With a fixed value
for R® and a fixed value for f (eg., 0.5, 1, 1.5), a particular value is
assigned to 0, and a forth-order Runga-Kutta algorithm is used to
simultaneously integrate Eqs. C10 and C11 between the limits 6 = 7/2,
F=1land@ ==/2,7 = R, - R./R.. That is, the membrane material turns
the corner and forms a tether when § — /2 for the second time. Once the
value for R, is established at 6 = #/2, the values for V, and R, are
calculated:

. R .0
R, = —, V, = = .
‘RS ‘2R,

In this way, graphs of R, vs. ¥, at constant f can be created from the
integration of Eqs. C10 and C11. The results of this procedure are shown
in Fig. 7 in the text. Note that the actual slope of the plot of R, vs. V , is
somewhat shallower than the —45° slope predicted by Eq. C9. At the
origin the curve has a slope of —1/1.6. Thus, Eq. C9 is modified
accordingly

R-f-Vy/C (C12)
where C = 1.6. This equation appears in the text as Eq. 13. In dimensional
form Eq. C12 is written as

- —. (C13)
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