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ABSTRACT Lateral diffusion of molecules in lipid bilayer membranes can be hindered by the presence of impermeable
domains of gel-phase lipid or of proteins. Effective-medium theory and percolation theory are used to evaluate the
effective lateral diffusion constant as a function of the area fraction of fluid-phase lipid and the permeability of the
obstructions to the diffusing species. Applications include the estimation of the minimum fraction of fluid lipid needed
for bacterial growth, and the enhancement of diffusion-controlled reactions by the channeling effect of solid patches of
lipid.

INTRODUCTION

Since the classic paper of Singer and Nicolson (1972) on
the fluid mosaic model of the lipid bilayer, the membrane
has been pictured as a "lipid sea" in which "protein
icebergs" are free to diffuse, unless bound to cytoskeletal
elements or cross-linked into large patches. But if the
membrane contains proteins or domains of gel-phase lipid,
diffusion will be obstructed, and the effective diffusion
constant will be reduced. In this case, lateral motion of
membrane components will resemble the motion of an
iceberg in an archipelago. In this paper, we present a
theory of the effect of impermeable domains on the lateral
diffusion constant, and discuss their effect on the rate of
diffusion-controlled reactions. (For examples of such reac-
tions in cells, see Kahn et al., 1978, and Rimon et al.,
1978.)

Several authors have discussed this effect qualitatively.
In their study of the rate of intermixing of surface antigens
on fused cells, Petit and Edidin (1974) suggested that
"islands of solid lipid" can "canalize" diffusion, causing
more rapid intermixing. Galla, Sackmann, and co-workers
obtained lateral diffusion rates from the rate of formation
of pyrene excimers. They found that the pyrene aggregates
as the lipids solidify (Galla and Sackmann, 1974), and
estimated the size of the solid domains (Sackmann et al.,
1977). They suggested that lateral motion is enhanced in
the channels between solid protein-lipid domains (Galla et
al., 1979), but that long-distance diffusion may be hin-
dered (Kapitza and Sackmann, 1980). The only quantita-
tive treatment of this effect is a recent paper by Owicki and
McConnell (1980), who evaluated the direction-dependent
diffusion constants for alternating stripes of fluid and solid
lipid, and found the appropriate average diffusion constant
for measurements of diffusion in multilamellar systems by
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fluorescence photobleaching recovery. The recent work of
Freire and Snyder (1980) is discussed in the theory
section.
We consider a random arrangement of solid domains of

lipid or protein in a fluid membrane. We assume two-
dimensional steady-state diffusion in a finite system. (The
conceptual problems with two-dimensional steady-state
diffusion are discussed in the appendix.) The diffusion
equation then reduces to the Laplace equation, and the
problem is equivalent to the evaluation of the electrical
conductivity, the dielectric constant, the magnetic perme-
ability, or the thermal conductivity of a composite medium.
In the limit as the solid phase becomes impermeable to
diffusing molecules, the problem can be treated by percola-
tion theory. As we shall see, both approaches are needed
for a complete description.
As will be discussed in more detail later, we assume that

the domains are not elongated or branching. (See Hui,
1981 for direct observations of domain geometry by elec-
tron microscopy.)
We assume a static system: The lifetime of the imperme-

able domains is assumed to be long compared with the
characteristic time for lateral diffusion. (See Lagues,
1979a, b.)

For simplicity, we neglect specific interactions between
the diffusing species and the impermeable domains. The
partition coefficient is assumed to be either zero (corre-
sponding to complete exclusion of the diffusing species
from the impermeable domains) or unity (corresponding to
equal concentrations of the diffusing species in the two
phases).

Lateral phase separation into solidlike and- fluidlike
regions has been measured by ESR (Shimshick et al.,
1973; Shimshick and McConnell, 1973) and by calorime-
try (see, for example, Taylor et al., 1973; van Dijck et al.,
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1977). Our treatment of diffusion in a composite two-
dimensional medium will account for the reduction in
diffusion rates due to the presence of impermeable patches
of lipid, but lateral phase separation may have another
important effect: increasing the lateral compressibility of
the membrane, thus facilitating lateral diffusion (Shim-
shick et al., 1973; Shimshick and McConnell, 1973; Linden
et al., 1973. For theoretical treatments of the effect of
lateral phase separation on permeability, see Doniach,
1978; Nagle and Scott, 1978; Marcelja and Wolfe, 1979).
Note that the three-dimensional analogues of the theo-

ries presented here could be used to describe diffusion in
porous polymers, and diffusion of cytoplasmic components
in a network of impermeable cytoskeletal elements. (For
experimental results, see Keith et al., 1977, 1979.)

First, we shall discuss effective-medium theory, and
then percolation theory. Both theories are needed in order
to describe diffusion in membranes. As shown by Pike et al.
(1974) and Webman et al. (1975) in their treatments of
electrical conductivities of composite media, which theory
is applicable to a particular system depends on the area
fraction of conducting material and the ratio of the
conductivities of the two materials. After we present the
two theories, we shall discuss how they are to be combined.
In the last section, we shall summarize the theoretical
results and consider the biological applications.

THEORY

Because most of the references in the section treat the electrical conduc-
tivity of composite media, it is often convenient to refer to regions of high
and low conductivity, instead of regions of high and low diffusivity, or
fluid and solid domains of lipid.

Effective-medium Theory
Effective-medium theories have long been used to evaluate the electrical
conductivity of composite materials. These theories have been reviewed
by Landauer (1978). (See also Milton, 1980.)

Rayleigh, and later Runge, used a multipole expansion to obtain the
conductivity a, of an infinite square array of perfectly conducting
cylinders in a matrix of conductivity ao (Keller and Sachs, 1964). From
this result and a theorem of Keller (1963), the conductivity of an array of
perfectly insulating cylinders in a matrix of conductivity ao is

*ac
all! =
181

1 - (1 - x) - 0.30584(1 _ X)4 - 0.013363(1 - x)8
_ {~~~~~~~~~~~~~~1)I + (I - x) -0.30584(l _-X)4-_0.013363(l1-x)8

where x is the area fraction of matrix. Note that this expression could be
used to estimate the diffusion constant of a lipid in a regular array of
proteins such as that found in Halobacterium halobium or in patches of
acetylcholine receptors (Jackson and Sturtevant, 1978).
The treatments of Rayleigh and Runge assume that the nonconducting

particles are circular, but the results are insensitive to the detailed shape
of the particles. Bell and Crank (1974) showed that the diffusion constant
in a regular array of impermeable squares is very close to that of a similar
array of disks of equal area. The shape is important only if the
nonconducting particles are elongated or branching. If, for example, the
domains were arranged in alternating stripes of solid and fluid, the

treatment would have to take into account that geometry (Owicki and
McConnell, 1980; see also Crank, 1975, and references cited there).

For our purposes, the most useful form of the effective-medium theory
is that of Bruggeman (1935) and of Landauer (1952, 1978), who showed
that for a two-dimensional random distribution of disks of conductivity Ol,
in a medium of conductivity of 0a,

(2)

where x is the area fraction of component 0 and r = a,/a0. This expression
treats the two materials symmetrically. If component 1 is nonconducting,
r = 0, and the conductivity of the composite is

2x - 1 (x > '/2)
c(C

(0 (X< '/2)
(3)

To derive Eq. 2, one finds the exact local field around an element
embedded in an effective medium, and requires that the deviations of the
local field from the effective value cancel out, on the average. This
self-consistency requirement determines the conductivity of the effective
medium (Granqvist and Hunderi, 1978; Kirkpatrick, 1971).

Percolation Theory
If the diffusion rate through the obstructions is negligible compared with
the rate through the matrix, the diffusion constant can be obtained from
percolation theory. (For reviews of percolation theory, see Shante and
Kirkpatrick, 1971; Kirkpatrick, 1973; de Gennes, 1976; Zallen, 1978;
Stauffer, 1979; and Essam, 1980.)

There are two types of percolation problems: lattice and continuous
percolation. Lattice percolation is well illustrated by the experiments of
Watson and Leath (1974). They measured the electrical conductivity of a
wire mesh as a function of the fraction 1 - x of sites removed at random.
The conductivity decreased and went to zero at a critical value xc = 0.587.
They treated the site problem, in which the nodes are cut out; one could
also treat the bond problem, in which the cuts are made between nodes.
Continuous percolation can be visualized in terms of raindrops falling on
an initially dry square of pavement; after a certain time, a continuous wet
path will be formed across the pavement (Swann, 1914, quoted in Morris
and Coutts, 1977). The key result in both lattice and continuous
percolation is the existence of a threshold. At a certain critical fraction of
conducting sites, or critical area fraction of conducting material, long-
range paths will be formed, and the conductivity of a macroscopic sample
will increase markedly. In other words, there is a transition between a
low-conductivity state, dominated by the conductivity of the insulating
component, and a high-conductivity state, dominated by the conductivity
of the conducting component (Pike et al., 1974).

For our purposes, the most important result of percolation theory is the
critical area fraction, xc, because it is not accurately predicted by
effective-medium theories (Pike and Seager, 1974). (Note that we use xc
and "critical area fraction" to refer to the critical fraction of sites in
lattice problems, and the critical area fraction in the continuous prob-
lem.)
The critical area fraction depends on the dimensionality of the system:

As the dimensionality increases, more paths become available, and the
fraction of conducting sites needed for conduction decreases. For a given
dimensionality, the critical fraction of conducting sites decreases as the
connectivity of the lattice increases. Furthermore, for a given lattice, the
critical fraction of conducting sites decreases as the range of the
interaction increases. (See Dalton et al., 1964; Kirkpatrick, 1976.)
These results for lattices give a qualitative understanding of the critical

area fraction, but the results for a continuum are needed to describe
lateral diffusion in membranes. For randomly distributed overlapping
disks, values of xc have been obtained by Monte Carlo calculations
(Roberts, 1967; Pike and Seager, 1974; Ottavi and Gayda, 1974; Fremlin,
1976), by series expansion (Haan and Zwanzig, 1977), and by extrapola-
tion of the results of Dalton et al. ( 1964) to infinite coordination number
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(Shante and Kirkpatrick, 1971; Domb, 1972). The results are in reason-
able agreement: xc = 0.641 to 0.683, with an average value of 0.668 +
0.016. (We exclude the value of Roberts, 1967; see Pike and Seager,
1974.) We shall adopt the value

xc= 0.668. (4)

Experimental results are available from measurements of the conductiv-
ity of thin films of sputtered metal as a function of the amount of metal
deposited. Liang et al., (1976) obtained a value of 0.67 with a bismuth
film, and Murti (1979) found a value of 0.60 for an indium film. One
limitation of these experiments is that the sputtered film may be in fact
three-dimensional instead of two-dimensional, giving a lower value of xc
than would be obtained in a strictly two-dimensional system. One must
therefore interpret the observed x, as a lower bound on the two-
dimensional xc; our value is thus consistent with the experimental values.

For diffusion on a cell surface, the critical area fraction ought to be
slightly lower than this, because the surface is closed, creating some paths
for diffusion not present in a planar system.
As in the effective-medium theories, the results of continuum percola-

tion theory are insensitive to the shape of the conducting particles, unless
the particles are elongated or dendritic (Pike and Seager, 1974). The
average critical area fraction for uniform squares (Pike and Seager, 1974;
Haan and Zwanzig, 1977) is 0.667, in excellent agreement with our
average value 0.668 for uniform circles. Skal and Shklovskii (1974) found
that the three-dimensional critical volume fraction was insensitive to
shape for a wide variety of shapes.

Percolation theory (See the review of Kirkpatrick, 1973.) predicts that
the conductivity within a region Ax around x, has a power law
dependence:

fo(X X)- U
a,o(xr - x)

(x > XC)
(x < xC)

Aro froation of cnductng phase

FIGURE 1 The normalized conductivity of the composite medium, u< =

ajuf, as a function of the area fraction of the conducting phase. The solid
curves are from the Bruggeman-Landauer equation (2) for the indicated
value of r = a,/af. The dotted line shows the power law (Eq. 5), and the
heavy line represents Eq. 7.

(5)

Comparison of various determinations of the critical exponents and the
width Ax of the critical region gives the following values (Watson and
Leath, 1974; Liang et al., 1976; Levenshtein, 1977; Straley, 1977;
Webman et al., 1977; Yuge and Onizuka, 1978):

Ax=0.1, s=0.2, t= 1.2 ± 0.1, u= 1.1. (6)

The exponents are expected to depend principally on dimensionality; they
are insensitive to the details of the lattice. The exponent t shows this
clearly. The range of values quoted includes results from the bond
problem on the square lattice, the site problem on the square lattice, and
the continuous case as measured by sputtering experiments with a thin
film of bismuth.

Relation of the Theories
How do the effective-medium theory and the percolation theory fit
together? The connection between the two theories has not been analyzed
for two-dimensional continuous percolation, but we shall summarize the
results for cubic and square lattices (Kirkpatrick, 1971, 1973; Pike et al.,
1974; Webman et al., 1975).
The effective-medium theory is a good approximation unless the ratio

of the conductivities of solid and fluid, r = a/of, approaches zero.
According to Pike et al. (1974), for the cubic lattice, the effective-medium
theory holds when r > 10-5, but Kirkpatrick (1971) showed that for the
square lattice, the effective-medium result is inaccurate near x = xc for
r = 10-. We expect the Bruggeman-Landauer equation to hold for, say,
r 10-3 . This equation is thus appropriate for diffusion in typical
mixtures of solid and fluid lipids, as will be discussed later.
When r approaches zero, the situation becomes more complicated. The

effective-medium theory is still a good approximation far from xc, but in
the neighborhood of xc, the power-law expression (Eq. 5) from percolation
theory is appropriate. The value of xc predicted by the effective-medium

theory, x, = 0.5, is incorrect. This is a general property of effective-
medium theories: neglect of correlations leads to inaccurate predictions of
XC (Pike et al., 1974).'
We construct a function interpolating between the two limits by

assuming a cubic polynomial in x, and choosing the coefficients so that
the polynomial and its derivative match the Bruggeman-Landauer equa-
tion (2) at x = 1, and the power-law expression (Eq. 5) at x = xc + Ax =

0.768. The resulting curve, d,(x) = 66.118311 - 231.07059 x +
264.78625 x2 _ 98.833971 x3, (Eq. 7) is shown in Fig. 1. This curve is
somewhat arbitrary, because the width of the critical region, Ax = 0.1
(Watson and Leath, 1974; Levenshtein, 1977), is not accurately known,
and it is necessary to assume a functional form. But we expect the curve to
be semi-quantitatively correct.

This case is important in biological systems, because an immobilized
membrane protein is impenetrable to a diffusing molecule, giving the
limit r = 0.

Freire and Snyder (1980) analyzed their Monte Carlo calculations on
lipid bilayers in terms of percolation theory, though their treatment
differs from ours in two important respects. First, they assume lattice
percolation instead of continuum percolation. Second, they consider
percolating channels of molecular dimensions; we assume channels wide
enough that macroscopic lateral diffusion can occur in them.

BIOLOGICAL SIGNIFICANCE

The Theory section shows that the diffusion constant in a
fluid membrane with solid domains depends on two param-
eters, the area fraction x of fluid lipid, and the relative

'Note that the theory of Owicki and McConnell (1980) shows no
percolation threshold, because for x > 0, some fluid stripes are always
aligned along the direction of diffusion.
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permeability2-of the solid domains to the diffusing species,
r = DS/Df. Here D, is the diffusion constant in the solid
phase, and Df is the diffusion constant in the fluid phase.
The theory makes two key predictions for the effective

diffusion constant, summarized in Fig. 2:
(a) Semipermeable domains. If r > 10-3, the

diffusion constant is given by the Bruggeman-Landauer
equation (2).

(b) Impermeable domains. If r < 10-3, there is
a percolation threshold at a critical area fraction xc =

0.668.-Below xc, D is essentially zero; above xc, it is
approximated by the curve (Eq. 7) shown in Fig. 2 for
r = 0.

Thus, the Bruggeman-Landauer equation is applicable
to coexisting mixtures of fluid and solid lipid. Owicki and
McConnell (1980) use a value of r = 0.01 for DMPC-
cholesterol mixtures. Data of Kapitza and Sackmann
(1980) give r = 0.6 for discoid erythrocyte ghosts. For
large multilamellar vesicles of DMPC, DPPC, and DSPC,
and mixtures of DMPC with DPPC and DSPC, r is
between 0.1 and 0.25, from the microviscosity measure-
ments of Lentz et al. (1976a, b). These values of r are well
within the range of applicability of the effective-medium
theory.

If the obstructions are immobilized proteins, they are
likely to be impenetrable to a laterally diffusing molecule,
and we have the second case, for which Eq. 7 applies.

It is important to remember that the observed diffusion
rate in a composite medium depends on the distance over
which diffusion is measured. Over short distances, a diffus-
ing particle is unlikely to encounter an obstruction, and the
diffusion constant is simply that of the fluid phase. Over
long distances, the particle must take a tortuous path
through the obstructions, and the diffusion constant is that
of the composite.
To obtain an idea of the dimensions involved, we

consider a membrane at the percolation threshold, with
33.2% of its lipid in the gel phase. If the radius of the solid
domains is 10 nm (Sackmann et al., 1977), then there are
103 domains/Aum', at an average separation of 30 nm, and
the average channel width is 10 nm. If the area per lipid is
0.5 nm2, the radius of the lipid is -0.7 nm, and the channel
is -14 lipid molecules wide. If the radius of the solid
domains is larger, as observed for various synthetic lipids
and lipid mixtures (Hui and Parsons, 1975; Hui, 1981), the
channel widths will be greater.
As stated earlier, we have assumed static percolation:

the lifetime of the solid domains is long compared with the
characteristic time for lateral diffusion. If the domains are
transient, the values of the critical exponents may differ
from those used here. Lagues (1979a, b) treated the
three-dimensional case. This theory, adapted to two dimen-

2Recall that we have assumed that the partition coefficient of the
diffusing species is zero or unity. In general, if the partition coefficient of
the diffusing species A is KA = [AJ,o1/[AJnu then r = KADS/D,.

o 0.4/

0 Dc/-Df 0.2 / /0.2 " - L

0.0 0.2 0.4 0.6 0.8 1.0

Area fraction of fluid lipid

FIGURE 2 The normalized diffusion constant D* as a function of the
area fraction x of the fluid phase for various values of r = Dl/Df, redrawn
from Fig. 1 (in terms of diffusion coefficients rather than conductivities).
The growth limits for E. coli are from Jackson and Cronan (1978).

sions, would be appropriate to describe the effect on lateral
diffusion of the transient solidlike clusters found in the
fluid phase near the transition temperature (Lee et al.,
1974; Lee, 1977; Freire and Biltonen, 1978. See also
Ubbelohde, 1978, and references cited there.)

Experimental Tests

An experimental test of the theory is possible using existing
techniques, inasmuch as x, r, and D can be measured. The
fraction x of fluid-phase lipid can be obtained from the
phase diagram, or directly by electron microscopy (Hui,
1981), or from the partitioning of parinaric acid (Sklar et
al., 1975, 1977a, 1977b, 1979; Tecoma et al., 1977), or
2',2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) (Shim-
shick et al., 1973; Shimshick and McConnell, 1973).
Diffusion constants can be measured using fluorescence
photobleaching recovery (Schlessinger et al., 1977; Wu et
al., 1977, 1978; Smith and McConnell, 1978, for example)
or the rate of excimer formation (Galla and Sackmann,
1974; Sackmann et al. 1977; Galla et al., 1979; Morgan et
al., 1980). If the diffusion constants in solid and fluid
phases are measured as a function of temperature, they can
be extrapolated to give the values for both phases in the
region of coexistence, so that the ratio r is known as a
function of temperature.

Schindler et al. (1980) used fluorescence photobleach-
ing recovery to measure the diffusion constants of a
lipopolysaccharide and a lipid analog as a function of the
concentration of Escherichia coli matrix protein in recon-
stituted multibilayers. (For a discussion of the interpreta-
tion of these results, see Jahnig, 1981, and Koppel et al.,
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1981.) A plot3 of the diffusion constants for lipopolysac-
charide as a function of the area fraction of fluid shows two
main features. First, their curve agrees with Eq. 7 for x >
0.9. Second, they find no percolation threshold in the
measured range x = 0.4 to 1.0.
The absence of a percolation threshold is due to the fact

that in E. coli, the matrix protein forms a periodic struc-
ture stabilized by strong protein-protein interactions
(Steven et al., 1977). These interactions lead to aggrega-
tion of the proteins, lowering the value of the percolation
threshold from that obtained for a random distribution of
impermeable domains. If the distribution of the matrix
protein were characterized, or if the experiments were
repeated using weakly interacting membrane proteins, the
data would provide an excellent test of our theory.
We emphasize that our values of Dc* give the correction

to the usual diffusion constant Df for the effects of the
composite medium alone. To predict the actual diffusion
constant, other corrections may be necessary to allow for
the dependence of the diffusion constant on the size of the
diffusing species (Schindler et al., 1980; Saffman and
Delbruck, 1975), the shape of the diffusing species (Crank,
1975), the concentration of diffusing species, and binding
of the diffusing species by the immobile phase. It may be
necessary to correct for the presence of immobilized
boundary lipid and for the finite size of the diffusing
species by defining an effective area fraction of fluid.-

Minimum Requirement for Fluid Lipid
If long-range lateral diffusion is required for a cell to
function normally, then our theory predicts that a certain
minimum fraction of fluid lipid is also required. Percola-
tion theory gives one limit: for r = 0, the area fraction of
fluid lipid must be at least x, = 0.668 for long-range
diffusion to occur.

Even if the obstacles are permeable (r > 0), there is still
likely to be a minimum fraction of fluid lipid required.
Suppose that a fivefold reduction in the rate of some
diffusion-controlled reaction would be disruptive enough to
stop growth. Then the line D'* = 0.2 in Fig. 2 gives the
critical area fraction for growth for the different values of
r. If r = 0.03, for example, then the minimum area fraction
of fluid is 0.53. Jackson and Cronan (1978) found that E.
coli grows normally at x > 0.80, but growth stops at x =
0.45. Clearly we could fit their results using plausible
values of r and D,*, but these growth experiments are not
likely to be useful as a test of our theory.

Temperature Dependence of the Diffusion
Constant

In the percolation limit, the temperature dependence of D
below the percolation threshold will be approximately that

3We have assumed that the area fraction of lipid is equal to the mass
fraction of lipid.

of the solid, and the dependence above x, will be approxi-
mately that of the fluid (Pike et al., 1974). For lipid
mixtures undergoing lateral phase separations, the;abrupt
change in D will occur a-t the temperature corresponding to
the critical area fraction xc, as determined from the phase
diagram.

For systems described by the Bruggeman-Landauer
equation, D depends on temperature through both x and r.
The principal dependence is, of course, through x.

Channeling of Diffusing Molecules
As mentioned in the introduction, several authors have
suggested that the presence of solid regions of lipid will
enhance lateral diffusion rates by channeling or "canaliz-
ing" the diffusing species. Two cases must be considered:

(a) Pure diffusion (the unimolecular case), as in fluores-
cence photobleaching recovery, or the intermixing of sur-
face antigens on fused cells (Petit and Edidin, 1974).

(b) Bimolecular reactions, as in the formation of excim-
ers of pyrene probe molecules in membranes (Galla and
Sackmann, 1974), or the binding of two membrane constit-
uents.
Assume that the diffusing species is excluded from the

gel phase. Then, as the fraction x of fluid-phase lipid
decreases, the concentration of the diffusing species in the
fluid phase, C = C0/x, increases, but the diffusion constant
D,(x) decreases. The behavior of the rates depends on the
ratio of the distance lob, -over which diffusion is observed to
the- average width If of a fluid channel. (In a bimolecular
reaction, the distance over which diffusion is observed is
the average separation of the reacting species.) If diffusion
is observed over a short distance lobs<< lf, then D Do, as
discussed earlier, and the rate increases sharply as the
fraction of fluid decreases. For pure diffusion, the rate is

-X oc D(x) C(x)a Dolx,

and for the bimolecular reaction

2 (X D(x) C(x)2 a Do/x2.

(8)

(9)

Thus the effect of channeling is very pronounced over short
distances, especially in the bimolecular case. The effect is
diminished greatly when diffusion is observed over long
distances lob»>>If, when the obstructions can hinder diffu-
sion significantly. In this case,

W a D, (10)

and

XYa DC(x)/x2. (11)

Normalized rates for the unimolecular and bimolecular
cases are shown in Figs. 3 and 4. (The case iobs << lf
corresponds to r = 1, because the diffusing particle does
,not then encounter any obstacles.) Note that if the solid
phase is relatively impermeable, the channeling effect
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FIGURE 3 The effect of channeling on the diffusion rate.

enhances the rates only when most of the lipid has solidi-
fied. We conclude, then, that the channeling effect is
unlikely to be important for long-distance diffusion, but it
can be very important in short-distance diffusion.

Further Work

Further work in several areas would be useful: (a) Experi-
mental tests of our theory in lipid mixtures, and protein-
lipid mixtures, as discussed above; (b) detailed examina-
tion of the transition between effective-medium theory and
percolation theory for the two-dimensional continuous
case; (c) proof of the existence of the diffusion constant for
a diffusing particle in a two-dimensional membrane; (d)
extension of the work of Lagues (1979a, b) to describe
percolation in two-dimensional systems with transient solid
domains.

APPENDIX

Conceptual Questions about
Two-Dimensional Diffusion

Two objections may be raised against our treatment, concerning the
divergence of the two-dimensional diffusion constant, and the existence of
the steady state in two dimensions.
The diffusion constant can be expressed as the integral of the velocity

autocorrelation function

D = f (v(t) v(O)) dt. (Al)

0.6 0.8 1.0

Area fraction of fluid lipid

FIGURE 4 The effect of channeling on the bimolecular reaction rate.

As shown by Alder and Wainwright (1967, 1970) by molecular dynamics
calculations on hard disks and hard spheres, at long times,

t- in two dimensions
-3/2 in three dimensions

The integral for D therefore diverges in two dimensions, but converges in
three dimensions. Alder and Wainwright (1969, 1970) showed that the
divergence is due to a vortex flow pattern. (See Pusey, 1979 for later
references.)
We do not believe that this divergence invalidates our treatment. The

long-time tail, Eq. (A2), has been observed in molecular dynamics
calculations for hard disks and hard spheres (Alder and Wainwright,
1967), and for particles with a purely repulsive Lennard-Jones potential
(Levesque and Ashurst, 1974; Tresser et al., 1977). But the particles we
are considering have an attractive potential and internal degrees of
freedom. As Alder and Wainwright (1969) demonstrated, the average
energy per particle in the vortex motion is small compared to kT, so that a
small amount of cohesive energy can destroy the vortex structure.

Furthermore, the membrane is not in fact two-dimensional. From the
standpoint of diffusion, it can be treated as two-dimensional, on account
of the high activation energy needed to move an amphiphilic membrane
component into the aqueous phase. But from the standpoint of hydrody-
namics, the system is three-dimensional, with the bilayer coupled (at least
weakly) to the aqueous medium, by hydrogen bonding between lipid
headgroups and water, for example. (In their calculation of the diffusion
constant of a cylinder in a lipid bilayer, Saffman and Delbruck (1975)
assume a no-slip boundary condition, which provides for such coupling.)
We expect, then, that the diffusion constant is well defined.
The other problem is the existence of the steady state for an infinite

two-dimensional system (Emeis and Fehder, 1970; Razi Naqvi, 1974).
For steady-state diffusion to a sink of radius a, the concentration is

C(r) = CO Iln(r/a)Cr=C0ln(R/a)' (A3)

(A2)
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where R is the radius of the boundary. The flux at the boundary of the
sink is then

4irDC0a4-irDCoa ~~(A4)
ln(R/a)(

The flux depends on the size of the system, and ifwe take the limit R -X
we must take C0 to be infinite. As Emeis and Fehder (1970) point out,
two-dimensional diffusion does not provide enough reactant molecules to
sustain a steady-state concentration gradient. If C0 is finite and R is
infinite, the flux decreases monotonically with time. (An expression for
the time-dependent flux is given by Razi Naqvi [1974].)
We therefore take the system to be finite, with dimensions large

compared to the size of the obstructions and their separation.
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NOTE ADDED IN PROOF

Recent calculations for the two-dimensional continuum give more accu-
rate values of the critical exponents. (See E. T. Gawlinski and H. E.
Stanley, J. Phys. A. 1981. 14:L291-L299, and the references cited there.)
They found a percolation threshold of 0.676 ± 0.002, and a connectivity
length exponent v of 1.343 ± 0.019. According to the scaling law of
Levinshtein, Shur, and Efros (1975. Zh. Eksp. Teor. Fiz. 69:2203-2211;
[in English] 1976. Sov. Phys. JETP. 42:1120-1124), in two dimensions,
t = v.
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