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ABSTRACT A mathematical model is developed to elucidate the effects of biophysical transport processes (nutrient
diffusion, cell motility, and chemotaxis) along with biochemical reaction processes (cell growth and death, nutrient
uptake) upon steady-state bacterial population growth in a finite one-dimensional region. The particular situation
considered is that of growth limitation by a nutrient diffusing from an adjacent phase not accessible to the bacteria. It is
demonstrated that the cell motility and chemotaxis properties can have great influence on steady-state population size.
In fact, motility effects can be as significant as growth kinetic effects, in a manner analogous to diffusion- and
reaction-limited regimes in chemically reacting systems. In particular, the following conclusions can be drawn from our
analysis for bacterial populations growing at steady-state in a confined, unmixed region: (a) Random motility may lead
to decreased population density; (b) chemotaxis can allow increased population density if the chemotactic response is
large enough; (c) a species with superior motility properties can outgrow a species with superior growth kinetic
properties; (d) motility effects become greater as the size of the confined growth region increases; and (e) motility
effects are diminished by significant mass-transfer limitation of the nutrient from the adjacent source phase. The
relationships of these results for populations to previous conclusions for individual cells is discussed, and implications for

microbial competition are suggested.

INTRODUCTION

In studying the dynamics of microbial populations, investi-
gators have focused primarily on well-mixed, spatially
uniform systems. The chemostat has been the most widely
used experimental device for studies of growth and growth-
associated processes and of interactions between mixed
populations. Hence, the mathematical models used to
interpret and predict experimental results have been devel-
oped under the assumption of uniform spatial distribution
of chemical concentration and cell population density.
These models have led to great progress in the understand-
ing of cell growth, nutrient utilization, and product-
formation kinetics. This information regarding microbial
reaction kinetics has been usefully applied to many prob-
lems of biochemical and ecological importance.

The fact remains, however, that in numerous situations
of engineering interest the environment is not well-mixed,
so that spatial gradients in chemical concentration and cell
population density may exist. Such a condition may be
common in natural microbial environments, such as soil,
films, and bodies of water, and mammalian hosts. Impor-
tant contemporary problems that might fall into the cate-
gory of spatially distributed cell population systems are the
ecology of pathogenic bacteria in mammalian hosts, micro-
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bial degradation of oil spills, and microbial fouling of
marine surfaces.

Further, motility (i.e., self-propelled movement requir-
ing utilization of energy) is extremely common among
microbial species, and the phenomenon of chemotaxis is
widespread in motile species (1-3). Motility in its basic
form is random, roughly analagous to Brownian motion
(4). Chemotaxis is complex movement in which the net
direction of cell movement is biased by the concentration
gradient of some chemical substance (4). The substance is
an attractant (positive chemotaxis) if the net cell move-
ment is toward higher chemical concentration; it is a
repellent (negative chemotaxis) if the movement is toward
lower concentration. Attractants are commonly substances
favorable for cell growth, while repellents are often sub-
stances with some harmful effect (1-3, 5). For example,
oxygen is often an attractant for aerobic bacteria and a
repellent for anaerobic bacteria (2). To emphasize the
widespread occurrence of chemotactic responses by com-
mon bacterial species to a variety of important chemical
species, we have presented in Table I a list of some
responses compiled from literature sources.

We thus note that (a) many situations of biological
importance can allow nonuniform spatial distribution of
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TABLE 1

CLASSIFICATION OF SOME BACTERIAL

CHEMOTACTIC RESPONSES

Classes of Classes of
Genus
attractants repellents

Escherichia sugars pH extremes
amino acids aliphatic alcohols
0,

Pseudomonas sugars inorganic ions
amino acids pH extremes
nucleotides amino acids
vitamins
0,
ammonium ions

Bacillus sugars inorganic ions
amino acids pH extremes

. 0, metabolic poisons

Salmonella sugars aliphatic alcohols
amino acids
0,

Vibrio amino acids
0,

Spirillum sugars inorganic ions
amino acids pH extremes
0,

Rhodospirillum  nucleotides pH extremes
sulfhydryl compounds  poisons

Clostridium 0,

Bdellovibrio amino acids

Proteus sugars inorganic acids
amino acids pH extremes
0,

Erwinia sugars inorganic ions

pH extremes

Sarcina inorganic ions

pH extremes

Serratia sugars inorganic ions
amino acids pH extremes
0,

Bordetella o,

Pasteurella 0,

Marine bacteria  algal culture filtrates heavy metals

toxic hydrocarbons

The data of this summary was compiled from references 1-3.

cell population densities and chemical concentrations; and
(b) many common bacterial species are motile and chemo-
tactic to a variety of chemicals. The obvious question is
whether the motility properties of bacteria have a signifi-
cant effect on population growth and interactions in such
systems. This question has been the subject of speculation
in microbiological literature (1,3,6,7), and there are
limited experimental data indicating that motility proper-
ties may not only be an important factor in governing
population growth and interactions, but sometimes can be
the dominant factor. In a well-mixed environment, immo-
tile Acinetobacter will outgrow aerotactic (positively che-
motactic to oxygen) Pseudomonas when the two species
compete for oxygen; in a similar but unmixed environment
Pseudomonas dominates (8). An aerotactic parent strain
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of Pseudomonas and an immotile mutant grow to equal
population sizes in a well-mixed vessel, but in an unmixed
vessel the parent outgrows the mutant by a factor of 10-30
within 24 h (9). Similary, an aerotactic strain of Salmon-
ella multiplied over a thousand times faster than an
immotile strain in a static aerobic broth (10). A species of
Proteus chemotactically attracted by amino acids prevails
against a randomly motile mutant in a semi-solid agar
medium, although both grow equally well in a shaken
broth (11). Freter et al. (12) have presented results
showing that the ability of bacterial species to establish
themselves in the mammalian gut flora can depend criti-
cally upon whether the species is chemotactic, randomly
motile, or immotile, as well as on growth and adhesion
properties.

Though it is therefore apparent that motility properties
can be key factors in microbial growth and interactions, the
important parameters and parameter relationships are not
known. That is, it cannot be predicted for a given situation
what population sizes and distributions will occur. Further,
even when experimental results are available their inter-
pretation is unclear. The biochemical reaction processes
(cell growth and death, chemical species utilization and
production) are fairly well studied but the effects of
coupling with the biophysical transport processes (chemi-
cal diffusion, cell motility and chemotaxis) are not.

In this work we begin to address the question of the
combined effects of reaction kinetics and transport phe-
nomena in microbial reacting systems. We investigate here
a simple problem—the growth of a single bacterial popula-
tion in a stagnant medium of finite length in one dimen-
sion, with growth limited by a nutrient diffusing from an
adjacent phase not accessible to the bacteria. This is
referred to as “confined growth.” It might describe, for
example, the growth of a single cell population in water,
limited by the supply of oxygen from an adjacent air
source.

MATHEMATICAL MODEL

Consider a population of bacterial cells in a finite one-dimensional region
of length L, with a diffusible, growth-rate-limiting chemical substrate
entering the region from the boundary at x = L, as shown in Fig. 1. We
can write continuum conservation equations for cell biomass density, b,
and substrate concentration, s, within the region 0 < x < L:

ab aJ,
- T G, M
as aJ,

Friaiir il h (2)

where J, and J, are the cell and substrate fluxes and G, and G, are the net
generation and consumption rates of bacteria and substrate, respectively.

For the cell generation rate, we use Monod’s model for exponential
growth, with utilization of biomass representing cell death (13)

ks
K+s

G,=f(s)b— kb= b — kb. 3)

BIOPHYSICAL JOURNAL VOLUME 40 1982



b (x) Substrat
source

x=0 X —e o

FIGURE 1 Illustration of model one-dimensional growth system. The
bacteria are confined to the region between x = 0 and x = L. The
substrate enters the system at x = L.

Growth inhibition at high bacterial densities is not considered here. The
substrate consumption rate is determined by uptake by the cells:

1 ks

1
O-y/ b=

b. 4)

For the substrate flux expression we use Fick’s law for chemical
diffusion:

J--p%. )
ax

If the volume fraction of cells is large the diffusivity D should be replaced
by an effective diffusivity through heterogeneous media, such as the
expression developed by Fricke (14). This effective diffusivity may be
slightly smaller than the pure solution diffusivity if the diffusivity within
the cell is less than in solution.

The cell flux can be expressed phenomenologically as the combination
of random and chemotactic movement (15)

ab as
-——u—= 4 bx—.
Jv pootbxo- (6)

For attractants x is positive; for repellents x is negative. u is the random
motility coefficient for the cells, analogous to the chemical diffusivity. For
common flagellated bacteria such as Escherichia and Pseudomonas, it
has a value ~107"-10~° cm?/s (16). Thus it can sometimes be as large as
chemical diffusivity, suggesting that when nutrient diffusion is important
cell motility may be also. Immotile cells exhibit Brownian motion as do
inanimate particles. In this case, u is much smaller, on the order of 10 ~*
cm?/s (16).

x is the chemotactic coefficient, representing the strength of the
chemotactic movement caused by a unit chemical concentration gradient.
Chemotaxis essentially results in a population drift velocity, as can be
seen by rewriting the cell flux expression:

ab
.’|,= - u— + de
dax

where V4 = x (3s/(9x). In this work we will assume u and x to be constant
parameters.

If the cell speed or turning frequency depends upon the chemical
substrate concentration, a phenomenon called chemokinesis, the cell flux
expression is more complicated. Essentially, u is a function of s, although
the Fickian form may also not be retained. The sensitivity of the

chemotactic response is generally considered to depend upon attractant
concentration, because the response mechanism involves binding of
attractant molecules to cell receptors. A commonly accepted form is x(s)
= x K3/(Kq + s)*, where K, is the binding dissociation constant (17).
Constant x will thus be a good assumption for s << K.

Substituting Egs. 3-6 into 1 and 2, we obtain

b .2 a(bﬁ)nf(s)—k,]b ™

a Pae T Xax\Vox
ds s 1
—=D— — = X 8
at Dax2 Yf(s)b ®
The boundary conditions are
9 _
ax (9a)
atx =0 3
s
—=0 9
ax (b)
and
ab as
= yh— =
Mox X050 (10a)
atx =L 3
DL _ ks, - s) (10b)
ax

where s, is the substrate concentration in equilibrium with the adjacent
phase, and A is an interfacial mass transfer coefficient.

To get useful analytical results for fundamental behavior of this system
without changing the essential nature of the problem, we linearize the
generation terms by approximating the Monod growth form by a

(ﬁ-k.) s PPrTEE
Y] Y I
.k.
1
Sc S —
0 N,
_S .
b ~~~~~
el L e
Y
1
Sc S—

FIGURE 2 Illustration of the step-function approximation for the bacte-
rial generation rate and substrate consumption rate. The common Monod
expression for bacterial growth and substrate uptake (Egs. 3 and 4) are
represented by the dashed curves, and the step-function approximations
(Eqgs. 11 and 12) are represented by the solid lines.
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step-function (see Fig. 2), f(s) = kH(s — s.), where H(y) is the Heaviside
step function, which is H(y) = 1 for y > 0, H(y) = 0 for y < 0. Then

(k—kJ)b s>s,
Gb-

(11)
—k.b s<s,
1
—kb s> s,
Gs= Y (12)
0 s <.

This is justified by assuming that there is a critical concentration level, s,
below which the substrate cannot be utilized effectively for growth by the
bacteria. The value of s, is related to the Monod constant K. If it is
assumed that s, has a value such that G, = 0 at s = s, then

s. = K/ (k/k, — 1). (13)

Support for such a concept is suggested by the experimental results of
Caperon and Meyer (18). We emphasize, though, that the particular
forms used here in Egs. 11-13 to approximate the exact expression of Egs.
3 and 4 are not crucial to the analysis or results presented here. Only
minor quantitative differences are expected from using exact expressions
instead, and the analysis is much less direct. In fact, numerical solutions
to the original nonlinear set of equations have been obtained, using an
orthogonal collocation procedure (19). The comparison with the analyti-
cal solutions developed in this paper is very good.

Because we desire to elucidate the effects of the motility parameters p
and x upon bacterial growth, it is useful to rewrite the equations in
dimensionless form. Defining the following quantities

u_s b b_Ys‘,D Dt £ X
s Th PThr T L
2 2

)\=ﬁ K=k_L 0=k°_[‘ 5=XS°
D D D u
D F 1, u>u,

= — u) =

Y hL ) 0, u <u,

we obtain the dimensionless equations

do_\Tv g ( 95) + [KFu) —0lv  (14)

—=A—= —-0A—
ar o “a\Uer
du u
—=— — F 15
5 = ag ~ Fe (1s)
with boundary conditions
ay du
at £=0 = =0 —= 16a, b
£ % ( )
and
v du
— —v— = 17
E: dv T 0 (17a)
at £=1
du
Yok I —u (17b)

Now the rates of the various kinetic and transport processes have been
rescaled relative to the rate of nutrient diffusion across the region, D/L>.
A is the ratio of cell random motility to nutrient diffusivity, and § is the
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ratio of chemotaxis to random motility. « is the ratio of bacterial growth
rate to rate of nutrient diffusion across the region, and 6 is an analogous
ratio for bacterial death rate. + is the ratio of the rate nutrient diffusion
across the region to the rate of transfer into the region.  is the nutrient
concentration relative to the equilibrium concentration at the source, and
v is the ratio of cell density to the maximum density allowed by the
equilibrium nutrient concentration.

The steady-state bacterial population is that which satisfies Eqs. 14-17
when the time derivatives are set equal to zero. Although in natural
systems a steady-state is not usually attained (due to changing conditions
or genetic shifts), analysis of the behavior of the system in terms of
steady-state results is useful, because the system will tend toward stable
steady-state conditions after initial short-term transients. We anticipate
that significant information should also be found from studying short-
term results, as well as time-varying environmental conditions.

This work will consider the steady-state solution to Egs. 24-27 for the
following cases: (a) Random motility only (6 = 0) in both the case
where there is no mass transfer limitation (y — 0), and where there is
mass transfer limitation (y > 0).

(b) Chemotaxis (6 > 0).

We will particularly be interested in the average steady-state bacterial
population density,

1
B-7 [ b(x)ax

Ys,D
B-—7V (18)
where
V- f 'u(t) dt. (19)
SOLUTIONS

We consider in order the cases outlined previously.

Random Motility Only: 6 = 0

No Mass Transfer Limitation: v = 0. This case
has been presented in some detail previously (20). For this case, Egs.
14-17 in the steady state are

0- A$+[KF(u)—0]u 0<t<l1 (20)
2,

0- ‘;T':—F(u)u 0<t<l 21

do _ du _ - (22a,b)

dE—o, dg—o £=-0

dv B _ (23a, b)

ds-o, u=1 E=1.

There is a position £ = w such that u(w) = u,, so that there are two zones in
the populated region:

zone I : “depleted zone” 0 < £ < w, u < pgy, F(u) =0

zone II: “growth zone” w < £ < 1, u = u,, F(u) = 1.
Eqs. 20-21 can be solved in each zone, with the appropriate boundary
conditions, and with the solutions matched at the interface { = w, so that

u(w) = uy(w), vi(w) = vy(w),
du| du" dU| dU"

& (w) = & (@), T (v) = rn (w).
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The solutions are

u(§) = u (24)

(@ =1+ Co(l — ) + Boé [1-cosB(1—8)] (25

vi(§) = Aycosh af (26)
vi(§) = Bycos B(1 — &) 27
where

a=(0/N'" 8 - [(x - 0)/\]"2 and
A, = B(1 — u) cosB(1 — )/ M[B(1 — )] coshaw  (28)

B, = B(1 — u)/M[B(1 — w)] (29)
Co=— B —u)sinB(1 — w)/M[B(1 — w)] (30)
with

M(y)=ysiny — 1 +cosy 31

and w is found from
a tanh aw = B tan B(1 — w). (32)

Notice that there are now only two independent parameters that govern
the system, « and 8. a represents the ratio of bacterial death rate to
random motility, and 8 represents the ratio of bacterial growth rate to
random motility.

Fig. 3 shows an example of the concentration and density profiles for
this case. The total bacterial density is then found from using Eqs. 26 and
27in 19, so that

2
V- - uc)ﬁ(l + %) sin (1 — w)/M[B(1 — w)]. (33)

Mass Transfer Limitation: v > 0. Egs. 20-22 and
23 aremain applicable, but now the substrate boundary condition at ¢ = 1
is 17 b. The solutions are similar to Eqs. 24-32; the only differences are
that now Eq. 25 becomes

@ =1+G(+v-8 + éson —cosB(1 - B)] (34)

1.0 - 25
0.8
0.6
u
0.4
0.2
b oo bbb bbb oo pood e ) 1
0o 0.4 02 03 o4 {0.5 06 0.7 08 0.9 1.0
w

FIGURE 3 Example plot of dimensionless bacterial density, v, and
substrate concentration u, profiles, as functions of dimensionless position,
£, within the confined growth region. The substrate source is located at £
= 1. £ = wis the position dividing the region into two zones (see Eq. 32).
For £ > w, u > u,so that bacterial growth can be supported; for £ < w, u <
u_ so that growth cannot be supported. Parameter values used are x/0 = 2,
Aek=10"" u =102

and Eq. 29 is now
B, = (1 — u)/IM[B(1 — w)] + ¥ BsinB(1 — )]} (35)

Thus now
V= (1 - u)BsinB(1 - w)/IMIBQ — )]
+yBsin (1 — w)l. (36)

Chemotaxis: 6 >0

The substrate Eqs. 21, 22 b, 23b remain the same but here the bacteria
equation becomes

d% d*u dv du
0=Ad—£2—5)\vd—£2—6xd—£d—£
+[kF(u) —0)0<t<1 (37)
and
dv
d—£=0 £E=0 (38)
dv du
Sy — = =1. 39
T: 6vd£ 0 ¢ (39)

Being nonlinear, these must ordinarily be solved numerically. However,
we can obtain analytical results for the effect of chemotaxis with a
perturbation method. That is, we write the solution as an asymptotic
series in &:

v=v,+ 80, + O(?) (40)
u=1u,+ du + 0 41)
w=w+ dw + 0. (42)

This solution will be a good approximation to the exact solution for small
enough values of 4. Substituting Eqs. 4041 into 37-39 and 21, 22 b, and
23 b, and collecting the terms in like powers of & allows sequential
determination of the successive terms in 40—42. The solutions are still
found for zones I and II individually, and now matched at { = w by
linearization around w = w,. For example, the concentration u is matched
in the following manner (retaining only the first order power of 8):

U (w, + 0w;) = uy(w, + dwy) = U,

which implies

d
ty (0) + 8wy (wo) + b, d—'; (@)

= (o) + B, (a0) + 80, % (on) = s

The flux of u and density and flux of v are matched similarly.

As expected, the zero-order terms (u,, V,, w,) are identical to the
solution for the case of pure random motility with no mass transfer
limitation. higher order terms are found easily analytically because the
equations are now linear in each order. The expressions are rather
lengthy, however, so they are given in the Appendix.
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RESULTS

The steady state in this model is created by the dynamic
balance between the increase in cell biomass in the sub-
strate-rich growth zone and the decrease in cell biomass in
the substrate-poor depleted zone. This balance is mediated
by the net movement of cells from the growth zone into the
depleted zone caused by cell motility. This situation should
be evident from Fig. 3.

Figs. 4 and 5 show computational results for the case of
pure random motility with no mass transfer limitation. The
steady-state population B increases and growth zone thick-
ness (I — w) decreases as «/f (growth/death) increases
and A/« (motility/growth) decreases. The reason for this
behavior may be found in Fig. 6, which shows the effect of
A/« on cell density profiles. We see that as A/ increases,
the cells disperse more readily from the growth zone to the
depleted zone, and are less likely to be in an environment
favorable for growth. Therefore, B decreases as A/«
increases. The key quantity is not the value of A (cell
motility to nutrient diffusivity) but is rather the value of
A/k (cell motility to growth rate).

Because we are primarily concerned about the effects of
random motility on population size, it is of interest to
consider the limiting cases of very large and very small A/x.

10°

K/© 2100

K/© =10

10!

FIGURE 4 Plot of average bacterial density within the confined growth
region, B, (see Eq. 18), as a function of the ratio of cell motility to growth
rate, A/x, for various ratios of growth rate to death rate, x/6, u. = 1072
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FIGURE 5 Plot of growth zone thickness, 1 — w, (see Eq. 32), as a
function of the ratio of cell motility to growth rate, A/«, for various ratios
of growth rate to death rate, x/6.

The limiting expressions (for the biologically reasonable
assumption x >> ) are

K [}
G-~ (- ) ==

1/2 1/2
§<< 1,V= (2) Vo,(1 —w)=~ (é) a-w)'
K

K

A
->>1L, V=V, =2(1-u)
K

For A/x >> 1, the cells can traverse the whole region
many times in a given doubling time, so that the growth
rate is effectively a function of an average substrate
concentration. Thus the system acts almost well-mixed,
microscopically, and the population attained depends only
on the growth and death rate constants. For A/x << 1, the
doubling time is very small relative to the rate of movement
across the region, so the growth rate depends only on the
local substrate concentration, and the system is clearly
nonuniform. In this case population growth is very heavily
influenced by the spatial distribution of cells, so the
population attained depends upon the motility coefficient
as well as upon the growth rate constant.

Fig. 7 presents some computational results for the case
of, pure random motility with mass transfer limitation. The
cell population decreases as <y (nutrient diffusion/transfer)
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FIGURE 6 Example dimensionless cell density profiles within confined
growth region, showing the effect of the ratio of cell motility to growth
rate, A/, for /0 = 100 and u, = 1072 As this ratio becomes very small,
the density profiles become quite nonuniform, with great concentration of
cells near the substrate source. As this ratio increases, the profiles become
flat, representing essentially uniform bacterial densities within the region.
In this case, profiles are unchanged for A/x greater than 10~ This
corresponds to the flat portion of the B vs. A/« curve in Fig. 4 for this value

of x/8.

increases, because the rate of nutrient uptake by the
population is reduced. In fact, as iy becomes very large, the
population site becomes independent of the random motil-
ity coefficient. The quantitative effect of v can be seen
more clearly from comparison of Egs. 33 and 36, for if we
define V¥, to be the value of V in the former (i.e., with y =
0) and V, in the latter (with v > 0), then

v, 1
7‘; R + 7y “3)
where
7 ={(1 — @) + [cos B(1 — w) — 1]/[Bsin B(1 — w)]}™'
= Vo/(x/6). (44)

We can again look at the limiting cases
Ax>>1, V=V, =V, /(1 + 2yx/8)
Mr<<L,VaV, x (1 +68/2y) = V,_[(2yx/0).

Notice that for this case ¥ does not increase indefinitely a:

—

w0

10?

i
-3
10

10? \.—l }
0

FIGURE 7 Plot showing the effect of substrate mass transfer limitation,
described by the parameter «, on dimensionless total bacterial population
within the confined growth region, V (see Eq. 36). Large values of y
represent significant mass transfer resistance, and the figure shows that

this eliminates the effect of cell motility. u, = 1072

A — 0, as it did for v = 0. The key quantity for the effect of
mass transfer limitation is 2yx/0. For 2yx/6 >> 1, mass
transfer limitation will act to significantly decrease the
population size. For 2yx/0 << 1, the mass transfer limita-

tion will have an insignificant effect.

Fig. 8 presents computational results for case of chemo-
taxis where we have neglected all terms in & greater than
first order. The dashed curves are only extrapolations of
the perturbation solutions beyond their regions of validity.
However, what is important is the general trend of these
curves. Chemotaxis acts to increase population size, which
is not surprising intuitively, but there is a subtlety that we
will discuss later. The effect of this type of movement

behavior on the cell density profile is illustrated in Fig. 9.
Chemotaxis leads to increased population size because the
tendency of cells to disperse away from the growth zone is
opposed by the tendency to move in the direction of the
increasing substrate concentration gradient. Notice that
one particularly significant consequence of chemotaxis is
that the gradient of cell population density at the nutrient

source no longer needs to be zero.

DISCUSSION
To understand the effects of cell motility properties on
bacterial population growth, we have developed a mathe-
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3x10°
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FIGURE 8 Plot showing the effect of cell chemotaxis, represented by the
parameter d, on dimensionless total bacterial density within the confined
growth region, ¥, for x/6 = 100. The dashed lines (---) are extrapolations
of the perturbation solutions obtained in this paper, for 6 > 1. The
different curves are for various values of A/x. It is clear that § must be
>107" to have a noticeable effect on the population size, and that it must
be >1 to have a significant effect.

matical model for growth of a single population in a
confined, unmixed region, on a rate-limiting nutrient dif-
fusing into the region from a boundary. This model may
represent a number of important natural situations of
biological importance. We have analyzed the steady-state
population size that can be attained, being primarily
interested in its dependence upon the following key param-
eters: k, cell growth rate constant; k., cell nonviability rate
constant; u, cell random motility coefficient; and x, cell
chemotaxis coefficient. Qur analysis has yielded predic-
tions we will now discuss.

In the absence of chemotaxis, random motility acts to
reduce population size as the ratio u/kL? increases, where
L is the length of the confined region. Fig. 4 shows this
result graphically. An important conclusion that can be
drawn from this figure is that a species with a small enough
random motility coefficient can grow to a larger population
size than a second population with a greater growth rate
constant. Consider two species, 1 and 2, growing separately
under identical circumstances; that is, the same size region,
same nutrient, and equal nutrient source concentration.
Further, let the death rates and yield coefficients be equal.
Now, if it is assumed that k, > k,, then under well-mixed
conditions we would expect that B, > B,, where B is the
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FIGURE 9 Effect of chemotaxis on the cell density profile within the
confined growth region. In this example, x/0 = 2, \/k = 107, u, = 1072,
and é = 0.5. Notice that the presence of chemotaxis allows a nonzero slope
até=1.

total steady-state population density. However, in an
unmixed system, if g, is large enough relative to u,, Fig. 4
shows that B, > B, is in fact possible. That is, a species with
superior motility kinetic properties can outgrow a species
with superior growth kinetic properties. The parameter
relationships necessary for such an occurrence have been
derived and discussed previously (20).

From our results here for constant u, we can predict that
positive chemokinesis (u increasing at higher nutrient
concentration) should decrease the steady-state population
size, and that negative chemokinesis (u decreasing at
higher nutrient concentration) should increase it. Calcula-
tions using a perturbation approach similar to that used
here for the chemotaxis case have confirmed this sugges-
tion (21). Thus we can formulate a rule for cell movement
behavior: at high nutrient concentrations it is advan-
tageous for cells to remain localized; at low nutrient
concentrations it is advantageous for cells to disperse.

The presence of chemotaxis acts to increase the popula-
tion size, according to the magnitude of the quantity 6 =
(xS,)/ (1), where s, is the nutrient source concentration
(this assumes that the chemotaxis coefficient is indepen-
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dent of attractant concentration). This result for chemo-
taxis is not qualitatively surprising; however, we are now in
a position to make quantitative predictions about the
consequences of chemotaxis for population growth. Some
calculations for population size dependence upon ¢ are
illustrated by Fig. 8. It is clear that we could again proceed
to derive parameter relationships, now including é, that
determine relative population sizes. Leaving that aside, it is
of interest here to point out a significant and counter-
intuitive implication from Fig. 8. There is a minimum
value of & necessary for motility to be profitable. That is, a
cell must be motile to be chemotactic, and the effect of
increasing u from the value for Brownian motion would be
to diminish population size. Therefore, 6 should be large
enough to overcome this diminution. It follows that a
chemotactic species may not always automatically grow to
a greater population size than a nonchemotactic species.
There is a relationship between the values of u/kL? k/k.,
and § that will determine relative population sizes.

Fig. 8 also shows that, at least according to our perturba-
tion solution, chemotaxis has no real effect on population
size until, roughly, § = 0.1. At § = 1, the population size is
increased by ~40% over that for § = 0. Very crude
estimates of & given in the literature fall in the range of
~1-10 (22, 23). So, we see that a considerable growth
advantage should result for a species of given pu, k, and k.
However, it should be evident from Fig. 8 that such a value
for 6 is not necessarily great enough to overcome any given
growth disadvantage relative to a faster growing or less
motile species.

It should also be mentioned that numerical solutions
obtained by using an orthogonal collocation method show
excellent agreement with the perturbation results given
here, at least upto 6 = 1 (19).

We must be careful not to conclude that random motil-
ity per se is generally detrimental to microbial population
survival. For the confined growth situation considered
here, that is the clear result. But in other situations, it may
well be beneficial. For example, for a species inoculated in
a nutrient environment of infinite extent, increasing values
of u might allow greater population growth because disper-
sal would be toward regions of greater nutrient concentra-
tions. Also, travelling bands of randomly motile bacteria
may allow population persistence via movement from
depleted areas to plentiful areas (21, 24). Therefore, care
must be exercised in predicting the effects of cell motility.
The major point of this paper remains the same, however:
that motility effects can be significant and even dominant
factors in determining microbial population dynamics.

We would like to point out the relationship of the
conclusions presented here for cell populations to those
published previously for individual cells. Early authors
suggested that motility, even random in nature, should
always tend to enhance cell growth by increasing the rate
of substrate uptake by an individual cell through a local
convection mechanism (6, 7). That such an effect is in

reality negligible in the case of bacteria feeding on chemi-
cal substrates has been demonstrated by Berg and Purcell
(25) (although it may be significant for larger protozoa
feeding on bacteria because of the smaller prey diffusivity).
The rate of substrate uptake by a cell is governed by
chemical diffusion, and so is always proportional to the
local substrate concentration. The crucial consequence
noted by Purcell (26) is that an important function of
bacterial motility could therefore be to move a cell to a
region of significantly different local chemical concentra-
tion (this could apply to both benéficial and harmful
chemical species), to change the rate of diffusive flux to the
cell. Our results for cell population are in perfect harmony
with this reasoning, for the chief role of motility is to
distribute the cell population in accordance with whatever
physical law governs the cell population flux. Hence indi-
vidual cells are situated in varying local levels of substrate
concentration, and the net result of the growth of all cells is
reflected in the population results.

The implications of our analysis for competition between
microbial species are of potentially great significance. It
seems possible that a species with inferior growth kinetic
properties could prevail against a species with superior
growth Kkinetic properties in direct competition for a
nutrient, if the former has superior motility properties.
Further, coexistence could now be a possible outcome of
competition in an environment that is not well mixed.
Spatial heterogeneity is often suggested as an explanation
for violation of the competitive exclusion principle, as for
example by Stephanopoulos and Fredrickson (27). In our
confined growth competition situation, heterogeneity is
provided by the interaction of diffusion, motility, growth,
and uptake kinetics.

If there is a significant transfer resistance for the
diffusion of nutrient from the adjacent source phase into
the bacterial growth region, the influence of motility is
diminished. The key quantity here is the ratio 2Dk/k.hL,
where D is the nutrient diffusivity and A is the nutrient
interfacial transfer coefficient. As this ratio becomes large,
the motility effects discussed above become insignificant.
The quantitative relationship is shown in Fig. 7. When A
becomes small, nutrient diffusion from the interface into
the growth region is rapid relative to the transfer of
nutrient across the interface. This results in a very flat,
almost uniform nutrient concentration profile within the
confined region. Consequently, regardless of cell move-
ment properties, the system behaves as if well-mixed. Even
under stagnant conditions, then, mass transfer limitations
may prevent cell motility from playing a signficant role in
population dynamics. An example might be the case of
microbial growth, rate-limited by oxygen in an aqueous
growth medium. With estimated parameter values D =
10°cm?/s,k =1h™', k,=10">h~", and h = 107> cm/s,
then x/0 = 100 and v = 107/ where L has units of cm.
Thus, if L = 1 cm, v = 107% and Fig. 7 shows that cell
motility can have a significant effect. If L = 10~' cm, then
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v = 1072 and the same figure shows that the effect of cell
motility will be very small. The ratio 2Dk/k.hL takes the
value 0.2 in the first case, and 2.0 in the second. The size of
this ratio relative to unity is the critical consideration.

A remark is in order here concerning the assumption
that our confined growth medium is stagnant. Convection
currents and even some organized flow may be expected in
most real systems. Might these not mitigate the effects of
chemical diffusion and cell motility? There is experimen-
tal evidence that in a particular system cell motility and
chemotaxis can significantly affect the net cell flux in the
presence of convective flow up to ~2 cm/min (28). This
would suggest that such ideas as presented here should find
application not only in quiescent environments but also in
those with a small convective flow present.

Finally, it is of interest to mention that some recently
published experiments have been directed toward quanti-
tative study of bacterial density profiles in spatially distrib-
uted growth media (29). These are just the sorts of
experiments that will be appropriate for further investiga-
tion of the theoretical predictions made here.

APPENDIX

For the case of Chemotaxis (b), with 6 # 0, the solution to Egs. 21 and 37
may be written as an asymptotic series in 8, as 6 — 0:

Uy = uy, + ouy, + 0(6%)
u =y, + 0y, + 0(8%)
for0 < ¢ < w,and
uy = uy, + duy, + 0(5%)
oy = vy, + ooy, + 0(8%)
for w < £ < 1. We must also write @ = w, + dw, + 0(8%). uy, un, Vi, Vi,
and w, are identical to the results obtained for case a, where 6 = 0. The
first-order terms are given by
u,=0
v, = A cosha

uw = C(1 = ) + B.‘%[l — cos B(1 - 9)]

126‘80 [cos 28(1 — §) — 1]

232 B, Co(1 — &) cos B(1 — §)

233 BOCO sin ﬁ(l - E)

1
vy = Bycos B(1 — §) + %Bocosmﬁ(l -9
+ (1/2) ByCo(1 — £) cos B(1 — &)

62 — B2cos 28(1 — §).
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A, B,, and C, have the same values as in case 1 a. 4,, B, C,, and w, are
obtained from the matrix equation

My=-gq
where
}’T = [4,B,Ciw]andq" = [9) 92 45 4.],
with
q, = 1/2 BoCo(l - wo) COSﬁ(] - wo)
1 .
+ Bocoﬁsm B(1 —¢y)
332 —c0s 28(1 — wy)
q, = —BﬁSEsm 28(1 — wy) —ByCycos B(1 — w,)
B .
+ BoCo (l (00) sin B(l - (00)
—BZL+BC L(1 — wp) cos B(1 — wy)
qs = Dg 1234 0 02/32 o 0

— B} —cos 28(1 —

1
12/34 wp) — BOCOZ—ﬁJSin B(1 — wp)

1
B2 —sin28(1 - B,Cy—
06338"1 B(1-w) — ByGo 3

Finally, M is a 4 by 4 matrix with elements M;, where i is the row number
and j the column number, and

== (1 — wp) sin B(1 - wp).

M,, = cosh aw,

M, = —cos B(1 — wyp)
M,, = aA,sinh aw, — B Bysin B(1 — wp)
M,, = asinh aw,

My = —Bsin (1 — w)

My, = o® Ay cosh awy + 7By cos B(1 — wp)
1
g [1 — cos B(1 — )]
M33 = l — W,
1.
M, - Esm B(1 — )

M;=1
M“= —Bocos(l —“"0)

My =My =M, =My, =M, =0.
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The total dimensionless population density is then

1 1
V = — Apsinh aw + = Bysin 8(1 — w)
a 8

1 1
+ 6{— A, sinh aw + — B, sin B(1 — w)
a B
| S
—6—/3380s1n 28(1 — w)
1
+BoCo[§F

{1 —cosB(l —w)+B( —wsinB(1 — w)}

+1/4{1 = 2 (w - 1/26?) cos B(1 —w)}]l.
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