ASSESSMENT OF THE SYMMETRY

OF STEM-CELL MITOSES

MATTHEW BJERKNES

Department of Anatomy, Medical Science Building, University of Toronto, Toronto, Ontario, Canada

ABSTRACT A model of Paneth-cell renewal in the small intestinal epithelium is used to estimate the probability that
epithelial stem-cell mitoses are symmetric in the sense that they produce two cells of the same type. I found that counts
of the number of Paneth cells per crypt (Paneth cells are terminally differentiated cells derived from small intestinal
epithelial stem cells) support a model in which most, if not all, stem-cell mitoses are symmetric.

INTRODUCTION

The continuous production of new cells is a key feature of
many vertebrate tissues (e.g., the intestinal epithelium). In
these tissues there are cells, known as stem cells, with the
potential to produce both new stem cells and other cells
that differentiate (Leblond and Cheng, 1976). The pluri-
potentiality of the stem cell raises an important question;
namely, when a stem cell divides is there a predictable
pattern in the type of cells produced? The most frequently
discussed possibilities are that stem-cell mitoses are either
asymmetric (i.e., the daughter cells are different one from
the other; fig. 1; Cairns, 1975; Potten, 1978; see also
Leblond and Cheng, 1976), random (Marques-Pereira and
Leblond, 1965), or symmetric in the sense of producing
only either two stem cells or two differentiating cells
(Leblond and Cheng, 1976; Leblond et al. 1967).

The lining of the small intestine, the small intestinal
epithelium, is a good model system in which to investigate
the issue of the symmetry of stem-cell mitoses. The epithe-
lial stem-cell pool (found in structures known as the crypts
of Lieberkiihn) produces four differentiated cell types, one
of which is the Paneth cell type (Cheng and Leblond,
1974b; Leblond and Cheng, 1976; Bjerknes and Cheng,
1981a).

Several features of the Paneth cell population render it
useful for investigating the symmetry of stem-cell mitoses;
Paneth cells are derived from the common epithelial
stem-cell pool (Cheng and Leblond, 1974b; Leblond and
Cheng, 1976; Bjerknes and Cheng, 1981a), Paneth cells do
not divide (Cheng, Merzel, and Leblond, 1969; Cheng and
Leblond, 19745, Bjerknes and Cheng, 1981a), only small
numbers of Paneth cells are present in each crypt (Cheng
and Leblond, 1974a; Bjerknes and Cheng, 1981a), and
they remain in the crypt until their death (Cheng and
Leblond, 19745, Bjerknes and Cheng, 1981a). Given these
features of the Paneth cell population it is clear that the
distribution of the number of Paneth cells in a crypt will be
influenced by the pattern of stem-cell mitoses. For exam-

BiopPHYS. J. © Biophysical Society
Volume 48 July 1985 85-91

0006-3495/85/07/85/07

ple, in the extreme, if all stem-cell mitoses were symmetric,
then Paneth cells would be produced in pairs. If Paneth
cells were produced in pairs, and if all Paneth cells had
similar lifespans, then the number of Paneth cells in a crypt
would have a higher probability of being an even number
(e.g., 2, 4, 6, etc.) than would otherwise be the case.

With this in mind, I derived a model of Paneth-cell
renewal in which newly differentiated Paneth cells arrive
in clusters of one or two cells (depending upon the symme-
try of the mitosis of the precursor stem cell). Once they
have arrived, Paneth cells behave independently. They
each live a period of time that is a random function and
then they die. The form of the model is such that it predicts
the distribution of the number of Paneth cells in crypts. By
fitting the model to data derived from counts of the
number of Paneth cells per crypt, I derived a maximum
likelihood estimate of the proportion of the Paneth cell’s
immediate precursor, the stem cells, whose mitoses were
symmetric.

METHODS

Experimental Methods

Duodenum was collected from three adult male Swiss albino mice. The
tissue was embedded in Epon and 200-250 serial 1-um sections were
prepared from the tissue from each animal (iron hematoxylin and
safranine O staining). The number of Paneth cells in whole crypts from
each animal was counted. Thus, a sample distribution for the number of
Paneth cells contained in a crypt was gathered. Estimates of the symme-
try of stem-cell mitoses were then obtained from application of the model
described below.

The Model

My goal in this section is to produce a model that provides a reasonable
description of Paneth-cell renewal and hence of the distribution of the
number of Paneth cells to be found in a crypt. Since the main issue of this
paper is symmetry of stem cell mitoses, and since the degree of symmetry
is a parameter of the model developed, I also present methods for deriving
estimates of the probability of symmetry from the data.

The symmetry of stem-cell mitoses determines whether Paneth cells
differentiate in groups of one or two cells. Whatever their composition, I
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FIGURE 1 Schematic diagrams of two hypothetical classes of stem-cell
mitoses. (@) and (b), asymmetric stem-cell mitoses. (c) and (d), symmet-
ric stem-cell mitoses. (a), stem-cell mitosis producing a stem cell and a
differentiating cell. Cells with this behavior are often referred to as
exhibiting differential mitosis. This model has had some appeal in studies
of renewing systems because it is thought to assure a balance between
maintenance of the stem cell pool and production of differentiating cells.
(b), asymmetric stem-cell mitosis producing two different types of
differentiating cells (e.g., a Paneth cell and a columnar cell). (c),
symmetric stem-cell mitosis producing two stem cells. (d), symmetric
stem-cell mitosis producing two differentiating cells of the same type
(e.g., two Paneth cells or two columnar cells).

call each group an arrival. Thus, an arrival may be composed of either one
or two new Paneth cells. With this definition of an arrival, I may write a
simple equation for N(t), a random variable representing the number of
Paneth cells in a crypt at time # given that there were no Paneth cells in a
crypt at time 0,

G(t)

N@) =Y _{r@)k 1)

i=0

where G(¢) is a random variable representing the number of arrivals in the
interval (0, 1), and the {¥(2)}; are independent identically distributed (for
fixed ¢) random variables representing the number of Paneth cells that
survive until time ¢ from arrivals at arbitrary points in (0, 7). Thus, the
number of Paneth cells in a crypt at time ¢ is determined by summing the
number of surviving Paneth cells from the G(¢) arrivals in the interval. It
follows that N(¢) is the sum of a random number of random variables,
which means, by definition, that N(¢) is a compound stochastic process.

The probability generating function (PGF) for an arbitrary discrete
random variable, W(t), is by definition (see any standard text on
probability), Z¢_, z* P{W(t) = k}. Thus, by definition, the PGF for the
probability density describing N(z), n,(¢) is

6z 1) = 3 () @

k=0

where n,(t) = P{N(t) = k}. It then follows by a standard theorem of
probability that since ¢(z, t) describes a compound stochastic process,

¢(29 t) = ‘p(‘p(z7 t)) (3)
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where ¥(z, t) and ¢(z, t) are the PGF for the processes defining G(¢) and
Y(z) respectively.

I will proceed by making the assumption that the lifetimes of Paneth
cells are independent and identically distributed random variables, X,
with probability density f(¢). To express this in another way, if one chose
a new Paneth cell at random, the distribution of the probability of possible
lifetimes for that cell would be described by f() independent of the actual
lifetimes of all other Paneth cells. I will have repeated need for the
following identities involving f(z). The probability that a Paneth cell dies
at or before age ¢ is

Plx =il - F@) - [ f(x)dx, )

which represents the accumulation of the probability of death over the
interval from O to ¢. Similarly, the probability that a Paneth cell lives
longer than age ¢ is

P> 1h-1-F@) - [ f(x)dx. ©)

If we now concentrate on an arrival that occurs at time x and consists of j
Paneth cells, then the conditional probability that k Paneth cells survive
(k <j) until time ¢ (x <) is

k cells survive | arrival occurs at
P until time 7 | time x and consists
from an arrival | of j cells

- [({() [1 - FG - x)]*] [F¢ -0V ©

where the first bracketed term on the right-hand side represents the
probability that k cells will survive for at least the period (¢ — x)
multiplied by the number of ways of selecting k out of j cells, and the
second bracketed term represents the probability that the other j — k cells
die in the interval. Now I will proceed to remove the conditions. First, let’s
allow the arrival to occur at any point in (0, #). In this case we will need to
know the probability that the arrival occurs at time x in the interval. I call
this probability A(x). Integrating over possible arrival times (i.e., by the
law of total probability), it follows that

k cells survive arrival consists
P until time ¢

. of j cells
from an arrival

- ['h [({c) [1-F@- x)]"} [F(t —x)V ™ ()

To remove the final restriction, that the arrival consists of j cells, I require
knowledge of another probability density, i(x), which describes the
probability that the arrival at time x consists of j Paneth cells. With i;(x)
defined I am now able (by the law of total probability) to write the general
form for the probability density function Y,(t) = P{Y(¢t) = k} which
describes the conditional probability of having k Paneth cells alive at time
t given exactly one arrival at a random point in the interval (0, t),

yilt) = ik L ione)

I(i) [ = F(t — x)]*

If I now assume that G(¢), the number of arrivals in the interval (0, ¢),
is described by a Poisson process (an assumption which I will justify in a
moment) with arrival rate A, then the probability that an arbitrary arrival
occurs at time x in (0, #) will be uniformly distributed over (0, ¢). Hence,

[F(t —x)) dx . (8)
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h(x) = 1/t. For the Paneth cell population, any given arrival will be
composed of either one or two cells (corresponding to an asymmetric or
symmetric stem-cell mitosis respectively). I next assume that the proba-
bility that a given arrival consists of two cells is stationary with probability
a (i.e., i(x) = a). Accordingly, the probability that an arrival consists of
onecellis 1 — a(i.e.,i,(x) = 1 — a). With these assumptions, y,(?), y,(2),
and y,(f) may be written more explicitly (for k > 2, y,(t) = 0) by
substituting the appropriate terms into Eq. 8,

o) =1 — yi(8) — ya(t) )

l -«

— [t - F(t - x)ax

n() =

af:
+ P 2F(t — x)[1 — F(t — x)]dx (10)

l-a

— [ 1 - Foax

Ly -
P A 2F(x)[1 — F(x)]dx (by substitution)

0 =% [*[1 - Fo)Yax (1)

At this point it will be useful to present arguments that, as a first
approximation, the arrival of newly differentiated Paneth cells may
reasonably be viewed as a homogeneous Poisson process.

To qualify as a homogeneous Poisson process, the phenomenon under
consideration must exhibit the following properties: (@) The probability of
an event must be independent of all past events. (b) Events do not occur at
predetermined times and the probability of an event must be constant over
time. (c) The probability of an event in a sufficiently short interval is
roughly proportional to the length of the interval. (d) The probability of
more than one event during an interval is negligible in a sufficiently short
interval.

I now argue that, from the vantage point of the Paneth cell population,
the event of stem cell differentiation into Paneth cell may be viewed, to a
first approximation, as a Poisson process.

On the average there are perhaps 15 stem cells per crypt (Bjerknes and
Cheng, 19815). Each stem cell undergoes cell division about twice a day.
From this background of stem cell activity are derived an average of about
eight Paneth cells (duodenal crypts contain on average about eight Paneth
cells; see Results) every 3 wk (Paneth cells have an average lifetime of ~3
wk; Bjerknes and Cheng, 1981a). This means, assuming for the moment
that stem-cell mitoses are symmetric (i.e., @ = 1) and hence that Paneth
cells are produced in pairs, that a pair of Paneth cells is produced on
average about once every five days. Hence, on the order of 1 in 150
stem-cell mitoses yields Paneth cells; the upshot of which is that the event
of stem-cell mitosis yielding Paneth cells is a relatively rare event. It
follows that assumptions ¢ and d are probably reasonable first approxima-
tions. Assumption b is justified in part by the fact that in the adult,
epithelial renewal approximates a steady state. Furthermore, no evidence
has been found for circadian or other rhythms in the pattern of stem-cell
mitoses in crypts. The epithelial stem cells appear to operate as an
asynchronously dividing population. Assumption a, independence of
history, is the most difficult to justify. However, the relative rarity of the
events and the absence of any experimental evidence for feedback from
the Paneth cell population onto Paneth cell production make the assump-
tion a reasonable first approximation.

To restate the model thus far, the number of stem cells that have
differentiated into Paneth cells in an interval of duration ¢, G(¢), may be
approximated by a Poisson process and hence, Pk arrivals in (0, )} =
exp(—At)(At)/k!, where X is the mean rate of stem cell differentiation
into Paneth cells. Each of these G(?) arrivals contributes Y(7) Paneth cells
to the total with the probabilities presented in Egs. 9-11.
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Since G(¢) is a Poisson random variable, N(z) is a compound Poisson
process. This means that from Eq. 3 and from the fact that Y(z,t) =
exp [A2(z — 1)], I may readily write the form of the PGF for N(¢),

#(z, 1) = ¥le(z, )] = exp \fp(z, 1) — 11}, (12)
where ¥(z, t) and ¢(z, t) are the PGF for G(¢) and Y(z) respectively. By
definition of a probability generating function, ¢(z, t) = Z;_, 2",(1) =

yo(t) + zyi(t) + 2%p,(1). Hence, after substituting ¢(z, t) into Eq. 12,
using Eq. 9, and then taking the limit as z — o, I derive ¢(z)

p_‘j: ¢(Z, t) = ¢(Z)
= lim exp [Aty,(1)(z — 1) <exp Ay ()(z* — D], (13)

which is the PGF for the stationary (i.e., steady state) process describing
the number of Paneth cells in a crypt. Now, consider the limit as  — o of
Aty (2) and Aty,(t). Substituting Eq. 10 into Aty,(¢), and recalling that for
any nonnegative random variable X with cumulative distribution F(x) =

PIX < x}, E[X] = [[1 — F(x)]dx where E [] is the expectation
operator (see Eqs. 18—19 below for more detailed explanation), I derive
g =lmMy () = \(1 - a) [ [1 - F(x)] dx
+ 2 [TF) [1 - F(0)) dx
=A(1 - 3a)E[X]

+2a (1 - F(x)] dx
— (1 - 30)E[X] + 2\a E[2F(X)X]

_m 3am  2amE[2F(X)X]
“l+a l+a (1+a)E[X]
(by substituting

m =1 + a)E[X])

m
=—(@0-3 2a
l+a( o + 2a7)

by substituting

E[2F(X)X]
"/=T[X]——). (14)

Similarly,

92 = lim My2(1) = 2AaE [X] — AaE [2F (X)X]

al

m
- @, (15)

Combining Egs. 13-15, I arrive at the final form for the PGF of the
stationary process describing the number of Paneth cells in a crypt,

#(2) = exp [q:(z — D] exp [g:(z* — D] . (16)

Observe that the first exponential term on the right-hand side of Eq. 16
is equivalent to the PGF of a Poisson process with rate q,. Similarly, the
second exponential term is equivalent to the PGF of a bulk Poisson
process in which arrivals occur in groups of two cells with arrival rate g,
(as may readily be proven from first principles). Since the product of two
probability generating functions is equal to the probability generating
function of the convolution of the original probability densities (another
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standard result from probability theory), I may invert ¢(z) by inspection
to obtain n,, the stationary probability density function for the number of
Paneth cells in a crypt;

n = £ [ ” ][(k — 2r)‘ ]; a7

where [k/2] is the greatest integer in k/2.

Interpretation of the Model Parameters

In this section I will attempt to interpret those parameters whose meaning
is not immediately obvious from the model. I will begin with the
parameter m = A(1 + a)E[X], which was introduced in Eq. 14. This
parameter corresponds to the mean or expected number of Paneth cells in
a crypt, E[N]. This may be demonstrated as follows (after noting that the
mean or expected value of a random variable may be derived from the
derivative of the PGF of the variable evaluated at z = 1),

dé(z)
dz

E[N] -

z=1

= q,1¢6(2) + 229,4(z) .

=q + 29,

_ 2—— 2 —
l+ (1 - 3a + 2ay) + ( v)

= AE[X]( = 3& + 2ay) + 2aAE[X](2 — 7)
=1 + a)E[X]

=m

as stated.

The next parameter g, = am (2 — v)/(1 + «) (introduced in Eq. 15),
represents the expected number of Paneth cells present that are derived
from arrivals consisting of two cells, both of which survive long enough to
be scored. Similarly, g, = m (1 — 3a + 2ay)/(1 + «) (from Eq. 14) is the
expected number of Paneth cells present that are operationally single. By
operationally single I mean that either these cells were derived from
arrivals composed of single cells or from arrivals originally composed of
two cells either one of which died before the crypt was scored.

It would also be of use at this point to interpret some of the intermediate
terms that appear in Egs. 14 and 15. In particular, I will interpret the
terms E[X], 2{E[2F(X)X] — E[X]}, and 2E[X] — E[2F(X)X]}.

The meaning of E[X] follows immediately from the definition of the
expectation operator. E[X] is the mean or expected Paneth cell lifetime.

The meaning of 2{E[2F(X)X] — E[X]} is more subtle. Notice that it
may be possible for one member of a pair of Paneth cells (originating from
an arrival composed of two cells) to die before the other. This would leave
the surviving Paneth cell as the only contributing member to the
total number of Paneth cells in a crypt. I will demonstrate that
2{E[2F(X)X] — E[X]} represents the mean or expected time spent as
single cells (whose sibling has died) by Paneth cells originally derived
from arrivals composed of two cells. First, let me determine the expected
time that a specific member of an arrival (originally composed of two
cells) spends as a single cell given that the other cell dies time a after
arrival. Thus, I wish to compute E[X — a|X > a]. By definition of
conditional expectation,

[ e-arx

E[X-a|X>a] = -
L reax
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L7 ) dx - all - F@)]
1 — F(a)

EX] - [“xf(x) dx - all - F(a)]
1 — F(a) '

Then, by multiplying by the probability that one cell dies at age a while
the other lives longer than g, integrating over all possible values of a, and
multiplying by two to account for the possibility that either cell may die
first, I have for arbitrary ¢,

E[X—t|X>1] =2.[°f(a) [1 — F@)]E[X — a| X > a] da

-2 [T @EX] - f@ [ xf () ax
— af (a)[1 — F(a)] da

- 2£mf(a)E[X] da

~2f 7@ [ of (x) dx da

— 2" af @1 - F(a)] da
~2E(X] -2 ["xf (%) [ f(a) dadx

~2 [T af @1 - F@)] da
—2E(X] - 2 [T @)1 - F()] dx

—2 [T @0 - Fool dx
= 2E[X] — 4E[X] + 2E[2F(X)X]
=2{E[2F(X)X] - E[X]}

as stated.

Similar arguments lead to the conclusion that {2E[X] — E[2F(X)X]}
is the expected time that a pair of newly arrived Paneth cells spends as a
pair (i.e., the average time spent by a pair before one cell, the other, or
both cells die).

The final uninterpreted parameter, which first appeared in Eq. 14, is
v = E[2F(X)X]/E[X]. In a sense, v gives a measure of the relative
spread of the lifetime distribution of Paneth cells. Before discussing this
further, it will be useful to investigate the range of possible values for «.
By definition of expectation,

Elx] - [ xf(x)dx
- [0 - Foolex, (18)

as may be demonstrated either by integration by parts or by substituting
Eq. 5 into the last term and reversing the order of integration. Recalling
that dF(x)/dx = f(x), where F(x) is a cumulative distribution and f(x) is
the corresponding probability density, and noticing that F*(x), like F(x),
is a distribution function (because it ranges in value between 0 and 1 and
is nondecreasing), it may then be seen that

ERFCOX] - [ 25/ (x)F(x)dx

- .[” [1 — F(x)]dx. (19
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Now we are in a position to find the limits on +. Since the distribution
function F(x) is restricted to values in the range of 0to 1,0 < F(x) < 1, it
follows that [I — F?(x)] = [1 — F(x)], which in turn implies that

ERFXX] - 71 - F(x)ldx

> fo“’ [1 — F(x)ldx = E[X]

and hence that v = E[2F(X)X]/E[X] = 1. An upper limit to v is also
readily found by noting that, by the mean value theorem for integrals,

ERFOOX] - [ 2xf(x)F(x)dx

- 2F() " xf(x)dx = 2E(X],
where c is a constant in the interval (0, ). Thus,
l=y=2. (20)

Returning to the issue of variability of Paneth cell lifetimes as reflected
in v, if all Paneth cells had identical lifetimes, then v = 1 (one way to see
this is to observe that in this case, f(x) could be interpreted as the Dirac
delta function while F(x) would be a step function with the step at E[X]).
Values of v >1 would then represent populations of Paneth cells with
increasing lifetime variability.

As a final note to the discussion of the model, the reader may have
noticed that I have not explicitly incorporated into the model variation in
time of Paneth cell maturation to the point that Paneth cells are
recognizable as such. This could readily be explicitly incorporated.
However, it is not necessary for the estimation of the parameter of
interest, a. This is because any variability in the time to recognizable
differentiation will convolve with the lifetime distribution of the cells and
hence is already implicitly incorporated into the model. We need only
reinterpret the lifetime functions defined above as recognizable lifetime
functions.

Estimation of the Model Parameters

In this section I derive maximum likelihood estimators for the parameters
m, v, and a. The likelihood function for a model yields the probability (or
likelihood) of obtaining a set of data given a specified model with
specified parameters. It may then be argued that the most reasonable
estimate for the value of the parameters in a given model will be those for
which the likelihood function is maximized.

By definition, the likelihood function of the model is

Lfofufo - filmy,a) = T ()% (1)

k=0

where f; represents the number of crypts observed containing k =
0, 1,..., v Paneth cells. To derive maximum likelihood estimates of the
model parameters, one would differentiate Eq. 21 with respect to each
parameter, set each resulting equation equal to O (the point at which the
first derivative of a function is equal to 0 is an extrenum of the function),
and then solve for the parameter. By these means it may be readily shown
that the maximum likelihood estimator for the expected number of
Paneth cells in a crypt, m = A(1 + a)E[X] is

h=3 kS fr. 22)

k=0 k=0

with rh established, estimates for @ may be derived by maximizing Eq. 21
(for example, by using computer optimization routines). However,
another useful estimator for a may be derived by noting (I am grateful to
Dr. J. Templeton for this suggestion) that the probability of an even
number of Paneth cells in a crypt, Pleven number} = ' [¢(1) + ¢(—1)],
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and hence that
Pleven number} = Y% + Yhexp (—2q,), (23)

using Eq. 16. From this I may derive the likelihood of having M and R
crypts containing an even and odd number of Paneth cells respectively:

M )[P{cven number}]¥

[P{odd number}]?

- (MX} R)['/z + hexp (~2)1

[ — thexp (~24))1" @9

The advantage of Eq. 24 over Eq. 21 is that direct analytical estimates for
a may be derived from Eq. 24 whereas Eq. 21 results in far more complex
derivatives. To find the maximum of the likelihood L(M, R | a, v), I took
the partial derivative of log L(M, Rla, v) with respect to a (note that
L(M, R|a, v) and log L(M, R | a, v) will have the same maximum since
L(M, R|a, v) is positive), equated the result to zero and solved for a.
Thus, I derived a maximum likelihood estimate for o, &,

2m + log[(M — R)/(M + R)]
6m — 4my — log[(M — R)/(M + R)]

(25)

&=
Inspection of Eq. 25 makes it clear that since0 <a < 1,andsince | <y <
2 (by Eq. 20),

_log[(M — R)/(M + R)]

l=y=1

=2,M>R. (26)

Substituting Eq. 26 into Eq. 25, I derive the range for the maximum
likelihood estimator of «,

2m + log[(M — R)/(M + R)]
2m — log[(M — R)/(M + R)]

=sa=sl1. (0X))

This is an important result as it indicates the limitations of the methods
used; I will not be able to obtain a unique best estimate for a. The best I
will be able to do is provide a lower limit to the amount of symmetry. This
deserves further comment. The problem stems from the fact that the data
provide no direct independent estimate of v, which is a measure of the
relative variability in Paneth cell lifetimes. The model is such that the
effects of a decrease in symmetry may be countered by a decrease in the
variability of Paneth cell lifetimes. This follows from the comments made
after Eq. 16 where it was indicated that the total number of Paneth cells
results from the convolution of the number of Paneth cells that are
effectively single with the number of Paneth cells that are paired. It is the
latter population of cells that is crucial as they provide the excess parity
bias (excess over what would be expected from a simple Poisson distribu-
tion). A decrease in a would result in a smaller proportion of paired
Paneth cells arriving and hence would decrease the parity bias. However,
if at the same time vy was also decreased, the decreased variability in
Paneth cell lifetimes would offset the effects of the change in a by
resulting in a relative increase in the proportion of time that these paired
cells remained paired and hence contributed to the parity bias. Thus the
effects of a change in o may be countered, within limits, by a correspond-
ing change in v. In the extreme of identical Paneth cell lifetimes (i.e., if
v = 1) we would reach the lower limit of the estimate for a consistent with
the data. However, as is indicated in the discussion, it is unlikely that
Paneth cells have identical lifetimes and hence the lower limit to a, as
determined here, is conservative.

Thus, I used Egs. 22, 26, and 27 to derive maximum likelihood
estimates of m, v, and «, respectively. The goodness of the fit of the model
to the data was determined by the chi-squared test.
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RESULTS

The distribution of the number of Paneth cells per crypt is
shown in Fig. 2. The results were: mean number of Paneth
cells per crypt = m = 8.53, number of crypts containing an
even number of Paneth cells = M = 106, and number of
crypts containing an odd number of Paneth cells = R = 35.
Substituting these results into Eq. 26 yields 1 < ¥ <
1.0402. Substituting this range of values for 4 into Eq. 25
(i.e., by Eq. 27) yields a maximum likelihood estimate for
the range of « (the probability that a Paneth-cell-produc-
ing-stem-cell mitosis is symmetric) of 0.92 < & < 1.0 (note
that similar results were obtained by maximizing Eq. 21
with computer-based optimization routines). I also deter-
mined an estimate of an interval in which the true value of
a would be found with 95% confidence given that v = 1
and m = 8.53. This range was 0.88 < & < 0.95. Hence, a
more conservative estimate of the probable range for « is
0.88 < a@ < 1.0. There was no significant difference
between the fitted model and the data (Fig. 2 a; x% P >
0.1). I also tested a model in which « = 0 (i.e., all Paneth
cell producing stem-cell mitoses are asymmetric). The fit is
poor (Fig. 2 b) and may be rejected with high statistical
confidence (x2 P < 0.001).

DISCUSSION

A clear parity bias was observed in counts of the number of
Paneth cells per crypt (106 out of 141 crypts contained an
even number of Paneth cells). When the model of Paneth-
cell renewal developed in this paper was applied to these
results, I found that the results were consistent with a
range for a of 0.92 < a < 1.0 where « is the probability that
any given stem-cell mitosis is symmetric (from Eq. 27). In
other words, 92%-100% of all Paneth-cell-producing-
stem-cell mitoses produced two Paneth cells.

Results from previous experiments make it likely that
the range of a is narrower than these results indicate.
Previous studies of Paneth-cell renewal have found that
while the mean Paneth cell lifetime is ~3 wk, degenerating
Paneth cells were observed that were no more than 16 d old
(Bjerknes and Cheng, 1981a). This suggests that the
Paneth-cell-lifetime distribution is relatively wide. The
model developed here is sensitive to variability in Paneth
cell lifetimes, but the data allow only an estimate of the
range of variability through the parameter v (y is a
parameter sensitive to the variability inherent in the
Paneth-cell-lifetime distribution; as the relative spread of
the lifetime distribution increases, so does v). The range of
values for v consistent with the results was 1 <y < 1.04.
The lower limit to v, 1, would correspond to a situation in
which all Paneth cells had identical lifetimes. The evidence
cited above indicates that this is not the case. Thus, I would
argue that v must be >1 and that therefore a > 0.92, and
probably ~1. Hence, it is likely that most if not all
Paneth-cell-producing stem-cell mitoses are symmetric.

There are, of course, plausible explanations for the
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FIGURE 2 Observed (solid bars) and expected (open bars) distributions
of the number of Paneth cells in mouse duodenal crypts. Note the high
probability of crypts containing even numbers of Paneth cells (106/141
crypts). (a), the expected distribution is derived from a fit of the model of
Paneth cell renewal described in the text. The values of the model
parameters used in this fit were: @ = 1.0 (i.e., all Paneth-cell-producing
stem-cell mitoses are symmetric and hence produce Paneth cells two at a
time); v = 1.0402; and m = 8.53. The fit was not significantly different
from the data (x2, P > 0.1). (b), the fitted model had « = 0.0 (i.e., all
Paneth-cell-producing stem-cell mitoses are asymmetric and hence pro-
duce Paneth cells one at a time) and m = 8.53. With these parameters, the
model is equivalent to a Poisson process with rate m. The fitted
distribution was significantly different from the observed results (x2 P <
0.001).
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observed parity bias in the number of Paneth cells per crypt
other than symmetric stem-cell mitoses. The most likely
alternative is the existence of an undifferentiated but
committed Paneth-cell progenitor (e.g., a cell type inter-
mediate between the stem and Paneth cells) that divides
symmetrically. Another plausible alternative would be the
existence of some mechanism forcing correlations between
Paneth cell producing stem cells. To my knowledge, no
evidence exists at present that would support either alter-
native. It would also be worthwhile to note that if the
transition from the stem cell state to the differential state is
not coincident with stem cell mitosis then all stem cell
mitoses must be symmetric.

In conclusion, the results are consistent with a model of
Paneth-cell renewal in which every Paneth-cell-producing
stem-cell mitosis is symmetric. The implications of this
conclusion for the issue of the symmetry of stem-cell
mitoses in general are obvious but await further study.
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