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ABSTRACr In general, membrane-membrane adhesion involves specific molecular binding and cross-bridging
reactions. The ideal, classical view is that near equilibrium the forces required to separate adhesive contacts are

essentially equal to those induced in the membrane when the contact is formed. In contrast to the classical view,
experimental observations often show that negligible levels of tension are induced by the adhesive contact even though
the tension required to separate the contact is large enough to rupture the membrane. The deviation in tension levels
associated with contact formation and separation appears to be due to the sparse distribution of strong molecular
cross-bridges. Here, the mechanics of membrane-membrane adhesion and separation is developed for the case of
discrete, kinetically trapped cross-bridges. The solution is obtained by numerical computation of the membrane contour
that minimizes the total free energy (membrane elastic energy of deformation plus cross-bridge energies) in the contact
zone. This solution is matched with the analytical solution for membrane stresses and geometry derived for the adjacent,
unbridged zone. The results yield specific values of the macroscopic tension applied to the membrane in the plane region
away from the contact zone and the microscopic angle at the edge of the contact zone. Two disparate values of the
macroscopic tension are found: (a) the minimum tension required to separate the adherent membranes; and (b) the
maximum tension induced in the membranes when the contact is formed (i.e., the level of tension at which the contact
will just begin to spread). The results show that the deviation between these two tensions can be very large and depends
strongly on the surface density of cross-bridges. In addition, the results provide an estimate of the restraining forces that
anchor receptors within the plane of the membrane.

INTRODUCTION

In the preceding paper (1), the mechanics of membrane-
membrane adhesion were examined for the case where the
adhesive cross-bridging forces between the membranes are
distributed continuously over the surfaces but with a finite
extent of interaction away from each surface. For the
continuum model, the tension necessary to oppose spread-
ing of a membrane-membrane contact is equal to the
minimum level of tension required to separate adherent
membranes. Also, the macroscopic tension applied to the
membrane in the free region away from the contact is given
by the classical Young equation, which relates the free
energy reduction per unit area for formation of planar
contact to the membrane tension and macroscopic contact
angle. The continuum model has been shown to be a valid
representation for adhesion and separation of synthetic,
phospholipid bilayer membrane vesicles that were allowed
to aggregate either via van der Waal's attraction (2) or in
high molecular weight glucose polymer (dextran) solutions
(3). It also appears to be an appropriate model for red cell
rouleaux formation (4, 5).
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In contrast with these observations of uniform spreading
and the equality of membrane tensions that result from
spreading and that are necessary to separate adhesive
contact, experiments often show that there is little or no
tendency for membrane-membrane contact to spread (i.e.,
a negligible level of tension is induced by the formation of
the contact) even though the tension required to subse-
quently separate the contact is very large (6). The devia-
tion of the level of tension induced in the membranes by
contact formation from that required to separate the
contact appears to be due to the sparse distribution of
strong molecular cross-bridges. Thus, the purpose of this
paper is to consider the mechanics of membrane-
membrane adhesion and separation for discrete molecular
cross-bridges.
The cross-bridging sites (receptors) in membranes are

not stationary but are, to some extent, mobile in the plane
of the membrane. Here it will be assumed that the
receptors are kinetically trapped (i.e., stationary). This
assumption is equivalent to the statement that the surface
diffusion of receptors is much slower than the reactions for
formation and breakage of cross-bridges. Experimentally,
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this assumption would be consistent with rapid formation
(spreading) of membrane-membrane contact to a nearly
static, equilibrium configuration (no apparent time varia-
tion). The rapid spreading would be limited only by viscous
dissipation in the membrane and adjacent media, not by
reaction kinetics or receptor diffusion. Similar, rapid
deformation followed by static configurations are observed
when red cells adhere via dextran polymer, lectin, or
antibody cross-bridges (4, 6). If, on the other hand, the
receptors were highly mobile, it is expected that there
would be an accumulation of cross-bridges with time and
perhaps a gradual increase in the size of the contact zone.
This appears to be the situation for macrophages left to
spread for fractions of an hour or more on substrates
coated with immobilized immune complexes (7). A model
for the situation of total kinetic freedom for receptors has
been proposed (8, 11); in the Appendix of the first paper
(1), it was shown how the approach of these authors could
be expanded to include mechanical equilibrium and time-
dependent contact formation. Currently, models do not
represent active (driven) processes of adhesion and engulf-
ment (e.g., phagocytosis). However, for the initial phase of
surface recognition and adhesion, it is expected that the
model of kinetically trapped receptors is a reasonable
approximation. Subsequent slow diffusion (accumulation)
of receptors can be considered simply as a sequence of
static distributions of cross-bridges.

Another reason for the detailed analysis of membrane
stresses proximal to and within the adherent zone is to
evaluate the lateral forces that act to drag cross-bridges
and accumulate them at the edge of the contact zone when
membranes are separated. This effect has been observed
when red blood cells that have been bound together by
plant lectins are separated (6). With the calculation of
lateral forces that act on cross-bridges and measurements
of cross-bridge accumulation at the edge of the contact
zone (e.g., by fluorescence microscopy), estimates can be
made of the restraining forces that anchor receptors within
the plane of the membrane.
The approach here is to determine the equilibrium

geometry of a membrane-membrane contact held together
by discrete cross-bridges; the solution is obtained by
numerical computation of the membrane contour that
minimizes the total free energy (membrane elastic energy
of deformation plus cross-bridge energies) in the contact
zone. This solution is then matched with the analytical
solution for membrane stresses and geometry that was
obtained previously for the adjacent, unbridged zone (1).
The results yield specific values of the macroscopic tension
applied to the membrane in the plane region away from the

contact zone (normalized by the work or free energy of
cross-bridge formation per unit area) and the microscopic
contact angle at the edge of the contact zone. Two dispa-
rate values of the macroscopic tension are found: (a) the
level of tension that stresses the first cross-bridge at the
edge of the contact zone to the near breaking point; and (b)
the reduced level of tension that will just permit the
membranes to approach sufficiently for the next cross-
bridge to form adjacent to the contact zone. The former is
the minimum tension required to separate adherent mem-
branes; the latter is the maximum tension induced in the
membranes when contact is formed (i.e., the level of
tension at which the contact will just begin to spread).
Deviation from either of these two tensions can be very
large and will be shown to depend strongly on the surface
density of cross-bridges, consistent with experimental
observations.

EXAMPLE OF ADHESION/SEPARATION
BEHAVIOR FOR DISCRETE
CROSS-BRIDGES

In contrast to the adhesion/separation behavior expected for continuous
adhesive forces between membranes, membrane-membrane adhesion via
a sparse distribution of cross-bridges is characterized by little or no
tendency to spread when the membrane capsules are brought into contact
and by the requirement for large membrane tensions in order to separate
the contact after formation. An example of this behavior is shown in Fig. 1
where two red blood cells have been maneuvered into proximity to test
adhesion (6). The cell on the left was first equilibrated with a solution that
contained the plant lectin wheat germ agglutinin (WGA) at -lo-' M
concentration; this cell was aspirated by a high suction pressure so that it
formed a rigid, spherical test surface outside the pipette and was
transferred to a second chamber, which contained red cells in WGA-free
buffer. A second red cell was aspirated with low suction pressure so that it
remained a flaccid discocyte and then was positioned just to contact the
WGA-coated test cell. No spontaneous spreading of the flaccid cell
surface on the test cell was observed even though adhesive contact had
been formed. (By comparison, if a high molecular weight polymer like
dextran was in the solution at the proper concentration [9], rapid
spreading and encapsulation of the test surface always occurred.) Based
on the measured values of red cell membrane elastic moduli, the threshold
free energy reduction per unit area that is sufficient to initiate spreading
is calculated to be -5-10 x 10-4 erg/cm; appropriate to this threshold
level, tension levels of 10- dyn/cm would be induced in the red cell
membrane (10). Subsequent separation of the WGA-adherent red cells
required large suction pressures and caused significant elastic deforma-
tion of the flaccid cell as shown in Fig. 1. Values of the tension near the
contact zone were calculated to be from 0.1-1 dyn/cm over the range of
equilibrium separation steps (6). Clearly, there was an enormous differ-
ence between the negligible tension associated with contact formation and
the large tensions required to separate the contact. Similar behavior has
been observed with other lectins and monoclonal antibodies to red cell
surface glycoproteins. For all of these situations, the number of receptors
on the red cell surface is estimated to be -I06 or equivalent to 10'2/cm2
(i.e., 100 A2 per molecule).

FIGURE 1 Videomicrographs of the step-wise separation of red blood cells that have adhered via WGA cross-bridges. The cell on the right
was first coated with WGA, aspirated into a rigid spherical surface, and transferred to the chamber that contained only red blood cells in
WGA-free buffer. The cell on the left (uncoated) was then maneuvered into position and adhesive contact was made as shown in the top panel.
The flaccid cell on the left was subsequently separated in steps at which the force of attachment was measured from the pipette suction
pressure and cell geometry as shown in the lower panels. (Take from Evans and Leung, 1984).
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ADHESION MODEL AND MECHANICAL
EQUILIBRIUM

As in the previous development for continuous cross-bridges (1), the
analysis here considers the cross-bridging (adhesion) forces as finite range
interactions. Thus, at equilibrium, there are two membrane regions: (a) a
free (unbridged) zone where the membranes are not subject to attractive
forces; and (b) an adherent (bridged) zone where the membranes are held
together by attractive cross-bridging forces. This is illustrated in Fig. 2.
As before, the membrane is treated as an elastic continuum where the
discrete cross-bridging forces are assumed to act normal to the plane of
adhesive contact as illustrated in Fig. 2. The approach is to determine the
membrane contour that will minimize the total free energy (elastic
deformation energy plus cross-bridge energies) in the contact zone and
then to require continuity of this solution with the analytical solution
determined previously for the free (unbridged) region (1). Because of the
high curvature adjacent to the edge of the contact zone, the problem is
reduced to consideration of the contour in the meridional plane that
depends only on the curvilinear coordinates (s, 0) of the membrane as
illustrated in Fig. 2. Also shown in Fig. 2 are the intensive forces
(membrane tension, Tm, and transverse shear, Qm) that are supported by
the membrane (10). In the macroscopic region away from the adherent
zone, the membrane is subject to a uniform tension, Tm,, where the
membrane forms a macroscopic (observable) contact angle of 00 with
respect to the other surface.

Recalling the solution for mechanical equilibrium of the membrane in
the free (unbridged) region, the distribution of membrane tension,
transverse shear, and membrane curvature were obtained as functions of
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FIGURE 2 Schematic illustration of the adherent (bridged) and fri
(unbridged) zones proximal to the edge of the contact zone. The discrel
forces that arise from cross-bridges between membrane receptors al
illustrated as well as the intensive forces supported by the membrai
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the curvilinear angle, 0, the macroscopic tension applied to the membrane,
and the membrane curvature elastic or bending modulus, B.

Tm = 74m * cos(00 - 0)

Qm= .m* sin(0O - 0)

(Km)2 = ( BT) [1 - coS(0 -_ 0)] + (KO)- (1)

These variables are made continuous with the solution obtained for the
adherent (bridged) zone.

In the adherent zone, the total free energy functional includes mem-
brane elastic deformation plus cross-bridge energies,

F = FED + FCB- (2)
This functional is minimized in conjunction with the work required to
displace forces at the boundaries; the variation is taken with respect to the
parameters that characterize the membrane contour in the contact zone.
The same approximation to the intermolecular force,f, will be employed
here as used previously for the continuous cross-bridge model (1). The
approximation considers that the force-displacement relation for the
cross-bridges is linear up to a maximum (breaking) force and that there is
zero restoring force for greater bond extensions.' The displacement of the
bond from equilibrium is represented by the variable t with the maximum
strength of the bond given by fn at an extension or bond length of Qb.
Hence, the contribution to the total free energy from extension of the
cross-bridges is given by the approximation,

1 N

FCB = 2 (fn - 9b) E r
2 i-O,I

(3)

where N is the number of cross-bridges involved in the adhesive contact
and the product, Fb fn. Qb/2, is the free energy change (work) which
results from formation (-) or breakage (+) of a single cross-bridge. The
initial value for the sum of cross-bridge energies (i = 1 or 2) is determined
by one of two situations: (a) i = 1 when a cross-bridge is maximally
stretched at the edge of the contact zone; this is the case for separation of
the adherent contact. (b) i = 2 when a cross-bridge is about to be formed
at the edge of the contact (given by the lattice position i = 1) but no
attractive force is present. This is the condition for minimal spreading of
the contact.
The free energy functional for elastic deformation of the membrane is

given by (10),

FED = ( 2) J4 (Km- K )2 ds

+ Qg*J (Tm - E)ds, (4)

where the first term is the bending or curvature elastic energy and the
second term is the work for in-plane extension of the membrane. The
principal curvature of the contour is Km; K. is the unstressed or the
natural curvature of the membrane, which will be assumed to be zero in
the sample calculations; e is the measure of strain along the contour (i.e.,

7 the fractional extension of membrane elements). The free energy equa-
tions for membrane deformation and cross-bridge extension, Eqs. 3 and 4,
represent the total energy of a strip of membrane that has a width of Q3.
The parameter Qs is the average distance between cross-bridge sites and
thus represents the dimension of a lattice on the surface.2 In the region of

'See Appendix of first paper (1) for discussion of the physical force
approach in relation to chemical equilibrium.
2The parameter Qs represents the regional grouping of receptors for a
nonuniform (patchy) distribution on the cell surface. It is assumed that
the receptor patches are spaced, on the average, by R, separation
distance.
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high curvature that characterizes the membrane contour close to and
within the adherent zone, membrane bending energy determines the
shape of the contour so the in-plane (extensional) elasticity will be
neglected. As such, the membrane tension acts as a Lagrange multiplier
in Eq. 4 with the auxilliary requirement that the local strain approach
zero, i.e.,

e _0. (5)

This means that each membrane segment between cross-bridge sites is
inextensible. The result is that the density of cross-bridge sites remains
uniform and constant.

Mechanical equilibrium is defined by the expression that the variation
in total free energy is equal to the variation in work required to displace
forces at the boundaries, which must be satisfied in association with the

6WB = 6F (6)

constraint equation, Eq. 5. The virtual work required to displace forces at
the boundaries reduces to the virtual displacement of the macroscopic
tension T°. supported by the membrane in the planar region away from
the contact zone,

which, for contact angles < 300, is well approximated by,

dr Idz\2
ds - 2 kds) (10)

The result is that the lateral displacements are determined by the normal
displacements and a single function, z(s), completely specifies the
contour. For this class of contours, the variational statement of equilib-
rium reduces to

0 n .Q|b) f -

B i-o,1

+ Qg *
N R(Km-KOm) * bKm - dsT- °m * bso. (11)

The method of solution utilizes a Newton-Raphson iterative solution to
Eq. 11 where the displacement function, z(s), is a piece-wise continuous
function with continuous first and second derivatives. The contour
functions are called Spline functions (1 1),

3

z(s) = E Cij (s - siy, Si c S < Si+l-
j-O

(12)

6WB = Tm - SO, (7)

where bs is the virtual displacement of the membrane in the direction
tangent to the surface. Eq. 7 presumes that the membrane contour in the
free (unbridged) zone is that prescribed by Eqs. 1 and that the membrane
surface is inextensible.

Solution of Eqs. 5, 6, and 7 is obtained by iterative, numerical
computation of the membrane contour that minimizes the functional
consistent with the constraint requirements and the forces at the bounda-
ries. The contour is defined by displacements (z, r) from initial positions
in the membrane; z is the displacement normal to the plane of the
adhesive contact; r is the lateral displacement in the plane of the contact.
Hence, the cross-bridge extensions are given by,

Li= zi. (8)

The contact angle, 0, and curvature, Km. of the membrane contour are
given by,

0 = sinF' (-d)
ds

d2z
Km=d/O ,

which, for contact angles <300, can be well approximated by

O=
dz~-~
ds

Km ~-ds2 (9)

The measure of strain, E, along the membrane contour is given by,

dr I[(dr (dz\2]
ds 2[(ds) +ds)J

Solutions to the variational expression for mechanical equilibrium are
restricted to the class of contours that are locally inextensible; hence this
equation reduces to,

d I[+ 2(d) =
ds [ 2 \ds) 2\dsJ
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FIGURE 3 The macroscopic tension applied to the membrane in a plane
region away from the contact zone, normalized by the adhesion energy
per unit area, is plotted vs. the dimensionless parameter that represents
the ratio of adhesion to bending (deformation) energies. These results are
for the specific case where the macroscopic contact angle (00) is 900 and
for two ratios, Qg/Qb, of cross-bridge spacing to bond length, 1:1 ( . )
and 10:1 (---). For each cross-bridge density (Q8/Qb), two levels of tension
are predicted: (a) an upper value which represents the minimum level of
tension required to separate the adhesive contact; (b) a lower value that
characterizes the maximum level of tension that will just allow the contact
to spread. Even for moderately dense cross-bridges (Q/Qb = 1), the
tension for separation deviates from the level of tension which will allow
the contact to spread. The solid line (-) is the level of tension predicted
from the classical Young equation where there is no deviation between the
minimum tension required to separate adhesive contact and the tension
that will allow the contact to spread.
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The positions, si, are the curvilinear locations of cross-bridge sites; the
coefficients, Ci,, are the displacements normal to the plane of the adherent
contact at each cross-bridge site. The solution is required to be continuous
with the solution, Eqs. 1, at the intersection with the free unbridged
zone.

RESULTS AND DISCUSSION

Solution to the variational expression, Eq. 1 1, coupled with
the continuity requirement at the intersection with the
unbridged zone yields specific values of the macroscopic
tension for each macroscopic contact angle. In addition,
there are two levels of tension predicted for each contact
angle: (a) an upper value which represents the minimum
level of tension required to separate the adhesive contact;
(b) a lower value which characterizes the maximum level
of tension that will just allow the contact to spread. The
tension values are obtained in dimensionless form, normal-
ized by the work or energy, -y, of cross-bridge separation
per unit area of membrane-membrane contact; i.e.,

71m To/,y
where

y = Fb/Qg= (fn . Qb/2 * Qg

1.0 0

'A
05_\* N;

N\*
N

:.5 -

Z/,4

The ideal, Young equation predicts that the macroscopic
tension normalized by the adhesion energy density is only a
function of the macroscopic contact angle, 00,

7m/T = 1/(1 - cos00).

This ideal relation is appropriate for an infinitely dense
(continuum) cross-bridge lattice (1) where there is no
deviation between the minimum tension required to sepa-
rate adhesive contact and the maximum tension that will
allow the contact to spread. Fig. 3 shows the two levels of
dimensionless tension determined for a macroscopic con-
tact angle of 900 plus two ratios, Qg/Qb, of cross-bridge
spacing to bond length, 1:1 and 10:1. As shown in Fig. 3,
the tension values depend on the dimensionless parameter,
Oa,

= (Fb * Qb/2 * B * 2)1/4,

which represents the ratio of adhesion to bending (defor-
mation) energies. In the previous continuum development
(1), the inverse of this parameter represented the spatial
width of the boundary layer over which bonds are stretched
at the edge of the contact zone. As expected, the two levels
of tension approach the ideal value from the Young

S /1b
FIGURE 4 Membrane contours are shown for two ratios, Qg/Qb, of cross-bridge spacing to bond length, 1: 1( . . .) and 10:1(---), and a specific
value of the parameter for adhesion to bending energy ratio 0.,, 0.21 1, and a macroscopic contact angle (00) of 900. Open circles and solid
circles represent separation and adhesion, respectively (Qg/Qb = 1.0). Open and solid triangles represent separation and adhesion, respectively
(Qg/Qb = 10.0). Also shown is the contour ( ) derived previously from the continuum model where the cross-bridges were assumed to be
infinitely dense (1). For relatively dense populations of cross-bridges, the contours deviate only slightly from that predicted by the continuum
model (-). However, for low densities (i.e., Qg/Qb = 10), there is significant deviation of the contours from the continuum solution. Bond sites
are represented by A, A, 0, 0. Note there are no bonds formed at the first receptor site (i.e., no solid circle and no solid triangle) for the
situation where the contact is about to spread to the next site. The displacement axis is greatly enlarged in comparison to the axis for the
curvilinear distance along the membrane.
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equation when the density of cross-bridge sites becomes
large.

There is a specific membrane contour and microscopic
contact angle associated with each equilibrium level of
tension. Fig. 4 shows the contours in the adherent zone
determined for two ratios, Qg/Qb, of cross-bridge spacing to
bond length, 1:1 and 10:1, and a specific value of the ratio
of adhesion to bending energies. Also shown is the contour
derived previously from the continuum model where the
cross bridges are assumed to be infinitely dense. (Fig. 5
shows the progressive increase in microscopic contact angle
at the edge of the contact zone as the ratio of adhesion to
bending energies is increased.) It is apparent that the
contours (one for separation and the other for spreading of
the contact) and microscopic contact angles deviate only
slightly from the continuum solution when the cross-
bridges are relatively dense (i.e., Rg/9b = 1), whereas the
contours and angles deviate appreciably from the con-
tinuum solution when the cross-bridge density is low (i.e.,
9g/9b = 10). It is also apparent that when the cross-bridge
density is low, only the first cross-bridge is significantly
stressed. Also, when the sites are far apart, the tension
must be reduced to nearly zero to permit the next cross-
bridge to form; thus, there is little or no tendency for the
contact to spread unless the surfaces are forced together.
Since nearly all of the stress is taken by the first cross-
bridge site at the edge of the contact zone when the density
is low, the tension required to separate the contact greatly
exceeds the value anticipated from the Young equation.
The level of tension required to separate the contact
approaches the value predicted by the Young equation
multiplied by the ratio of the cross-bridge spacing to bond
length, when the cross-bridge density is low,

'mi/TY (qg/9b)/(0 - COS 0o).

This relation shows that the average work required to
separate adhesive contact per unit area is equal to the
adhesion energy density, -y.

Another interesting feature that results from the analy-
sis is the prediction of the lateral forces applied to each
cross-bridge (receptor). Fig. 6 shows the dimensionless
lateral force applied to cross-bridges for two levels of
density (Q8/2b = 1, 10) and a specific ratio of adhesion to
bending energies. For low densities, essentially only the
first site is subject to a lateral force, whereas for higher
densities the lateral forces are distributed over several
cross-bridge sites. The implication is that for low densities,
the lateral forces will act to displace and accumulate sites
at the edge of the contact zone and as such will essentially
form a stiffened line of cross-bridges. As the accumulation
proceeds, the tension required to separate the contact will
become progressively larger. This effect has been observed
previously when adherent red cells were separated (6).
The results clearly show that the density of cross-bridge

sites must be determined along with the mechanical
stresses associated with membrane-membrane adhesion/
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FIGURE 5 Values for the microscopic contact angle at the edge of the
contact zone are plotted as a function of the parameter that represents the
ratio of adhesion to bending energies for a specific value of the macro-
scopic contact angle (Q%) of 900. The solid line (-) is the microscopic
contact angle derived from the continuum solution where the cross-
bridges are assumed to be infinitely dense. There are two broken curves
plotted for each ratio, Qg/Qb, of cross-bridge spacing to bond length, 1:1
(. * *) and 10:1(---). The upper broken curves represent the situation
where the contact is separated and the lower curves are appropriate to the
situation where the contact is about to spread.

separation to derive the intrinsic properties of molecular
bridging forces and energies. Also, because of the paucity
of receptors in biological membrane surfaces, mechanical
properties of the substrates will always interfere with the
initial recognition and adhesion process. Once contact is
established subsequent separation may be very difficult
and the contact may be increased by active and passive
deformation of the cells themselves. The usefulness of
model calculations such as these is that controlled adhesion
experiments can be analyzed to provide not only informa-
tion about molecular forces and energies but also informa-
tion about the forces that anchor receptors within the
membrane.
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FIGURE 6 The lateral force applied to cross-bridges, normalized by the macroscopic tension times the cross-bridge spacing, is plotted vs.
cross-bridge position for a specific value of the parameter for adhesion to bending energy ratio and a macroscopic contact angle (00) of 900.
(3a = 0.211. The triangles are for a cross-bridge density given by Qg/Qb = 10 and the circles are for a cross-bridge density given by Qg/Qb = 1-
These lateral forces would act to accumulate cross-bridges (receptors) at the edge of the contact zone.
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