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ABSTRACT The photoprotein aequorin, which emits light as a nonlinear function of calcium concentration, is often used
to measure intracellular calcium. In the presence of inhomogeneities or fluctuations of calcium concentration, the
nonlinearity results in discrepancies between mean calcium concentration estimated from average aequorin light and
the true mean. It is usually assumed that the error is an overestimation, but in the presence of large calcium fluctuations,
errors of either direction are possible. Here we show that for aequorin to overestimate the mean calcium, the point in the
calcium-light plane representing the true mean calcium and measured mean aequorin light must lie in the convex

envelope of that segment of the aequorin response curve that lies between the minimum and maximum values of
fluctuating calcium, and must lie above the curve. By explicitly constructing this region, we derive a quartic equation
that gives the largest measured calcium for which aequorin can be assumed to give an overestimate, as a function of the
maximum calcium fluctuation. In particular, if calcium fluctuations do not exceed 1 mM, aequorin measurements
below 7.25 ,uM may be assumed to overestimate the true mean calcium.

The intensity of luminescence of the photoprotein aequorin
is a markedly nonlinear function of the calcium concentra-
tion. It is widely recognized that, as a result, estimation of
intracellular calcium by the luminescence of injected
aequorin will be in error if there is spatial or temporal
inhomogeneity in the intracellular distribution of calcium.
It is generally assumed that, because the aequorin light
curve is convex in the range of calcium concentrations
normally encountered in the cell interior, any such error
will be an overestimate of the true mean calcium concen-
tration. It is intuitively clear that, since the aequorin
response curve is sigmoidal rather than convex, the pres-
ence of large fluctuations of calcium, even if present in a
small fraction of the cell, or for a small fraction of the time,
might render this assumption falacious.

Recent evidence indicates that in heart muscle, in
apparently steady states, there may be large oscillations in
myoplasmic calcium. The peak calcium in these oscilla-
tions has been variously estimated (1-3) to lie between 1
and 40 ,uM, which approaches the level at which the
aequorin-light curve has its inflection point. It is therefore
appropriate to determine, in a relatively formal manner,
the conditions under which the apparent calcium estimated
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from mean aequorin light can be assumed to be an upper
limit for the true mean calcium. Here we analyze this
problem by assuming that calcium concentration sampled
by aequorin is statistically distributed within a finite range,
bounded by upper and lower limits. Such limits might be
found, for example, by arguing that the local concentration
of calcium around the sarcoplasmic reticulum during
release could not exceed the source concentration within
that organelle. Our mathematical task will be to show that,
using these limits on the range of calcium fluctuations, we
can determine a safe upper limit on the measured calcium
(i.e., the calcium calculated from the mean aequorin light
by means of the aequorin calibration curve) such that, if
the measured calcium falls below the safe limit, we may
take it to be an overestimate of true mean calcium.
We approach the problem in several steps. We first

consider what possible combinations of true mean calcium
and mean aequorin light could arise from possible distribu-
tions of calcium concentration within the limiting range.
We show that, regardless of the details of the calcium
distribution, all such combinations lie within a certain
convex region in the calcium-light plane. For any given
calcium distribution, it is clear that the aequorin light will
overestimate true mean calcium if the corresponding point
in the plane lies above the aequorin calibration curve. In
the second step we show how to geometrically construct the
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region consisting of all possible combinations of calcium
and light that lie above the calibration curve and could
arise from a calcium distribution lying within the assumed
range of fluctuation. From the geometrical construction, it
will become clear that there exists a safe value of mean
calcium, below which all realizable combinations of cal-
cium and light lie above the calibration curve. In the third
step we abstract from the geometrical picture an analytical
equation for the safe value, which we solve numerically.
The rate of light emission by a fixed quantity of aequorin

in the presence of a calcium concentration C is given (4)
by

L 1+ kC '3,
Lmax Ik+K+kC)

where Lmax is the saturating rate of light emission and
125 and k = 2.6 ,uM-'. From now on we will assume
light intensity is normalized, so that Lmax = 1. The fun
L(C) is plotted in Fig. 1. It is a monotonic S-sh
function, with an inflection point at C = 47 ,uM. I
calcium concentration in the region from which lig
averaged has an arbitrary probability distribution, P
with lower and upper limits, Cmin and Cmax, then the r
intensity will be

Lm= fc L(C)P(C) dC,
mn

while the true mean calcium will be

cm = ccP(C)dC.Cmin
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FIGURE 1 The nonlinear relation between normalized aequorin lumi-
nescence (ordinate) and calcium concentration (Eq. 1). In the low
calcium region the relationship is convex, but over the large range of
calcium plotted here it is sigmoidal, with an inflection point shown by the
asterisk.
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The apparent mean calcium concentration Cap will be
the value calculated from the mean aequorin light such
that L(Cap) = Lm. If, for a particular distribution, P(C), we
plot Cm vs. Lm as a point in the calcium-light plane of Fig. 1,
then the condition for the apparent calcium to be an upper
limit for the true mean calcium is simply that the point lie
above the curve L. To determine conditions under which
that will be the case, we determine the region CE, which is
the locus of all possible points in the plane that represent
possible values of (Cm, Lm) for any possible calcium distri-
bution P. Let the range of fluctuation of calcium lie
between Cmin and C., Then we arrive at the following
theorem.

THEOREM 1

The region CE is the convex envelope of the segment S of
the curve L between C.,,n and C,m,ax, i.e., the smallest closed
convex set containing that segment of the curve.

Proof
nean First note that CE contains the segment S, since a distribu-

tion P concentrated on a single constant value C° of
calcium between C,. n and Cmax will give Lm = L(C°) =

(2a) L(Cm). CE is a convex set since if a and b are positive
numbers with a + b = 1, then if PI and P2 are two
distributions that give rise to the points (Lmi, Cm.) and

(2b) (Lm2, C..2) then aPI + bP2 is a properly normalized
probability distribution that gives rise to the point

n is (aLmI + bLm2, aCm1 + bCm2) which lies on the chord
between the first two points, because of the linearity of Eqs.
2a, b. Therefore, we need to prove that CE is the smallest

(2c) such convex set. Suppose that CC is any closed convex set
containing the segment S. If p = (Lm, Cm) is the point
corresponding to a calcium distribution concentrated on a
finite number of values of calcium Ck, k = 1 ... N with
probabilities Pk, then p lies in CC. To see this write the
coordinates ofp from Eq. 2 as

N

Lm = E L(Ck)Pk
k-i
N

Cm = Z Ckpk.
k-I

(3)

If N = 2, then the fact that p is in CC follows from that
set's definition as a convex set. Suppose that it is true for
N - 1. We separate the first term from the sums in Eq. 3
to rewrite it as

Lm = p,L(C1) + ( Pr) [L(Ck)Pk/( Pr)

Cm =PiC, + (.Pr) [CkPk/(ZPr)] (4)
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where the sum in parentheses has been multiplied and
divided into each of the second terms. If we define

N

Q1 Z Pr
r-2

Qk - ; k = 2 ...N
QI

(5a)

(5b)

we can rewrite Eq. 4 as
N

Lm = p,L(C,) + Qi Z L(Ck)Qk
k-2

N

Cm= piCi + Ql E CkQk- (6)
k-2

But by construction the Qk (k = 2 ... N) form a set of
N - 1 normalized probabilities, so that the sums in Eq. 6
form, by hypothesis, the coordinates of a point p' that lies
in CC. Therefore, we can write in two-dimensional vector
notation

p = pl(L[C,], Cl) + Qlp' (7)

and, since p, + Q1 = 1, we again find, since CC is convex
and contains both [L(CI), C1], which lies on S and p', it
contains p. By induction on N, the arbitrary convex set CC
containing S must contain every point p that is generated
by a discrete, finite calcium distribution. But any point in
CE generated by an arbitrary distribution can be expressed
as a limit of points generated by discrete distributions,
using the definition of the integrals in Eq. 2 as limits of
finite sums. Since CC is a closed set, it contains all its limit
points, and therefore any point in CE. By suitably general-
izing the distributions in Eq. 2 to include singular (e.g.,
delta function) distributions, we can assume that CE
includes its boundary points, i.e., is a closed set. Therefore,
we have shown that any closed convex set containing S
contains the closed convex set CE, so the latter must be the
smallest such set. Thus Theorem one is proven.
We have now shown that the locus of points in the

calcium-light plane that can occur for an arbitrary calcium
distribution is the complex envelope of an S-shaped seg-
ment of the aequorin response curve L. This would appear
to be rather abstract progress. However, we can explicitly
construct the region CE, which is the area enclosed by an
ideal rubber band stretched around the segment S. Fig. 2
shows this region schematically, (the curve L has been
shown as more S-shaped than it is for clarity of illustra-
tion). The physical significance of this region is that it
expresses the bounds of possible variability of true mean
calcium in relation to measured aequorin light. In particu-
lar, if a horizontal line were drawn at the level of measured
aequorin light, the possible values of true mean calcium lie
on the intersection of this line with the region CR. There-
fore, the intersections of this line with the boundaries of
CR give the upper and lower bounds for the value of true
mean calcium, given the measured light.
The region constructed, which we call CR (for rubber
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FIGURE 2 Schematic of the construction of the region CE (see text),
which is the complex envelope of the segment of the aequorin response
curve lying between the minimum and maximum values of calcium. The
region CE represents all possible combinations of mean calcium and
measured aequorin light that could be obtained from any distribution of
calcium inhomogeneities lying within the given bounds. The region CE is
bounded by the chords CHI and CH2 running from the minimum and
maximum calcium to the points of tangency A and B with the curve. The
aequorin curve (shown here with an exaggerated S-shape for clarity)
divides the region CE into two lobes, Yin, in which aequorin overestimates
calcium and Yang, in which it underestimates. If the range of calcium
fluctuations lies entirely on one side of the inflection point, only one lobe
will be present.

band), contains the segment S and is bounded by two
segments of the curve S and the two chords CH 1 and CH2
that begin at the points Cmin and Cmax on S and extend to
the points A and B where they are tangent to the curve S.
We take it as evident without formal proof that the region
CR is convex. But every point of the boundary of CR is
either on S or can be expressed as the convex sum of, at
most, two points on S. Every point in the interior of CR lies
on a chord connecting two points on the boundary, and so
can be expressed as the convex sum of no more than four
points on S. Therefore, all of CR is contained in the convex
envelope CE. But CE is the smallest such convex set, so
CR = CE, proving that the set constructed in Fig. 2 is in
fact the set CE of all possible points in the plane which can
result from any calcium distribution that lies within the
range Cmin-Cmx.
We have now accomplished the first two steps in our

analysis, leading to a geometrical construction of the set
CE of possible combinations of mean calcium and mean
light arising from any degree of calcium inhomogeneity,
provided only that local instantaneous calcium remains
between Cmin and Cmax. Cmin will usually be close to zero in
practice. If Cmax lies below the inflection point of the curve,
it is intuitively obvious that aequorin will always overesti-
mate calcium. If Cmin and Cmax lie on opposite sides of the
inflection point then, as shown in the figure, the region CE
consists of two lobes, Yin lying above the curve L and Yang
(shaded) lying below the curve. For any distribution of
calcium inhomogeneities that generates a point in the
Yang region, aequorin will underestimate mean calcium.
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For this to occur, there must be excursions of local,
instantaneous calcium >47 AM. While this is a large
number, it is not enormously in excess of concentration
fluctuations that have been shown to occur. It is quite
imaginable that if, for example, release of calcium
occurred at high velocity into a localized region around the
terminal cisternae, there could be fluctuations much larg-
er, albeit occupying a small fraction of space and time
before being dispersed by diffusion. We show, next, from
the geometrical construction that, provided the measured
mean calcium lies below a certain safe value, we can
assume that such large fluctuations, if they exist, are rare
enough not to cause underestimation of mean calcium due
to aequorin saturation.

Examining the region CE closely shows that the lowest
value of Cm, the true mean calcium, for which a point of CE
can actually lie below (as opposed to on) the curve L, is
found at the point of tangency A. Since the curve L is
monotonically increasing, this point also gives the lowest
value of Lm and, therefore, of Cap, for which a point can lie
below the curve (i.e., for which aequorin can underestimate
mean calcium). Therefore, we have found the following
theorem.

THEOREM 2

If the true or apparent mean calcium lies below the value
Ctan, at which the chord from the point [Cmax, L(Cmax)] is
tangent to the curve L, the apparent mean calcium is
always an overestimate of the true mean calcium, regard-
less of the details of the calcium distribution.
The value of Ct., depends on the assumed maximum

calcium in the distribution (Cmax). If Cmax is below the
inflection point, the Yang lobe is absent, and the apparent
mean calcium is always an overestimate regardless of its
value (it must, of course, be less than Cmax).
To make use of this result we must determine Ctan

analytically. The condition that the chord CH2 be tangent
at point A can be expressed as

dL(Ctan) L(Cmax)- L(Ctan) (8)
dC Cmax-Ctan

Inserting the function L(C) from Eq. 1, performing the
differentiation and rearranging algebraically converts Eq.
8 to

3kK(1 + kCtan)2(Cmax - Ctan) = L(Cmax)(1 + K + kCtan)
- (1 + kCMn)3(1 + K + kCtan), (9)

which is a quartic equation in Ctan, whose smallest positive
real root is the desired value expressing the safe level of
mean calcium as a function of Cmax. Eq. 9 can actually be
solved analytically to give Ctan(Cmax), but the resulting
expression involves over a page of square and cube roots
nested four deep. It is more convenient to solve it numeri-
cally by an iterative method. The result is shown in Fig. 3.
The solid curve gives Ctan as a function of Cx for Cmax >

1poo
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FIGURE 3 The maximum safe mean calcium, as a function of peak
calcium fluctuation, by numerical solution of Eq. 9. For a given peak
calcium concentration, measured mean concentrations below the curve
will always be overestimates, while in the region above the curve, aequorin
may either over- or underestimate mean calcium, depending on the details
of the calcium distribution. For very high peak calcium concentrations,
the curve is slowly asymptotic to zero, showing that, in principle,
arbitrarily small measured calcium concentrations may be underesti-
mates if the distribution of calcium fluctuations is sufficiently skewed.

Qq, the inflection point. For Cmax < Cid, the curve
continues as a straight line of equality, expressing the fact
that the mean calcium must be less than Cin. (or else Cmax
was chosen incorrectly). For any assumed value of Cmax, the
region under the curve gives values of apparent mean
calcium, such that the aequorin estimate can be assumed to
be an upper limit for the true mean calcium. The curve is
slowly asymptotic to zero for large Cmax, showing that, if
sufficiently large values of calcium are permitted with
suitably low probability, it is possible to construct highly
skewed distributions of calcium with arbitrarily small
mean calcium for which aequorin will underestimate the
mean calcium. The curve is plotted only out to Cmax =

1,000 ,uM, certainly a conservative estimate of the highest
intracellular calcium likely to be present in a physiologic
state; at this point Ctan = 7.25 ,tM, so that if the measured
apparent mean calcium is less than this value, it is safe to
assume that it is an overestimate of the true mean calcium,
even if fluctuations are present that rise considerably above
the aequorin inflection point. By choosing plausible limits
on Cmax in various situations, Fig. 3 may be used to
determine the safe range of measured calcium over which
the aequorin measurement gives an upper bound for true
mean calcium.

DISCUSSION

The nonlinearities of aequorin are usually assumed to lead
to overestimation of mean calcium concentration when
inhomogeneity in space or time is present. It is intuitively
obvious that if sufficiently large fluctuations of calcium are
present to cause saturation of aequorin, the opposite might
occur. The conditions for the underestimation of calcium
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FIGURE 4 An aequorin calibration diagram produced by constructing
the region CE (Fig. 2) analytically, and mapping it into the apparent-
pCa/true pCa plane using the aequorin response function. The diagram
was constructed assuming calcium fluctuations of up to 1 mM are
possible. The shaded area shows the possible range of true pCa, as a
function of the apparent pCa calculated from aequorin light. The dashed
line is the line of identity (calibration in the absence of inhomogeneity).
For mean calcium <7.25 jM (pCa 5.14) aequorin always overestimates;
above 95.2 ,uM (pCa 4.02) it always underestimates.

concentration to happen appear to be rather extreme but,
as we have argued above, rapid processes, such as local
calcium release from the sarcoplasmic reticulum, might
cause just such extremely skewed distributions of calcium.
What is less intuitively obvious is that if the distribution of
calcium is sufficiently skewed, the mean value need not be
particularly extreme when underestimation occurs. If we
admit that, during rapid calcium release from the sarco-
plasmic reticulum, calcium in a local aequorin-containing
space might reach equilibrium with the intravesicular
concentration, then mean calcium at which underestima-
tion sets in reaches down to systolic levels. It would be
circular reasoning to assume that no such large fluctua-
tions are occurring because aequorin (which overestimates
calcium) does not show them. Conversely, the analysis
above shows that we are quite safe in assuming that
aequorin readings below 1 ,uM do represent an overesti-

mate, given any imaginable fluctuation that could occur in
an intact cell.
As mentioned above, the region CR itself gives the limits

on true mean calcium in relation to measured light,
regardless of whether the measurement is in the safe
region. By using Eq. 9 to construct the region explicitly, we
can produce an aequorin calibration diagram for any
postulated limit Cmax on the degree of inhomogeneity. Such
a diagram, plotted on a log-log (pCa) scale, is shown in
Fig. 4, for the extreme case Cmax = 1 mM. Similar
diagrams can be constructed for any assumed limit Cmax;
the one shown represents the upper limits of aequorin
variability likely to occur in actual practice.

It is somewhat surprising that an analytical expression
for the safe limit on aequorin measurements can be
obtained using only the upper limit Cmax for fluctuations of
calcium, without reference to the details of the calcium
distribution. The form of Eq. 9 is certainly not intuitively
obvious. Accordingly, the analysis presented here may
prove useful in designing experiments to decide whether
large inhomogeneities of intracellular calcium in fact
occur.
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