
position is 24 E1:24 E2:12 E3; where E1 and E3 are dimeric
proteins, no other subunit arrangement is possible.

This research was supported by grant AM28607 for P.,A. Frey from the
National Institute of Arthritis, Diabetes and Digestive and Kidney
Diseases, and grant RR0177 to J. S. Wall from the National Institutes of
Health Biotechnology Resource Branch.

Receivedfor publication 9 May 1985.

REFERENCES

1. Eley, M .H., G. Namihira, L. Hamilton, P. Munk, and L. J. Reed.
1972. a-Keto acid dehydrogenase complexes. Subunit composition
of the Escherichia coli pyruvate dehydrogenase complex. Arch.
Biochem. Biophys. 152:655-669.

2. Bleile, D. M., P. Munk, R. M. Oliver, and L. J. Reed. 1979. Subunit
structure of dihydrolipoyl transacetylase component of pyruvate
dehydrogenase complex from Escherichia coli. Proc. Natl. Acad.
Sci. USA. 76:4385-4389.

3. Angelides, K. J., S. K. Akiyama, and G. G. Hammes. 1979. Subunit
stoichiometry and molecular weight of the pyruvate dehydrogen-
ase multienzyme complex from Escherichia coli. Proc. Natl.
Acad. Sci. USA. 76:3279-3283.

4. CaJacob, C. A., P. A. Frey, J. F. Hainfeld, J. S. Wall, and H. Yang.
1985. Escherichia coli pyruvate dehydrogenase complex. Particle
masses of the complex and component enzymes measured by
scanning transmission electron microscopy. Biochemistry.
24:2425-2431.

5. Willms, C. R., R. M. Oliver, H. R. Henney, Jr., B. B. Mukherjee,
and L. J. Reed. 1967. a-Keto acid dehydrogenase complexes.
Dissociation and reconstitution of the dihydrolipoyl transacetylase
of Escherichia coli. J. Biol. Chem. 242:889-897.

6. Reed, L. J. 1974. Multienzyme complexes. Accts. Chem. Res.
7:40-46.

7. Reed, L. J., F. H. Pettit, M. H. Eley, L. Hamilton, J. H. Collins, and
R. M. Oliver. 1975. Reconstitution of the Escherichia coli pyru-
vate dehydrogenase complex. Proc. Natl. Acad. Sci. USA.
72:3068-3072.

8. Reed, L. J., and C. R. Willms. 1966. Purification and resolution of
the pyruvate dehydrogenase complex (Escherichia coli). Methods
Enzymol. 9:247-265.

9. Speckhard, D. C., and P. A. Frey. 1975. Escherichia coli pyruvate
dehydrogenase complex: improved purification and the flavin
content. Biochem. Biophys. Res. Commun. 62:614-620.

10. Steven, A. C., J. F. Hainfeld, B. L. Trus, P. M. Steinert, and J. S.
Wall. 1984. Radial distributions of density within macromolecu-
lar complexes determined from dark-field electron micrographs.
Proc. Natl. Acad. Sci. USA. 81:6363-6367.

APPLICATION OF RESTRAINED LEAST-SQUARES

REFINEMENT TO FIBER DIFFRACTION FROM

MACROMOLECULAR ASSEMBLIES

GERALD STUBBS,* KEIICHI NAMBA,* AND LEE MAKOWSKI$
*Department ofMolecular Biology, Vanderbilt University, Nashville, Tennessee 37235; and
tDepartment ofBiochemistry and Molecular Biophysics, College ofPhysicians and Surgeons of
Columbia University, New York, New York 10032

The principal concern in the refinement of the structure of
a macromolecular assembly against fiber diffraction data
is the relatively small number of independent data avail-
able compared with the number of adjustable molecular
parameters. At the resolution limit of the best fiber
diffraction patterns from helical viruses (-3 A) there are
too few measurable intensities per model parameter for
stable refinement of the structure using diffraction data
alone. This is because the intensities observed in a fiber
diffraction pattern are the cylindrical average of the
intensity distribution on layer planes in reciprocal space.
Thus, far fewer data are available as restraints on the
values of the molecular parameters. For example, cylindri-
cal averaging reduces the effective number of observable
diffraction data for tobacco mosaic virus (TMV) at 3 A
resolution by a factor of -2.5 and for the bacteriophage
Pf 1 at the same resolution by a factor of 1.7 (Makowski,
1982). Consequently, stereochemical information must be
incorporated into the refinement process to increase the
ratio of observations to parameters. This can be done in two
ways. Stereochemical information can be used in the form
of constraints that fix the values of selected bond lengths

and angles, reducing the number of parameters to be
refined. This is the approach taken in the linked-atom
least-squares (LALS) method of Arnott and his collabora-
tors (Arnott and Wonacott, 1966; Smith and Arnott,
1978), in which dihedral bond angles are refined. This has
been particularly effective in refining the structure of
helical polymers with relatively small repeating units such
as nucleic acids and polysaccharides using diffraction data
from crystalline fibers. An alternative approach is one in
which stereochemical information is used in the form of'
restraints. This method as developed by Hendrickson and
Konnert (1980) has been widely used in the refinement of
protein structures against crystallographic data. In this
approach, the ideal values of bond lengths and angles are
treated as additional observational equations and the
refinement of atomic coordinates attempts to minimize
deviations from these values while simultaneously mini-
mizing the difference between calculated and observed
diffraction data. Additional restraints can readily be incor-
porated into the refinement. Because restrained least-
squares methods offer some advantages in speed and in
final agreement with the observed diffraction data (Dod-
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son et al., 1976), as well as allowing a realistic flexibility in
the molecular structure, we have chosen to adapt this
method for use in the refinement of macromolecular
assemblies against fiber diffraction data.

ADAPTATION TO DIFFRACTION FROM
HELICAL ASSEMBLIES

Two fundamental changes in the method are required to
make it appropriate for use with helical assemblies. First,
the structure factor calculation must be replaced with a
Fourier-Bessel transform because fiber diffraction data are
calculated in cylindrical coordinates. Second, intermolecu-
lar interactions must be considered in solving the structure
of a macromolecular assembly because these are usually
extensive in such assemblies.
Computer programs provided by Dr. W. Hendrickson

were used as a starting point and some modifications
written by Dr. E. Westhof to handle nucleic acid structures
,were incorporated. Adaptation of these programs was
greatly facilitated by their modular form. The structure
factor calculation was replaced by a Fourier-Bessel trans-
form using extensive Bessel function look-up tables.
Optimization of this calculation was essential because fiber
diffraction structure factors usually take much longer to
calculate than crystallographic structure factors and the
structure factor calculation is the most time-consuming
part. Routines were added to generate molecules related to
each other by helical symmetry. Van der Waals interac-
tions between molecules related by crystallographic sym-
metry were not part of the original programs, because
these are not usually important in crystalline structures.
They are, however, significant in close-packed structures
such as tobacco mosiac virus (TMV) and Pf1, so they were
included. Also included were restraints from covalent
bonds between helical subunits, because such bonds are
extremely common in fiber diffraction systems. For exam-
ple, TMV contains a single continuous strand ofRNA that
follows the basic helix of the virus structure, with three
nucleic acid residues in each repeating unit of the helix.

APPLICATION TO TOBACCO MOSIAC
VIRUS

Restrained least-squares refinement was applied to the
structure of TMV. The starting structure was determined
from fiber diffraction data at 3.6 A resolution by a
combination of multi-dimensional isomorphous replace-
ment, layer-line splitting, and electron-density modifica-
tion (Namba and Stubbs, 1985). The starting model had a
crystallographic R-factor for data between 10 A and 3.6 A
resolution of 0.31. It should be noted that, because of the
cylindrical averaging of the data, fiber diffraction R-
factors are inherently lower than crystallographic R-
factors. 30 cycles of refinement, allowing only atomic
coordinates to vary, reduced the R-factor to 0.17. Fifteen
additional cycles, during which isotropic temperature fac-

tors of the atoms were also allowed to vary, reduced the
R-factor further to 0.14. In the refined model, the rms
deviation from ideal bond lengths was 0.017 A, compared
with 0.027 A in the starting model.
The refinement appears to behave well, despite the small

number of data available in fiber diffraction. One indica-
tion of the quality of the refinement is the set of refined
temperature factors. Several regions of the protein chain
have higher than average temperature factors, and these
correlate well with the mobile regions described by West-
hof et al. (1984) for the TMV coat protein disk structure,
which has a very similar backbone fold to that found in the
virus.

Restrained least-squares refinement is now being used to
extend the resolution of the TMV structure. This work is
still in progress, but the R-factor against the x-ray diffrac-
tion data between 10 A and 3 A resolution is currently
0.126.

DISCUSSION

Fiber diffraction patterns measurable to 3 A resolution or
better can now be obtained from several helical viruses,
and the use of magnetic orientation and other new methods
for producing specimens is likely to provide high-resolution
fiber diffraction patterns from other assemblies in the
future. Further work is required to develop the methods of
refinement discussed in this paper; in particular, the nature
of the R-factor in fiber diffraction must be investigated in
detail to understand fully the significance of the improve-
ments obtained during the refinement. Nonetheless, our
application of least-squares refinement to fiber diffraction
from TMV has demonstrated the feasibility of using a
combination of fiber diffraction data and stereochemical
restraints for the refinement of the structure of a macro-
molecular assembly.
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Classical direct methods for x-ray structure determination
(1) have made solution of the phase problem for small
organic molecules relatively straightforward in most cases.
However, these techniques (at least in their present forms)
are not useful for the solution of large structures for two
reasons. First, they are based on an atomicity property of
the electron density that does not apply to macromolecules
when diffraction data are not available at atomic resolu-
tion. Second, for large molecules, direct methods are
unwieldy and unreliable.

Although phase problems in one dimension are inher-
ently nonunique (2), recent theoretical work has shown
that in two or more dimensions, the phase of the Fourier
transform of a localized, positive function is uniquely
determined by the amplitude (2-4). Furthermore, phase
retrieval algorithms have been developed which are capa-
ble of reconstructing images from the magnitudes of their
Fourier transforms with no phase information (5-7). Both
the uniqueness properties and the phase retrieval algo-
rithms depend on the amplitude being available continu-
ously (in effect) in reciprocal space. Although this is the
case in most imaging applications, in crystallography the
amplitude is measured only at the reciprocal lattice points,
so these results cannot be applied directly to crystallograp-
hic phase retrieval. To distinguish the former case from the
later, we refer to them as "optical" (although this is not
restricted to optics) and "crystallographic" phase prob-
lems. We describe here implications of the optical results
for crystallographic phase retrieval and show how they
may be incorporated into existing macromolecular phase
retrieval algorithms to improve the convergence properties.
This is a deterministic approach that is distinct from
techniques based on maximum entropy.

THEORY

For ease of exposition, our discussion is restricted to two
dimensions (as is usual in optical applications) and we

consider crystal structures in the plane group P1 with a
rectangular unit cell. Extension of the analysis and algo-
rithms to three dimensions and to arbitary space groups is
strightforward. The measured diffraction amplitudes are
equal to the amplitude of the continuous Fourier transform
of the electron density in a single unit cell, sampled at the
reciprocal lattice points. The continuous intensity is the
Fourier transform of the autocorrelation (8) of a single unit
cell, which is identical to the Patterson of the density in an
isolated unit cell. The linear extent of the autocorrelation is
twice that of the unit cell so that, as a result of the sampling
theorem (8), the continuous intensity (or amplitude) can
be constructed from its samples only if they are separated
by no more than half the spacing of the reciprocal lattice
points. Hence, to make use of the optical results, amplitude
measurements must be available on a grid with a spacing
no greater than this. We call the amplitudes at the
reciprocal lattic points the "ordinary" structure amplitudes
and others, which are on a grid with half the spacing, the
"inbetween" structure amplitudes (Fig. 1). Knowledge of
both the ordinary and inbetween structure amplitudes then
is equivalent to knowing the continuous amplitude.

Using the continuous amplitude, optical ab initio phase
retrieval involves two steps. First, approximate phases are
generated from the ordinary and inbetween amplitudes
using a noniterative procedure (3) that we call "crude
phase estimation. " The second step involves iteratively
improving these phases by iterating between real space and
reciprocal space, forcing the image to conform to any a
priori information in the former, and forcing the calculated
amplitudes to be equal to those measured in the latter. The
iterative procedure is often called a "Fienup algorithm"
(5, 7) in optics and typical constraints on the image are
positivity and known extent. Equivalent procedures (re-
ferred to as density modification) are used in crystallogra-
phy, and typical constraints in real space are positivity,
known molecular boundaries, and equivalence of identical
subunits (9, 10). Application of the Fienup algorithm in
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