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ABSTRACT Diffusion is a phenomenon of very widespread importance in molecular biophysics. Diffusion can
determine the rates and character of the assembly of multisubunit structures, the binding of ligands to receptors, and the
internal motions of molecules and assemblies that involve solvent surface displacements. Current computer simulation
techniques provide much more detailed descriptions of diffusional processes than have been available in the past.
Models can be constructed to include such realistic features as structural subunits at the submolecular level (domains,
monomers, or atoms); detailed electrostatic charge distributions and corresponding solvent-screened inter- and
intramolecular interactions; and hydrodynamic interactions. The trajectories can be analyzed either to provide direct
information on biomolecular function (e.g., the bimolecular rate constant for formation of an electron-transfer complex
between two proteins), or to provide or test models for the interpretation of experimental data (e.g., the time dependence
of fluorescence depolarization for segments of DNA). Here, we first review the theory of diffusional simulations, with
special emphasis on new techniques such as those for obtaining transport properties of flexible assemblies and rate
constants of diffusion-controlled reactions. Then we survey a variety of recent applications, including studies of
large-scale motion in DNA segments and substrate “steering” in enzyme-substrate binding. We conclude with a
discussion of current work (e.g., formation of protein complexes) and possible areas for future work.

INTRODUCTION

The theoretical study of the motion of biological molecules
is emerging as an important field of molecular biology.
Two complementary techniques used to study these
motions are molecular dynamics and Brownian dynamics.
In molecular dynamics, a computer is used to solve the
Newtonian equations of motion for the atoms in a system
of interest for a finite period of time. The method has been
applied to proteins, nucleic acids, and other biological
molecules. These calculations have provided many funda-
mental new insights into the nature of biological molecules,
as discussed in a number of reviews (1, 2).

One of the limitations of the standard molecular
dynamics method is that only short time periods, usually
less than a nanosecond, are accessible on present-day
computers. The time ranges explored by relaxation tech-
niques such as nuclear magnetic resonance (NMR),
dynamic light scattering, and electric birefringence are
much longer. Furthermore, most biological activity occurs
over longer time periods. The rates of many biochemical
processes depend on the frequency with which reaction
partners encounter each other in solution (3—-8). Examples
of such “diffusion controlled” processes are known in the
areas of enzyme-substrate catalysis, antibody-antigen
binding, protein-DNA interaction, etc. (7). Diffusion is an
intrinsically slow process. The time required for even a
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small molecule to diffuse 5 A in water may exceed 500 ps.
The technique of Brownian dynamics, which is based on
diffusion or Langevin equations, can be used to simulate
the long-time dynamical behavior of model systems (9).

In Brownian dynamics, a simplified model is used to
represent the actual system, although the investigator has
considerable freedom in its design. A series of increasingly
realistic models of a particular system can be studied in a
systematic way. A protein, for example, can be modeled as
a single sphere derived from its hydrodynamic radius
(10, 11), or as an array of spheres, each of which might
correspond to a rigid domain or residue of the protein (12).
Similarly, a DNA restriction fragment can be modeled as a
stiff string of touching beads (13). One can include in a
straightforward manner forces arising from electrostatic
interactions between charged subunits; stretching, bend-
ing, and constraint forces in semirigid arrays of subunits;
and other interactions. The solvent is represented as a
viscous continuum that exerts stochastic forces on the
model subunits. Solvent structural features (e.g., screening
of Coulombic interactions by mobile ions) can be incorpo-
rated through appropriate potentials of mean force for the
subunit interactions.

The Brownian dynamics method has two limitations
relative to molecular dynamics. First, because solvent-
averaged potentials are used, one cannot obtain detailed
information on solvation structures (e.g., the pattern of
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hydrogen bonds in water molecules around a solute). The
average effects of such structures can, however, be incorpo-
rated into the potentials of mean force. Second, one cannot
get information on the details of inertial motions that are
evident during very short intervals of time, because the
underlying diffusion equations describe the average motion
of solutes whose motions have been interrupted by at least
a few collisions with solvent molecules. Brownian dynamics
gives a reliable description of solute motions for times
longer than the solute momentum relaxation time (9); for
typical biopolymer systems, this is <0.1 ps (12).

The most direct application of Brownian dynamics
involves the determination of transport coefficients (diffu-
sion constants) for rigid and semiflexible structures. Sev-
eral numerical methods are available for determining
transport coefficients of rigid structures modeled as arrays
of spheres (14), but this is not the case for flexible
structures. However, analytical techniques developed by a
number of investigators are appropriate for certain classes
of problems (15, 16). Transport properties for models of
arbitrary complexity can be obtained from Brownian
dynamics simulation. These are obtained either by carry-
ing out a large number of single dynamics step “trajecto-
ries” starting from representative initial configurations
followed by averaging the appropriate displacements (17),
or by averaging over trajectories that are propagated for
longer periods of time (13, 17-18).

In this discussion, we consider two examples of the
application of Brownian dynamics to study internal or
relative motions of biological molecules. In each case, the
model system is allowed to evolve with time by taking
successive dynamics steps to generate a trajectory (13). In
the first example, relaxation “experiments” (fluorescence
depolarization and depolarized light scattering) are simu-
lated by appropriate averaging of a large number of
trajectories. The system studied is a DNA restriction
fragment modeled as a stiff string of touching beads. In the
second example, the same basic procedure is used, but
applied to bimolecular diffusion-controlled reactions.
From a large number of Brownian dynamics trajectories,
one obtains a recombination probability for two reactive
species that start at some initial separation. This recombi-
nation probability can then be related directly to a rate
constant (19). This method is applied to the diffusion-
controlled enzyme-substrate reaction between superoxide
dismutase and superoxide.

THEORY

Brownian dynamics is a method that allows one to simulate the
diffusional motion of an assembly of interacting solute molecules. Con-
sider first the simple case of an isolated spherical molecule in the absence
of any direct force. If the particle were initially located at some point R®,
then the probability density, p(R, At), of finding it at R after time At is
given by

o(R, Af) = (4xDAt) 2 exp (— (R — R%)?/4DAr), (1)
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where D is the translational diffusion constant of the molecule. In a
simulation, the new position of the particle is selected at random from this
Gaussian distribution. If a large number of steps using the same R®and At
for each were carried out, then the distribution of final positions must
obey Eq. (1) above. The first step of the diffusional trajectory is then

R-R’+S, ()

where S is a vector of Gaussian random numbers. The components of S
have zero mean ((S,) = 0; a = x, y, or z) and have the variance

(S5.S5) = 2Db,4 A, 3)

where 8,4 is the Kronecker delta. 6,4 = 1 if @ = 8 and equals 0 otherwise.
Physically, S represents the stochastic displacement of the spherical
molecule resulting from collisions with solvent. A trajectory can be
extended to longer times (2Az, 3At, etc.) by repeated application of this
algorithm with each step beginning at the position chosen in the previous
step. By computing a large number of such trajectories with different
random numbers, one generates a description of how an ensemble of
diffusing molecules behaves.

When direct forces act on an isolated spherical particle (such as the
centrifugal force on a sedimenting globular protein), it is necessary to
account for the displacement that arises as a result of these forces. Eq. 2 is
replaced with

R-R"+S +F°At/f

At
=Ro+S+k—B7,DF°, 4)

where f is the friction constant, kg is Boltzmann’s constant, T is the
absolute temperature, and F° is the initial direct force on the molecule. A
single dynamics step should be short enough so that F remains essentially
constant as the molecule is displaced from R® to R in time At.

When more than one spherical molecule or particle is present, they
interact indirectly with each other by perturbing the velocity of the
intervening solvent (hydrodynamic interaction) and perhaps directly
through direct forces. A number of Brownian dynamics algorithms are
available (9, 20-21), but in this work the algorithm of Ermak and
McCammon is used (9). For a system of NV interacting spherical subunits,
the position of subunit i, R;, after a dynamics step of duration A, is given
by

0 At = 0 0
Ri=Ri+Si+kB—"‘TjZlDij'Fj, (5)

where RY is the initial position of subunit i. As in the single particle case,
displacement results from direct forces (F) and solvent collisions (S).
However, the diffusion constant of Eq. (4) is replaced by a generalized
diffusion tensor, D. These tensors represent the coupling of the motions of
different subunits by hydrodynamic interaction (HI). As in the case of a
single particle, the mean of the stochastic displacements is zero, but the
generalized variance must satisfy the following condition

(SS;) =2 DA (6)

Methods of constructing S; are described elsewhere (9, 20).

As a lowest-order approximation, HI between different subunits can be
ignored completely. In this case D; = D; &; I where I'is a 3 x 3 identity
tensor and D is the translational diffusion constant of subunit i. For a
relatively large, neutral sphere, the Stokes-Einstein equation gives

Di = kBT/6 T na; (7)
where g; is the radius of subunit i and 7 is the solvent viscosity. For small

molecules (comparable to the size of the solvent molecules) (22) or
molecules that interact strongly with the solvent (ions in water, for
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example) (23), the observed diffusion constant may differ from the
Stokes-Einstein value by a numerical factor that is usually in the range
0.5 t0 2.0.

At the higher level, HI can be approximated using the Oseen (24) or
Rotne-Prager (25) tensors. For identical nonoverlapping spheres of radius
a, the latter tensor is given by

T
D - 2L ppyr (i-))
6mna
3aD, RR\ 24(1. RR\]. .
Dl.l 4R [(I + R2 ) + RZ (3 [ RZ )](l J) (8)

where R = |Ri - le The Oseen tensor (stick boundary conditions) is
obtained by omitting the a?/R? terms on the right-hand side of Eq. 8.
Other tensors (Oseen [26], Rotne-Prager for overlapping spheres
[14,25], as well as higher order [27]) are described elsewhere. For
different subunits, it can be seen from Eq. 8 that D;; falls off as a/ R. If the
subunits are far apart, HI is small.

Attention shall now be turned to the problem of obtaining a bimolecu-
lar rate constant for diffusion-controlled reactions by Brownian dynamics
simulation. Smoluchowski and Debye investigated the problem of diffu-
sion-controlled reactions between uniformly reactive spheres in the
absence and presence of centrosymmetric Coulombic forces (4). More
recently, there has been a proliferation of theoretical studies based on
more refined models, as described in recent reviews (6-8). Perhaps the
most advanced analytical-numerical methods are those based on the
formalisms of Wilemski and Fixman (28), Keizer (29), and Zeintra et al.
(30). The Brownian dynamics simulation method is sufficiently general to
model systems of arbitrary configurational complexity and arbitrary
inter- and intramolecular forces; and it allows for inclusion of hydrody-
namic interaction. When a variety of interactions are present between the
reactive species, there is probably little hope of obtaining analytical rate
constants at a detailed level and recourse to simulation methods becomes
necessary.

As an example, one can imagine generating diffusional trajectories of a
substrate relative to an enzyme target. From the frequency of collisions of
properly oriented substrates with the active site of the enzyme, a rate
constant could then be calculated. In practice, this approach encounters
the difficulty that many trajectories wander far from the enzyme. To
determine the ultimate fate of such trajectories (whether they return and
lead to reaction, or escape reaction altogether) would require infinitely
long simulations. Recently, Northrup et al. have devised a method to
circumvent this difficulty (19). The diffusion space around the enzyme is
divided into two regions. The “inner” region is finite and comprises that
volume adjacent to the enzyme in which the interactions are complicated
and best dealt with numerically. The “outer” region is of infinite volume
but is everywhere far enough from the enzyme so that the diffusional
behavior can be described analytically. Trajectories then need be com-
puted only in the finite inner regions. Let the target (enzyme) be
surrounded by a spherical surface of radius b which lies just outside the
inner region. Then the rate constant, k, can be written

k = kp (b) p, )

where p is the probability that the reactant pair, starting at initial
separation 7 = b, will ultimately react, and kp(b) is the steady-state rate at
which reactants with separation 7 > b first strike the b-surface. Because
of the restrictions placed on b, kp(b) can be determined analytically (6)

w k -1
ko (b) -([ dr[e—%;;ﬂ]) . Q0

where u(r) is the (centrosymmetric) potential of mean force (i.e., the

effective interaction energy between enzyme and substrate), and D(r) is
the relative diffusion constant. In the special case of no hydrodynamic
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interaction
D(r) = D,y = D, + D,, 11

where D, and D, are the translational diffusion constants of the individual
reactants.

To avoid the problem of reactants initially at » = b diffusing to large
distances, trajectories are terminated if 7 exceeds some cutoff distance ¢ >
b. What is actually determined in a simulation over many trajectories is a
recombination probability, 8, which is different from the desired p. This is
because it is conceivable that a trajectory with r > g would eventually
react if it were not terminated at » = q. Fortunately, it is possible to
correct § to obtain p using branching arguments; it can be shown that

8
- 1-(1 - B)kb(b)/kn(‘I)‘

This point is discussed in more detail elsewhere (19).

P (12)

RESULTS

Relaxation Experiments on DNA
Restriction Fragments

The DNA molecule is modeled as a string of N touching
beads of radius a linked end-to-end by N — 1 virtual bonds.
Following Hagerman and Zimm (31), a bead radius of
15.9 A was used because this yields a structure that mimics
the overall hydrodynamic behavior of a continuous worm-
like chain cylinder with radius 13 A (corresponding to
DNA). Bending forces were derived from the potential
(32)

N-2
Vs =5 3 07, (13)
j=1
where g is the bending force constant and 6, is the angle
between virtual bond vectors j and j + 1. The persistence
length, P, is related to g by the expression (32)

g = PkyT/2a. (14)

In this work, P is varied from 200 to 800 A and N = 30,
corresponding to a fragment 922 A long. Stretching forces
that hold neighboring beads at a nearly constant separation
of 2a are introduced using a displaced quadratic potential
with a stiff force constant. This was found to yield results
identical with earlier studies where fixed bond length
constraints were used (13), but the present method is
computationally more efficient. HI was included in the
simulation using the Rotne-Prager tensor (Eq. 8), but
these tensors were “preaveraged” to avoid the necessity of
recomputing Dj repetitively as the molecules deform dur-
ing dynamics. In a comparative study of 10 subunit chains,
it was found that “experiments” on preaveraged and
nonpreaveraged chains were essentially identical.

To simulate fluorescence depolarization (fd), it is
assumed that a dye molecule is rigidly attached to the
structure. For the sake of illustration, the dye is placed
near the center of the chain with its emission dipole
colinear with a virtual bond vector. The polarization
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anisotropy is then given by (13, 33)

r(t) = 0.4 ( P;[u(z) - u(0)])

—04exp[-3(0%(1))/2], (15)

where P, is a Legendre polynomial, u(f) is a unit vector
along a particular bond of the chain at time z, and {6%(¢) )
denotes the mean square angular displacement of that unit
vector. This is the average that must be determined to
simulate fd. For a rigid structure, (6*(¢)) = 4 (Dg) ¢
where brackets denote the average over a large number of
structures and Dy is the rotational diffusion constant about
an axis perpendicular to u. For a flexible structure, {6%(¢) )
is a complicated function of time. In depolarized light
scattering, the relevant average is a reduced dynamic
structure factor defined by (34)

N-1
g(t) = (N = )72 (P,[u(z) - w(0)]),

ij=1

(16)

where u;(¢) is the unit vector along the ith bond at time ¢.
This is similar to the expression for r(¢), except that cross
correlations between all virtual bonds, corresponding to
different anisotropic scattering elements, are included in
the average. In the special case of rigid structures, this
reduces to

g(1) = g(0) exp [—6 (D;) 1], 17)

which is identical to r(¢) except for a constant scaling
factor. This is not the case, however, for flexible DNA
fragments, as shown in Figs. 1 and 2 (note the different
vertical scales). These two “experiments” were carried out
using the same simulation of 280 trajectories selected at
random from a Boltzmann distribution of starting configu-
rations. Evidently, fd is more sensitive to rapid internal
motions even though both experiments reveal flexibility on
the time scale 0 to 200 ns. If the DNA fragments were
behaving as rigid bodies, the dotted lines on Figs. 1 and 2
would have been observed corresponding to ( Dg) = 2.5 x
10* s (31). The strong dependence of fd on flexibility is

=In[r(t)/r(0)]

FIGURE 1 Fluorescence depolarization of a short wormlike chain: P =
400 A, L = 922 A. The transition moment lies along the local symmetry
axis of the chain located near its center. The dotted line represents the
behavior expected of an ensemble of rigid chains with the same P and L.
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FIGURE 2 Depolarized light scattering (Eq. 16) of a short wormlike
chain: P = 400 A, L = 922 A. Details in Fig. 1.

shown in Fig. 3. The stiffer the molecule, the lower the
depolarization at both short and long times. The long-time
behavior can be readily understood, because a stiff mole-
cule has a larger average end-to-end distance and hence a
smaller rotational diffusion constant (31). These results
and others will be described more fully in a future publica-
tion.!

The error bars on selected data points were obtained
from standard deviations of equivalent but independent
subsimulations. For example, the 280 trajectories of Figs. 1
and 2 represent seven subsimulations of 40 trajectories
each. These results required ~25 h of CPU time on a
UNIVAC 1100 computer. However, we anticipate this
could be reduced by a factor of 100 using a CYBER 205
supercomputer.

Diffusion-Controlled Reaction Between
Superoxide and Superoxide Dismutase

Electrostatic interactions influence the rates of many
biomolecular associations (4). For example, the charge
distribution of a particular enzyme-substrate system may
help to draw the two species together and “steer” them into
a proper relative orientation for a catalytic reaction. Par-
ticularly interesting in this regard is the diffusion-
controlled transformation of superoxide (O,”) catalyzed
by the enzyme copper, zinc superoxide dismutase (SOD)
(35, 36). The rate constant for this transformation has the
unusual feature of decreasing with increasing salt concen-
tration despite the fact that both species are negatively
charged at neutral pH (37). It has been argued that these
results are due to the noncentrosymmetric charge distribu-
tion of the dimeric enzyme (36).

In initial studies (10, 11), the SOD dimer and O,~ were
modeled as spheres with radii 28.5 and 1.5 A. Two reactive

'Allison, S. A., “Brownian Dynamics Stimulation of Wormlike Chains,
Fluorescence Depolarization and Depolarized Light Scattering,” submit-
ted to Macromolecules.
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FIGURE 3 Effect of P on fluorescence depolarization from 30 subunit
wormlike chains. u is a unit vector located at the chain center. P (A) =
200 (O), 400 (), 600 (), 800 (M).

patches corresponding to the active site regions of SOD
were defined by surface points within 10° of an axis
running through the center of the sphere (Fig. 4). Trajecto-
ries were usually initiated at & = 300 A and terminated
after collision with the active site or with a truncation
sphere at ¢ = 500 A. A series of increasingly realistic
electrostatic models was studied as summarized below.

(A) One-Charge Model: A single charge of —4 was
placed at the center of the enzyme to represent the net
charge.

(B) Three-Charge Model: Derived from Model C below
by angular averaging the electrostatic potential about the
axis passing through the center of the two reactive
patches.

(C) Five-Charge Model: Designed to reproduce the
monopole, dipole, and quadrupole moments associated
with the charged groups in the x-ray structure of SOD
(38).

(D) 76-Charge Model: Charges were placed at the
crystallographic coordinates of the 76-charged residues of
SOD dimer.

(E) 2196-Charge Model: Partial charges were assigned
to all nonhydrogen atoms of the SOD dimer.

A dielectric constant of 78 was assumed throughout.
Also, HI was ignored since it was previously found to have
little effect on “steering” even though it does reduce the
rate (39). Reduced rate constants are given in Table I (X =
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FIGURE 4 Schematic illustration of the superoxide dismutase O,"
model. Crosses indicate positions of several charges. Active sites are
indicated by the dark caps on the SOD sphere; 6, = 10°.

k/k°, where k® = 4 = D,y [30 A]) for the different
electrostatic models in the absence of added salt. Note that
the rate for the single charge model is significantly lower
than the other rates, which shows that the charge distribu-
tion of the enyzme does indeed steer superoxide toward the
active site. Surprisingly, models B through E yield essen-
tially the same rate. Although the charge distribution leads
to a rate enhancement, it is the long range character of this
distribution that affects the rate in the case of SOD.

Salt effects can be represented using simple Debye-
Hiickel type models for point or finite ions. Using model C,
the reaction rate first increased, and then decreased to a
plateau as the solvent ionic strength was increased (11).
The initial behavior at low salt can be attributed to
screening out repulsive net charge (monopole) interactions.
At higher salt, where the shorter-ranged attractive forces
are screened, this trend is reversed.

The initial studies are currently being extended in a
number of ways. These include improvements in the
dielectric model, more realistic treatment of solvent ions,
and accounting more accurately for the surface topogra-
phy of the enzyme. Generalizations of the original method
(19) have also made it possible to initiate trajectories with
the two reactive species in closer proximity (40).

TABLE 1
REDUCED RATES FOR VARIOUS ELECTROSTATIC
MODELS OF ZINC SUPEROXIDE DISMUTASE
(SOD)

Model No. of charges X
A 1 0.056 + 0.004
B 3 0.074 + 0.004
C 5 0.079 + 0.005
D 76 0.082 + 0.011
E 2196 0.080 + 0.006
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CONCLUSION

Simulation methods are expected to open the way for
detailed study of a wide variety of diffusional phenomena
in cellular and molecular biology. The internal motions of
flexible structures such as immunoglobulins or myosin as
well as fluorescence energy transfer between donors and
acceptors on the same or different molecules (as in a
flexible polymer) could be studied by the methods
described here. Studies of enzyme-substrate binding can be
extended to predict the effects of amino acid sequence
changes. Other refinements might include incorporation of
internal flexibility of enzyme or substrate that would
modulate the reactivity of active sites. The association of
protein or protein-DNA complexes can be studied as a
straightforward extension of the work on SOD. Other
simple association phenomena (e.g., antigen-antibody, hor-
mone-receptor) can be handled in the same way. The
increasing availability of supercomputers will make sub-
stantially more sophisticated modeling possible in the
future.
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DISCUSSION

Session chairman: Adrian Parsegian
Scribes: Gary A. Griess and Eric T. Baldwin

BLOOMFIELD: The general technique of Brownian dynamic simula-
tion is an attractive procedure that gets into the range of times where we
do most of our experiments. What does diffusional simulation leave out
(that molecular dynamics would include if it could be carried out), that
would be important for analysis of experiments on the nanosecond and
longer time scale? Also, can you estimate a lower bound to the time scale
of Brownian dynamics? Does leaving out the velocity make a difference?

ALLISON: I think you can get to all times by overlapping molecular
dynamics and Brownian dynamics. For example, molecular dynamics
can get out to a couple hundred picoseconds. Brownian dynamics is
applicable on time scales longer than the momentum relaxation times of
the solvent, and this is on the order of a few tenths of a picosecond.
Hence the two methods overlap. As for what is left out, Brownian
dynamics replaces the solvent with a bath of random noise. The poten-
tials are not real potentials but potentials of mean force. So you lose the
detailed atomic description of the solvent when you go to Brownian
dynamics.

BLOOMFIELD: What is your sense of the consequences of that particu-
lar omission for the valid analysis of physical situations?

ALLISON: When you ignore momentum relaxation but correct for it
using random numbers to represent stochastic displacements, you must
remember that the dynamics are being generated in a statistical rather
than deterministic sense.

BLOOMFIELD: Macromolecular interactions depend strongly on water
structure and its adjustment to the polymer’s approach. Do you see any
way of incorporating solvent into Brownian dynamics? What might its
neglect leave out? The effective dielectric constant for electrostatic in-
teractions is a related problem.

ALLISON: In Brownian dynamics, simulation of the diffusion-con-
trolled reaction between the enzyme and the substrate the dielectric
constant was set at 78, and this would certainly not be true if you were
looking at the effective dielectric constant between two groups inside a
protein. However, in this case, over much of the diffusional process the
enzyme and substrate are separated by a fairly thick layer of water. To
assume a bulk dielectric constant of water would be fairly accurate when
enzyme and substrate are far apart. Presently, the Warwicker-Watson
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model, where you model the protein as one dielectric and the water as
another dielectric, is being used to develop a more realistic model for
this problem. This work is just getting under way, and we have no results
yet. Our philosophy is to start with the simplest model and develop more
and more sophisticated models. If the simple model works, that model
should be used.

EISENBERG: In regard to the flexible DNA worm-like chain, I would
like to know whether you can interpret some experiments which are well
established (Kam, Borochov, and Eisenberg. 1981. Biopolymers.
20:2671-2690). The apparent diffusion constant, D,,, from quasielastic
light scattering, yields the translational diffusion constant at low values
of the scattering vector q, but increases in sigmoidal fashion with in-
creasing values of q. If you stiffen up the molecule, can you see changes
in the predicted relaxation times?

ALLISON: Yes, you can carry out the simulations over both high and
low scattering vectors. Different experiments correspond to different
averages over the internal coordinates of the worm-like chain. You
would have to carry out the average over the appropriate physical quan-
tity. I have done that for the 30 subunit worm-like chains, but the results
are not particularly interesting. Polarized light scattering is not very
sensitive to internal motions of 30 subunit worm-like chains unless the
scattering vector is very large. You get a diffusion constant correspond-
ing to that of the overall molecule. Different relaxation times depend on
chain conformation and not on internal bending.

POTSCHKA: In macromolecules the location of the target of a reaction-
diffusion process is usually quite different from the center of the mole-
cule. Compared to the properties of the target the remainder of the
molecule most often has only second-order influence via rotational dif-
fusion. You interpret differences between a simple charge vs. five
charge centers by the importance of multipole moments. Intuitively this
should be a matter of radial distance away from the reaction center.
Wouldn’t a simpler model centered in the target do equally well?

ALLISON: The model of SOD enzyme has two active patches. If you
put a charge at the center you have a charge monopole model. The five-
charge model has charges pulled back inside the enzyme. Now, if you
keep the quadrupole moment constant and move quadrupolar charges
farther out (qa’ = constant, where q is the quadrupole charge and a the
charge separation) the electrostatic potential doesn’t change appreciably,
as long as the quadrupolar charges are kept within the protein interior.

LEE: I would like to elaborate on Victor Bloomfield’s question. Adrian
Parsegian, Donald Rau, and I have measured a hydration force that
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