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ABSTRACT Analysis of current recordings from acetylcholine-activated channels has largely rested so far on the
hypothesis of independence, which states that the opening of one channel does not influence that of its neighbors. We
have submitted this assumption to several tests, using as experimental material single channel currents from rat
myotubes. We found that, even though the distribution of multiple channel openings may be approximated by the
Poisson law, openings are strongly coupled. This conclusion is derived from the analysis of two-time properties
associated with patch-clamp data. We show how these properties, which contain more detailed information than the
stationary probabilities, can be calculated in practice and why a Poisson analysis is misleading in the present case. The
implications of our findings are finally discussed in terms of channel structure and function.

INTRODUCTION

In the early seventies, the independence in the opening of
acetylcholine-activated channels was merely a necessary
hypothesis for the interpretation of noise data (Katz and
Miledi, 1972; Anderson and Stevens, 1973). This hypothe-
sis was then tested on single channel currents by Neher et
al. (1978). These authors found that the stationary proba-
bilities that 1,2... n channels are open at the same time
follow a Poisson distribution. The goodness of the fit was
considered sufficient to conclude that the hypothesis of
independence used in noise analysis was correct, and that
there were no interactions between neighboring receptors.

We have reinvestigated this point for two reasons. First,
as will be shown in this paper, stationary probabilities can
only be used in tests of very low discriminatory power.
Second, we were intrigued by the frequency of events such
as those shown in Fig. 2, showing apparently simultaneous
openings or closings of two channels. We will show that,
although the stationary probabilities of multiple channel
openings follow a Poisson distribution, there is a clear
interaction between receptors, and that there is some
increased probability that another opening will occur dur-
ing the time a first channel stays open. This result will be
demonstrated by using two-time properties (two-time
probabilities and transition probabilities).

METHODS

Rat myotubes were cultured as described previously (Siegelbaum et al.,
1984). The experiments were performed at room temperature. The
composition of the bath was (in millimolars): 115 NaCl, 2.5 KCl, 2
CaCl,, 2 MgCl,, 11 glucose, 5 HEPES at pH 7.4. Single-channel
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recordings were performed in the cell-attached configuration (Hamill et
al,, 1981). The pipette solution was identical to the bath solution, but
without glucose, and plus 200 or 300 nM acetylcholine (ACh). Channel
currents were recorded with a FM tape recorder and later digitized at
5-10 kHz (after a 8-pole Bessel filtering at one fourth of the sampling
frequency) and analyzed on an LSI 11/23 computer.

The closed times distributions show two clearly distinct components
pertaining to different mechanisms. The slow component (time constant :
several tens of millisecronds) corresponds to the interval between two
different channel openings. The fast component (briefer than one millise-
cond) is probably due to fast oscillations of the same channel between the
open and closed conformations (Colquhoun and Sakmann, 1981). In the
definition of the channel open time we ignore closed periods briefer than 2
ms, i.e., 3-5 times the time constant of the fast component of the closed
times distribution. The analysis of the two-time properties has been done
both before and after cancelling these fast oscillations. As will be
discussed later, both procedures give similar results.

THEORY

Two Schemes of Channel Activation

In this paper, several experimental probabilities will be
compared with the values predicted in two schemes.
Scheme I is the simplest independence model, which states
that each channel can adopt, independently of the others,
two states, closed (C) or open (O).

kot
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Scheme I
Scheme II is a dimeric model, which is one simple manner

of taking into account channels presenting a nonindepen-
dent activation.
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Scheme 11

CC, CO, and OO represent the conformations of one dimer
of channels with either 0, 1, or 2 channels open. There are
two conformations corresponding to CO, so the effective
transition rates characterizing the passage to this state are
noted 2k, and 2k,,.

These schemes are certainly oversimplified since the
nicotinic receptor may adopt several closed and several
open states. For example, one common scheme of activa-
tion of the ACh receptor is of the form

Co=C=GC=0,

where the various C; represent closed states of the receptor
with i ACh molecules bound. Such a scheme can be
brought back to a two-state model by considering the
different closed states as a whole. The apparent macro-
scopic rate of opening, K,y will be related to the true
microscopic rate of opening 3 by

S MO
app B

>; Pi()

where n is the number of functional channels and P; ()
the stationary probability of a channel to be in the C; state
(see below). ’

A similar reasoning can be used to treat the case of a
homogeneous population of channels with several open
states (see e.g. Colquhoun and Sakmann, 1981; Takeda
and Trautmann, 1984; Sine and Steinbach, 1984).

A further complication may arise from the existence of
heterogeneous populations of subunits (as regard to kinetic
behaviors). This specific problem will be dealt with in the
course of the paper (see Appendices I and II).

In summary, the question of the independence of the
receptors can be fruitfully examined by comparing the
predictions of Schemes I and II to the experimental data.

Stationary Probabilities

If each channel in a large population has the same low
probability of being activated, the stationary probability
Pj;(=) that j independent channels are open together is
given by the Poisson law

o

Py() =e"‘-ﬁ,

where u is the mean number of open channels.
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If the channels are not independent but function as
limers (Scheme II), each element in a population of n
limers is characterized by three states : two closed chan-
1els (probability 1-P-Q), one open channel (probability P)
»r two open channels (probability Q). A total number of j
open channels can result from several combinations of j,
dimers with one open channel, and j, dimers with two open
channels. Let u, be the mean number of dimers with one
channel open (1, = nP) and u, the mean number of dimers
with two channels open (1, = nQ). A stationary probability
in a bi-Poisson law is given by

Pye) = 3 (e - W /i)(e™ - wE/ia).
J'liliﬁ-.i
One condition of application of both laws is that the

number of channels in a patch is large. Is this a reasonable
assumption in our experimental conditions?

Number of Channels in a Patch

The number of toxin binding sites in the membrane of
myotubes is of the order of 102-10%/um? (Land et al.,
1977). The area of patch of membrane, invaginated in a
pipette with a tip of 2-3 um in diameter, is of the order of
5-20 um? (Sakmann and Neher, 1983). The number of
receptors per patch is thus of the order of 10°-10% In the
continuous presence of ACh, a fraction of these receptors is
desensitized (Katz and Thesleff, 1957; Feltz and Traut-
mann, 1982), and thus not functional. An estimate of the
number of functional channels, n, in the presence of 200
nM ACh can be obtained from the average frequency of
channel opening ( f), the mean open time of the channel
(7), and the estimated fraction of open channels (y), such
that n= f. 7/y. In the experiments illustrated here, the
range of values were 10-40 s™ for fand 8-20 ms for 7. For
an exact determination of y, one should know the value of
the microscopic dissociation constant of ACh from each
binding site, and of the isomerisation constant of a receptor
that has bound two ACh molecules. These values are
unknown, but the ACh concentration where a channel is
open half of the time has been evaluated as 6 uM (Siegel-
baum et al., 1984). This allows to estimate that, in the
presence of 200 nM ACh, the fraction of open channels, y
should be 1-2 x 107 of all the functional channels.

From these values, one can estimate that in the continu-
ous presence of 200 nM ACh, 40-800 channels are func-
tional in a patch. Given the experimental uncertainties and
the existence of desensitization, this estimate is in reason-
able agreement with the values of toxin binding sites given
above.

Two-time Probabilities

The main conclusions of this paper will be based on the
analysis of two-time properties. Two-time probabilities are
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defined as P(r) = Prob (State j at time  + 7 and state i at
time 7).

A state i is characterized by the fact that i/ channels are
simultaneously open. The process X(#) considered is sup-
posed to be a homogeneous Markov process, which means
that P;(r) is independent of the initial time z. Obtaining
the two-time probabilities P;(7) was done by the compu-
terized realisation of the process illustrated in Fig. 1 . A
“ruler” of length 7 was shifted by steps equal to the
sampling interval AT along a time-axis. Let N; be the
number of steps where the ruler has its origin on an i level
and its end on a j level, T = N . AT the total duration
of the recording and = = k - AT, one has P; (1) = N/
(N — k). This procedure amounts to evaluate the two-time
probability P;(r) as the time average of the function
X,(0)

1ifX()=i and Xt +7)=j
Xy() = .
0 otherwise

and

Py(r) = (Xy(1))

. 1 prr
= lim = [ x,(1) dr.

For a recording of length T the above limit is supposed to
be reached when a satisfactory convergence is obtained.
With the limitation t+7 = T, one may write

l T-r
Py(7)= T—> ~/o. X;(t) dt

1 N-1-

k (+1AT
> L Xy ar

T—-71 1=0 T

1 N-1-k

- N BAT g AT - X,;(I,1 + 1)

1 N-1-k
- g X, 1+ 1).
X (1, 1+1) denotes the value taken by X;(¢) (0 or 1) for ¢
belonging to the interval (/AT (/+1)AT and

N-1-k

; X;(, 1+ 1) =Ny

is the number of steps AT crossed by the ruler with its
origin on a i level and its end on a j level. An example of
this process is given in Fig. 1 (the corresponding computer
program, in Fortran, may be provided on request).

The theoretical functions Pg,(7) were calculated after
their spectral expansion. Thus, in both schemes of channel
activation, Pg,(7) may be written in the form

Py(r) =Ag+ Ay - e™ + A, - e,

If large numbers of channels (or dimers of channels) are
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FIGURE 1 Practical obtentation of a two-time probability. The points

give an idealized representation of the digitized data (kept in a table) used
to estimate the two-time properties of the single channel currents. The
time unit is the sampling interval, AT.A “uler” of length + =2 AT can be
shifted 10 times (5 of which are shown), with a 8T step. There are two
steps [I8T, (I+1)8TY], for which the ruler has its origin on the level 0 and
its end on the level 1 [(1, 2) and (2, 3)], so that Py,(26 T) = 2/10 = 1/5.
See text for the definition of the function X ,(/, /+1).

considered, one should add to this expression other expon-
ential terms with smaller and smaller amplitudes.

Transition Probabilities

Transition probabilities are defined by P, (r) = Prob
(state jattime ¢ + 7 / statei at time#).

Each P; is a conditional probability that is closely
related to the two-time probability P,(7) through the
relationship

Py (r) = Py(1)/Pi(),

in which P(x) is the stationary probability of state i.
Transition rate K; can be derived from the transition
probabilities by

K;=1limPy (r)/r when 7—0.

The observed effective transition rates, which are model-
independent values, are related to the microscopic rate
constant k; by relations that depend upon the number of
functional receptors in the patch and on the model chosen
to describe the activation of these receptors. In the inde-
pendence model, the transition rates are given by

Ko, = nky; and K, = (n — 1)ky,.

In this equation, K,,/Kj, is necessarily smaller than 1. In
Scheme 11, the transition rates are given by

Koy =n-2ky and Kp=(n—1)-2ky + ki,
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so that

KIZ l klZ

K—m=l+;-(m—l).
In this theoretical scheme, K ,/K, can be larger than 1.

In this treatment we have examined the case of a single

population of homogeneous channels. The possible effect of
a heterogeneity in the channel population on the ratio
K /K, is examined in Appendix I. The conclusion of this
appendix is that an experimental ratio K;,/K¢>1 indi-
cates the presence of at least one population of nonindepen-
dent channels.

RESULTS

Fig. 2 illustrates typical events observed in a patch, in the
presence of 200 nM ACh. As expected from a homoge-
neous channel population, openings have a constant ampli-
tude and open time durations are exponentially distributed,
apart from a slight excess of brief events. But the indepen-
dence of these channels may be questioned, in view of the
frequent occurence of pairs of channels that seem to open

d

<C

Q.

wn

40 ms
120
w
€
[«
>
(<]
s
(=]
=
0 25 50

ms

or close simultaneously, like those shown in Fig. 2 a. To
determine whether this apparent simultaneity results from
mere coincidence or not, we have measured several proba-
bilistic parameters in our recordings and compared them to
the predictions of the two schemes given in the Theory
section.

Stationary Probabilities

As shown above, the number of functional channels per
patch and the probability of opening of each channel are
such that the conditions of application of a Poisson test are
fulfilled. Table I gives the stationary probabilities P ()
that j channels are open in one patch. The experimental
values are compared to the Poisson and bi-Poisson predic-
tions.

As already described (Neher et al., 1978), we can see in
Table I that a Poisson distribution satisfactorily fits the
experimental values of the stationary probabilities. If
instead of being independent the channels behave as
functional dimers (Scheme II), the same stationary proba-
bilities should follow a bi-Poisson law rather than a Poisson

78 PL’ b

No of events

120\l d

No of events

0 25 50
msSs

FIGURE 2 Analysis of one recording of ACh-activated channels (sampling frequency 5kHz; filter 1.5 kHz except in a). (a) Channels
recorded in a rat myotube, in the presence of 200 nM ACh. The potential of the patch, calculated as the difference between the estimated
resting potential of the cell and the pipette potential was -110 mV. The data were filtered at 3 kHz. () Distribution of the durations of the
same channel openings (after discarding the transient closures more brief than 2 ms). The exponential fit has a time constant of 10.8 ms. (¢, d)
Cumulative histograms of first latencies /, (c) and /, (d) (see text for definition), i.e., number of latencies more brief than the duration given in
abscissa. The time constants of the exponential fits are 9.7 (¢) and 8.9 ms (d).
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TABLE 1
POISSON AND BI-POISSON ANALYSIS OF THE
STATIONARY PROBABILITIES Pj(x) THAT j CHANNELS
(j = 0 TO 4) ARE OPEN IN ONE PATCH IN THE
PRESENCE OF 200 nM ACh

Experimental

values 0.7208  0.231 0.043 0.0033  0.0018
Poisson 0.7159  0.2392  0.0399  0.0044 0.00037
predictions (1.007) (0.966) (1.077) (0.75) (4.86)
Bi-Poisson 0.7208  0.231 0.042 0.0055 0.00057
predictions (1) (6)) (1.024) (0.6) (3.16)

The experimental values are the proportion of total recording time when j
channels are open. The mean value u used in the Poisson law (P;(x) = e™
- #//j!) was estimated as the mean number of channels open at one time,
averaged over the whole record. The ratios P;(~) experimental/P;(w)
predicted are given between brackets. For the bi-Poisson analysis, , and
1, were estimated from the experimental values of Py() and P, ().

law. It appears in Table I that the experimental values can
be fitted equally well by both laws. This result, shown in
one case, was also obtained in six other cases tested. One
could wonder how Scheme II can lead to stationary
probabilities apparently not different from those predicted
in Scheme I. One first answer is that a difference with an
independent behavior could exist, but because of the large
number of channels, concerted transitions (of neighbor
channels) are diluted among independent transitions (of
distant channels), so that the difference with an indepen-
dent behavior falls below the limit of detection of experi-
mental measurements. The second possible answer is that
theoretically a set of six rate constants in Scheme II, with
the condition that the openings are not independent
(k12# k), can give stationary probabilities that exactly
follow a Poisson distribution. This can be shown in the
simple case of two channels, and the following result may
be easily generalized to a population of N such subunits.

In the case considered there are three stationary proba-
bilities Py (x), P,(), and P,(). Let p be the elementary
probability for a channel to be open (p = kg /ko; + kyo in
Scheme I). If the two channels are independent, then the
binomial law (which can be approximated by the Poisson
law when N is large) may be used and it gives

Py(=) = (1 - p)?
Py(«) = 2p(1 - p)
Py() = p*. ey

The converse reasoning would state that independence
holds as soon as one finds some p that gives back the P;()
according to Eq. 1. Such a reasoning has been used, for
example by Tank et al.(1982), to assess the independence
of two Cl protochannels coupled in a dimer unit. This
converse reasoning is false.

The same stationary probabilities can indeed be derived
from Scheme II with an infinite set of parameters k. In
Scheme II the stationary probabilities have the following
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expressions
Py(x) = —
N,
Py(x) = D )
N,
Py(=) =
with

Ny = 2kjoksyy + kakio + kxkia
Ny = 2kykyo + 4kykoy + 2ky ke,
N, = 2ko ks + koskyo + kookys
D =Ny + N, + N,

For any given p it is very easy to set the desired relation
between the opening rate constants (for example k,, =
25kg,) in Scheme II and two more arbitrary conditions (for
example ko, = ky = 0) and still solve the system of
equations that allows to account for relations (1) with
stationary probabilities of Scheme II (for the example
above, one solution is kj; = % p, koy = p/10, ks = A
(1 —p),and kg =1 — p/10).

First Latencies Histograms

Next, it was reasoned that more information could be
gained if, instead of considering the averages of several
states (0, 1, 2... channels open), one examined how the
transitions from one state to another take place. To this end
we first analyzed the distributions of two latencies /, and
1,, in seven different records. /, is the first latency of
opening to level 2 (2 channels open) after an initial opening
to level 1. /, is the latency of closing to level O after a
closing to the level 1.

The distributions of /, and /, for one cell are shown in
Fig. 2 ¢, d. Both values are exponentially distributed, with
time 9.7 constants and 8.9 ms, respectively. This differ-
ence is not significative: the ratio of the two time constants
(1.09 in this case) was 1.02 + 0.12 (mean + SD) for the
seven recordings where it was measured. These results are
compatible with both schemes. In Scheme I, both dura-
tions should equal the inverse of the rate at which level 1 is
left; this rate is the sum of all the rates that lead away from
this state, toward either level 0 or level 2

1/l = 1/, = Ky + Ky,

The situation will be identical for Scheme II, if the direct
transitions 0 — 2 and 2— 20 do not occur at a measurable
rate. If they did, the amplitude of the first bin of the
histogram (or the ordinate of the first point of the cumula-
tive histogram) should lie above the exponential. These
histograms then imply that no more than 5-10% of the
transitions to/from level 2 occur directly with level 0.
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Direct transitions occurring at a lower frequency cannot
be detected with this approach (a much larger number of
transitions should be measured to improve this detection
threshold).

However, these latencies histogram do not tell us if, in
the case of Scheme II, k, and k,, are identical or not, and
the question of the independence in the activation process
cannot be answered by this approach.

Two-time Probabilities

We then analyzed two particular two-time probabilities
Po,(7) and P »(7), which have been defined in the Methods
section. The two-time probabilities Pg,(7) and Py(7)
obtained in seven different experiments are illustrated in
Fig. 3 (a and b). The data (circles) are fitted with a
polynomial regression of the third degree (dotted line),
which will be discussed below. Between 0.2 and 1.2 ms the
data can also be fitted empirically with a straight line. If
the channels were independent, both curves should display
parabolic behaviors with zero slopes at the origin. This is
because in this case, Pg,(7) would be related to Py, (7)
through a relation of the form : Pgy(1) = A(P (7)) (at
least for small 7 values).

As Py, (7) is proportional to time (for 7 — 20), Pg,(7)
should be proportional to the square of time (see Appendix
I1). This result is a first suggestion that Scheme I (indepen-
dent channels) is incorrect. Interestingly, in this Appendix
it is also shown that this criterion hoods for the addition of
several populations of independent channels.

Fig. 3 ¢ shows the probabilities Pg,(r) obtained by
simulation of Schemes I and II, on a number of events
similar to that used in the experimental cases. To realize
the transition rates for each individual subunit, a random
generator was used. To avoid some spurious correlations
observed with usually available generators, a generator
endowed with the property of high degree equidistribution
(Postnikov, 1973) was implemented on the computer (a
study of these specific problems is to be reported else-
where). The simulation of Scheme I (independent chan-
nels), shown by the triangles, gives a parabola, whereas the
simulation of Scheme II (dimers of channels), shown by
the circles, gives a curve very similar to that in Fig. 3 a. Fig.
3 d illustrates the probabilities Pg,(7) obtained by analyti-
cal calculations based on Schemes I and II. The symbols
give the exact values of Py, () as sums of exponentials,
calculated after their spectral expansion (Cox and Miller,
1965; Colquhoun and Hawkes, 1977). The continuous line
underlines the apparent linearity of part of the curve
obtained from Scheme II; linearity is of course not
expected a priori from a sum of exponentials. This feature
becomes clearer when one uses the power series expansion
of Pg,(7) rather than its exact value. For small values, an
expansion truncated at the third order is sufficient, which
gives

Poz(T)-a+bT+CT2+d1'3.
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Accordingly, in Fig. 3 d, the dotted lines represent a third
order polynomial fitting of the exact values of Pg,(7).

For independent channels, the parabolic aspect of the
curve reflects the fact that in this case, c>>b, (c/b = 30.3
for the curve corresponding to Scheme I). On the contrary,
for dimers of channels, this condition does not hold any-
more, due to the presence of a genuine coefficient b, which
is not negligible compared to ¢, hence the linearity of part
of this curve (¢/b = 0.04 for the curve corresponding to
Scheme II). In the polynomial regression of the experimen-
tal data (Fig. 3 a) the value of the ratio ¢/b was 0.24, which
is clearly not consistent with Scheme I, but is compatible
with Scheme II. It must be mentioned that in all cases, the
slope of the empirically drawn straight line is larger than
the coefficient b. In other words, the linear approximation,
which does not go through the axis origin, does not give the
slope of the curve when 7 — 20: to recover a satisfactory
estimate of this slope of the curve at the origin, it is
necessary to resort to a polynomial approximation of
sufficient order.

A series of analytical calculations were done with vari-
ous sets of parameters. They reveal that a linear compo-
nent in the curves Py, (7) and P, (7) can only be obtained
by setting ko, and k,, different from zero. Even rate
constants ten times smaller than those used in Fig. 3 d can
yield this linear component. On the contrary when ky; is
zero, a linear component cannot be obtained whatever the
value of the ratio k,,/kq,.

In summary, the curves representing the two-time prob-
abilities Py, (7) and P, (7) exhibit a linear part that is
particularly evident by inspecting the coefficients of their
polynomial regression. This linear part is incompatible
with Scheme I. In Scheme II it implies necessarily that kq,
and k., are different from zero.

Interestingly, with the values adopted in Fig. 3 4, if k), is
set equal to ko, and k,, equal to k,,, the effective linear part
goes through the origin, leading to a single straight line
throughout the interval [0-2] ms. This feature would be
indicative of the fact that in the experimental case there
should also be a departure from the independence scheme
through the conditions k,, # ko, and/or k; # k. This
point will be investigated in more detail in what follows.

Transition Probabilities and Transition
Rates

The two-time probabilities can give an information on a
process lasting for any duration (here several millisec-
onds), but their quantitative analysis is not easy. Thus, we
examined another parameter, the transition rate from one
state to another, which is not independent from the
previous one but differs from it on two points : it restricts
the analysis to the shortest measurable time after one
transition, but it allows an accurate quantitative analysis.
The rate of transition from one state to another can be
derived from the transition probabilities P;; (), which have
been defined in the Theory section. These transition rates
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FIGURE 3 Two-time probabilities from experimental data (a, b), simulations (c) and calculations (d). (a, b) Probabilities averaged from
the data of seven cells (&), as described in the text. The recordings were made in the cell-attached mode at an estimated patch potential of -90
+20 mV. The data were sampled at 5 kHz (three experiments) or 10 kHz (four experiments) and filtered at one fourth of the sampling
frequency. The filtering introduces time lags of 0.2 and 0.1 ms, respectively, which were corrected for. To average the results of different
experiments, in a and b, P, and P, were arbitrarily set to 1 for 7 = 0.6 ms. The bars give the standard deviation when its value exceeds the size
of the symbol. In g, b, ¢, and d, the dotted curves give the third degree polynomial regression of the data; straight lines were fitted by eye. (c)
Simulated probabilities Py, () for a population of independent channels (triangles) and for functional dimers (circles). The two simulations
were done for the equivalent of a duration of 100 s, with the rate constants given below. The ordinates are multiplied by 10*(circles) and by
5.10* (triangles). (d) Py, (r) was calculated for a dimer (circles) and for two independent channels (triangles), with the rate constants given
below. The ordinates were multiplied by 10° (triangles) and 10* (circles).

Values of the rate constants (s™!) used in simulations and calculations

Fig.3c Fig.3d

k,, 0.5 5
ko 50 50
Scheme 1
ks, 0.5 5
ko 50 50
ky, 5 20
ky, 100 67
ky; 0.05 0.5
kao 6 5
Scheme I1
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can be used to discriminate between Schemes I and II.
More precisely, the experimental value of the ratio K,/
K, will be compared to unity; as shown in the Theory
section, this ratio should be less than one in the indepen-
dence model, but could be larger than one in the dimeric
one.

The transition probabilities Py, (7) and P, (7) measured
in one cell, are shown in Fig. 4 a. At all time intervals,
Py (7) is larger than Py, (7). The ratio K,/K, is equal to
1.18. In seven cells examined, the value of this ratio was
1.12 + 0.08 (mean + SD). Is this estimate unbiased,
significantly different from one, and really discriminatory
between our two models of activation?

One possible bias could have arisen from the existence,
during one channel opening, of the transient closures
mentioned in the Methods section, which are not taken into
account in Schemes I and II. These transient interruptions,
due to brief oscillations of one channel between the open
and closed states, are internal to one opening and should
not be considered as separate, independent openings. Is it
possible that they introduce a systematic error in our
estimates of P, (‘r)" When transient closures more brief
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than 2 ms (i.e., 3 to 5 times their mean duration) are
discarded from the analysis, the ratio K,,/K,, becomes
even larger (1.35 in Fig. 4 b) than before their suppression.
This is also true for the average of seven experiments,
where K,/K, equals 1.18 + 0.13 (mean + SD) when
estimated as in Fig. 3 b. This shows that the transient
interruption observed during one channel opening do not
account for an experimental value K |,/ K, larger than one.
On the contrary, since the opening of a second channel
appears to be uncorrelated to the transient closures of the
first one, these events will tend to mask the correlation that
we study, between two successive openings.

To be confident in the precision of the estimates of the
transition rates, one has to make sure that the length of
analyzed data is sufficient. This was done by studying the
convergence of K; toward a satisfactorily stable value, as a
function of the length of data. In the example shown in Fig.

4 ¢, it was found that estimates of transition rates taking

into account less than 1,000 events (openings or closings)
cannot be considered as accurate enough. All our estimates
of K,, and K, were thus done after checking for their
convergence to a stable value.
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FIGURE 4 Transition probabilities and transition rates. (a) Experimental values of Py, (1) (A) and P,,(7) (&) were obtained in one patch
(as explained in the text). The transition rates, calculated as Py (AT)/AT with AT= 0.2 ms, appear as the slopes of the straight lines. (b)
Experimental values of Py (7) (a) and Py (7) (@) with the same data as in a, but after suppression of closures more brief than 2 ms. (c) Effect
of the number of transitions considered on the estimates of X ,, (&) and K, (A). (d) Values of Py, (7) (A) and P,, (7) (@) obtained by simulation

of Scheme 11, assuming 15 dimers and the same parameters as in Fig. 3 ¢ (where k ;/ko; =
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10). The ratio between transition rates is 1.16.
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The next question was whether a ratio of 1.12 for the two
transition rates reflects a significant cooperativity in the
activation of two channels. One answer can be brought by
simulations of the two schemes (with the constants given in
the Fig. 3 legend). A simulation of Scheme I gives K,/
K 4, = 0.93 for 30 channels (not illustrated). A simulation
of Scheme II is shown in Fig. 4 4 ; for 15 dimers, it gives
K;,/Ky = 1.16.

Analytically (see Theory), it appears that a rather
inconspicuous excess between K,,/K, and 1 reveals a
much larger discrepancy between the microscopic con-
stants k;, and ky . This factor between k,/ky and
K ,/K,, depends on the number of channels in the patch.
For instance, given our experimental value of the ratio of
the transition rates (1.12), assuming that a patch contains
20400 functional dimers, the ratio k,/ky, is in the range
of 5-100, in other words the rate constant of opening of a
channel would be at least 5-100 times higher once its
neighbor is opened.

The “diluting effect” of the number of channels on the
cooperative interaction in a dimer can also be illustrated by
the fact that with the figures given here and in the Theory
section, a second opening would result from the activation
of a dimer in between 0.5 and 10% of the cases, and from
independent monomers in all the other cases.

DISCUSSION

Here, we have demonstrated that the type of events
illustrated in Fig. 2, i.e., the simultaneous opening or
closing of two channels, is indeed more frequent than one
would expect from mere coincidence: the ACh-activated
channels in rat myotubes are not independent.

In the presentation of the results, we have used through-
out this paper the concept of functional dimers. The type of
interaction that we have detected could also take place
between one receptor and several of its neighbors as
proposed in the “lattice model” (Changeux et al., 1967).
But the dimeric model has the advantage of simplicity and
possesses a structural basis: in the electric organ of electric
fishes, the nicotinic receptor can be found in the membrane
either in a monomeric form (with five subunits arranged in
an a, 3 v 6 structure), or in a dimeric form, with disulfide
bonds between the & subunits belonging to adjacent mon-
omers (Reynold and Karlin, 1978). It would be interesting
to compare the behavior of a population of monomers and
of dimers. A recent report comparing monomers and
dimers reconstituted in a planar bilayer (Schindler et al. ,
1984) have led to the conclusion that dimers with two
synchronized channels should be the in vivo predominant
gating units. This conclusion is difficult to reconcile with
those of a previous report (Boheim et al., 1981) where no
difference was observed between the behavior of monomers
and dimers, and with the fact that substates with half
conductances have not been reported in vivo native mem-
branes.

YERAMIAN ETAL. Acetylcholine Receptors

It would be of interest to know whether the functional
coupling that we have demonstrated depends upon agonist
concentration (in which case it could influence the shape of
the dose-response curve). Unfortunately, this question is
difficult to address, because of desensitization. At high
agonist concentration, all the receptors can be desensitized,
except for one which oscillates between the open and closed
states (Sakmann et al., 1980; Siegelbaum et al., 1984).
Thus, in a dimer, one receptor can be in the desensitized
state and the other not. An increase in agonist concentra-
tion, by enhancing desensitization, will reduce the propor-
tion of functional dimers and increase the proportion of
functional monomers in the population of receptors. Desen-
sitization will have a canceling effect on the coupling
phenomenon, and thus prevents a simple analysis of the
effect of agonist concentration on this coupling.

As far as methods go, the present study shows that
independence in a population of homogeneous molecules
should not be tested only by comparing experimental data
to a Poisson distribution. Resorting to the two-time proper-
ties appears to be a safer procedure.
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comments on the manuscript.

This work was supported by grants from the Centre National de la
Recherche Scientifique, Ministere de I'Industrie et de la Recherche and
Université Pierre et Marie Curie.

APPENDIX I

Let us consider a population of n = n, + n, channels resulting from the
addition of two populations with n, and n, channels, respectively. We
suppose that all the channels are independent, have the same conduc-
tance, but the two populations have different kinetics. In the various
parameters, the two populations are referred to by the upperscripts (a)
and (b), and the total population by the upperscript (7).

Let P, P, P§ and P be the stationary probabilities for popula-
tions a and b to have no channels open and one channel open. For the total
population we have the (experimentally measured) probabilities.

P(()n) _ szl . Pgb)
and
PP = PP . PP + PO PY

The macroscopic measured ratio K;,/K,; = p can be expressed as
follows:

N
K, P
Ky N

Py

In this expression N, has the meaning given in the text.

We need to further express each N,® as a sum of terms, denoted
Niato—maps/ (With the conditions k+1 =i and m+p =j) and corresponding
to the number of steps where the level i is imputable to the sum of a level k
in population and a level / in population b; an analogous decompositon
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holds for level j. These decompositions lead to
N = Nowos—1a06 + Noaos—oats
and
N2 = Nisos-1a15 + Niats—2006 + Noats—1a16 + Noats—oas
By an extension of the development presented in the text, each term

N iatb - mapb
T

(with T representing the total duration of the recording) can be expressed
as the product of two two-time probabilities. For example

Nosos - 1208 @ O
—Tl -an’(1)-1’&>)(1)
and

NOaOb— 1a0b N0¢0b— 1a0b
TP‘()n) = TP‘(’a)Pgb)

P ‘(,a) P gb)

(ﬂ) ()
o

with 7 — 20, we have

1 Nod)b Ia)b k(a)

By performing analogous calculations, it is possible to show that with the
adopted notations, the relation K,,/K, = p can be written under the
form

1
pr (PIOPEnkSY + PIOP (n, — DS

+ POPPnKS + PSOPO (n, — D] = p[nk 8 + nk ),
or
kS [POPH (n, — 1 — pn,) + PYPP (n, — pn,)]
+ kS [PEOPPn, — pny) + PEOPP (n, — 1 — pny)] =
(equation: L = 0)

If p > 1, the left-hand side L of this equation is such that L < —
kP POPY + kPPPPY < 0, and thus p > 1 is incompatible with the
hypothesis of independent channels for the two populatons a and b. This
reasoning can be easily generalized to an arbitrary number of popula-
tions.

APPENDIX II

Here is detailed the origin of the parabolic behavior of the two-time
probabnlity Py, () for a population of n independent channels. Let

P(7) and P{(r) be the two-time probabilities corresponding to one
such channel. One can write

PR (r) = n(PR ()" ' PR (r)
P& (1) = (pIn(n — 1)(PE ()" 2 (P& (1))

(1/2)n(n-1) is the combinatorial factor for the choice of the two channels
in the population of n that undergo the transition closed-open during the
time interval 7.

For small values PS(r) = po(e)(1 — koi7), and P§)(7) = po(eo)keyT
(po(ce) is the stationary probability for one channel to be in the closed
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state), thus for 7 — 20

PG (1) ~ (R)n(n — 1)(po(x)) "k
~ A" (PR (1)) = APR (1)

This criteron of parabolic behavior of Py,(7) for independent channels
(with the condition  — 20) can be easily generalized to an arbitrary
number of populations of independent channels (it is also supposed that
the behavior of a channel belonging to population a does not depend on
the behavior of any channel in any other population j).

For example, with the hypotheses and notations of Appendix I, for two
populations a and b one has (the upperscript (1k) k = a or b indexes the
two-time probabilities corresponding to one channel belonging to popula-
tion k)

P& (1) = (Wna(n, — D(PE (1))
- (P& (M))*(P6” (7))
+ (s (ny — 1)(PE’ (7)™
- (P& (D) 2P (7))
+ nany (P& (7))
- (P& ()" (PE” ()(PE (7))

and by performing the same type of calculations as for one population it is
easy to see that P, (7) is proportional to 72 for 7 — 0.
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