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ABSTRACT How does one obtain kinetic rate constants from the time course of a reversible and cooperative
polymerization reaction? We examine a simple version of the homogeneous nucleation-elongation model with both
analytical and numerical techniques to test some common assumptions and develop an experimental strategy. The
assumption of irreversible polymer formation is found to be a useful and adequate approximation for the numerical
determination of monomer disappearance. The assumption of early "pre-equilibrium" between monomer and seed,
however, is shown numerically and analytically to produce significant errors over a wide range of parameters,
particularly for small seed lengths. We exhibit numerical solutions for many different parameters, and also discuss
analytical techniques that allow approximate solutions for several conditions: the high-concentration limit; the
long-time limit; and the long-seed-length, lows concentration limit. The overall reaction simplifies when the monomer
concentration is large. An experimental strategy for elucidating the seed size and the rate constants for polymerization
and depolymerization is presented.

INTRODUCTION

The assembly and dissassembly of biological polymers
such as actin or tubulin depend upon direct physical
interactions between subunits as well as on nucleoside
triphosphate hydrolysis and the intervention of regulating
proteins. The physical interactions represented by kinetic
parameters form a foundation on which to build an under-
standing of the more complicated control reactions. In
principle, these parameters can be obtained from well-
defined in vitro experiments involving purified proteins,
but as we shall show, the analysis is by no means simple.
Our concern here is with such in vitro systems- this work
was originally motivated by studies on actin polymeriza-
tion, but the results are applicable to all homogeneous
polymerization processes, be they on biological or synthetic
polymers. The fundamental question is, what does one
expect to happen during a cooperative polymerization
reaction, and how should the data be analyzed to obtain the
kinetic parameters?

Analysis of homogeneous polymerization (when nuclei
are formed from monomers, and not from external impuri-
ties) particularly in regards actin, was pioneered by
Oosawa (1, 2) and his collaborators, and extended by
others (3, 4). The reader should consult the reviews by
Korn (5) and by Frieden (6) for further details, including
analysis of experiments on actin. Other aspects of polymer-
ization reactions, particularly for reactions that are non-
cooperative or in which the cooperativity varies with
polymer length in certain regular ways, or in which

aggregation of long polymers is important, can be traced to
analysis of colloid formation (7, 8, 9). The basic equations
governing protein polymerization form an infinite interre-
lated set of nonlinear differential equations that cannot be
solved exactly, and simplifying assumptions must be used.
Two important assumptions used were (a) polymer forma-
tion is irreversible, and (b) the concentrations of polymers
shorter than the seed length would rapidly form a "pre-
equilibrium" with the monomer concentration. These
assumptions together with subsequent analysis lead to the
conclusion that the seed size is simply related to a suitably
defined "delay time". Indeed, measurements of delay time
vs. total protein concentration have been interpreted in
terms of explicit seed sizes (10).

Frieden and Goddette (11) have shown by numerical
examples, however, that seed size is not simply related to
delay times for all parameter regimes. Thus analysis of
experiments becomes much more complicated, and
Frieden and Goddette advise numerically searching
parameter space over a wide range of total protein concen-
trations in order to fit the data.

Numerical searches can be quite time consuming, par-
ticularly when the dimensionality of parameter space can
easily be expanded by assigning different rate constants to
different polymerization steps. Certain questions arise: Are
all simple approximation schemes hopeless, and must one
always resort to numerical simulation? Is it possible to
derive validity conditions for the various approximations?
If the simulated curves don't quite fit the data, is it because
the model is wrong, or because parameter space wasn't
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explored thoroughly enough? If the model is wrong, can it
be fixed by small measures, such as adding an extra rate
constant, or should more drastic measures be taken, such
as consideration of branching reactions, ATP hydrolysis,
etc.? We shall address these questions and propose an
analysis of experimental data that is reasonably straight-
forward, but does not use simplifying assumptions unques-
tioningly.

This paper is organized as follows. First the model is
defined. Then the efficacy of the irreversibility and pre-
equilibrium assumptions is examined by using scaling
arguments to compare the number concentration of long
polymers under long-time, high concentration conditions
for three cases: equilibrium, pre-equilibrium plus irreversi-
bility, and irreversibility alone. Although the irreversibility
condition produces too many polymers at long times, the
extent of the overproduction depends heavily on the pre-
equilibrium assumption. This is serious because the
concentration of polymers governs the rate of monomer
disappearance; as far as monomer disappearance, the
pre-equilibrium assumption is certainly not valid under
extreme high-concentration conditions.

After this general analysis of assumptions, we exhibit
numerical solutions of the exact equations and compare
them with numerical solutions of the irreversible equations.
This will illustrate quantitatively many of the points made
earlier. For example, an assumption of irreversibility, as
opposed to high-concentration, holds over the time range of
monomer disappearance for a large range of total protein
concentrations.

After the numerical results, we return to the analytical
analysis in more detail. The exact equations are solved via
an integral transform on the time variable in the high
concentration limit, and we then apply a perturbation
treatment to find appropriate corrections when the concen-
tration is not so high. In particular, this allows the determi-
nation of polymerization at early times, and we find it
scales as ts where s is the seed size, but only in certain
parameter regimes, contrary to other theories (2, 12) that
predict a t2 dependence.
Once the monomer concentration has equilibrated, the

polymer length redistribution obeys linear differential
equations. These are solvable, and lead to the relaxation
times for long polymers as well as for the monomer. The
equations for the long-seed, low-concentration case are also
linear (at least at early times), and this can result in
validity conditions for establishment of pre-equilibrium
between monomer and pre-seeds.
Once our theoretical results have been presented, we

shall compare and relate our work to previous studies, and
conclude with a strategy for the design of experiments. The
discussion of the work of other investigators is placed
toward the end of this paper so the results and notation
presented here could serve as a common basis of compari-
son.
Our focus throughout is on a detailed analysis of simple,

cooperative polymerization reactions, including an exami-
nation of various approximations and their ranges of
validity. Our results allow us to develop an experimental
strategy that is discussed in a later section. We had hoped,
given our interest in actin assembly, to conclude with a
convincing analysis of various actin polymerization experi-
ments. Unfortunately, we know of no data (including our
own) that extends over a wide enough concentration range
to be amenable to our proposed analysis. An analysis of
data that exemplifies our methods will therefore have to
wait for the future.

THE MODEL

Consider the simplest model possible for cooperative poly-
merization. That is, the only reactions allowed are stepwise
additions and subtractions of single monomers from only
one end of the polymers. Thus, if An represents the
concentration of polymers of length n, then the reactions
are 2A1 A2, A, + A,,, = An, ad infinitum. We further
assume there exists a unique polymer size, s, such that in
the reaction A I + An A n+1, the kinetic constants depend
only upon whether n > s or n < s. Thus the kinetic
constants k +, k , g+, and g are defined by

k+
Al +AnAAn+l n< s

k-

g+
Al + An - An+, n 2-s.

9-

(la)

(1 b)

It is straightforward to write out kinetic equations
corresponding to these chemical equations. The central
purpose of this paper, then, is to find (approximate)
solutions to the following:

dAi2k
d=2k+A + kA2 + k ZAn

dt A1kn-2
s-I

+ g An-k+Aj Y An-g+A, Y An (2a)
n-s+1 n-2 n-s

dAn = k+Al(An_A - An) + k (An+l - An) n < s (2b)
dt -= 1 n-g

dA
s = AI(k+As- - g+As) ± g-As+l - k-As (2c)

dAn g9A1(A-I - An) + g (An+l - An)dt n>s. (2d)

Here the term "seed size" means the length s, where the
kinetic constants change, as in Eqs. 1. It should be noted
that not all workers use this definition. Others (3, 10, 12)
have defined the seed as the smallest length such that
addition to the seed is more likely than subtraction from it.
With their definition, the length of the the seed may
depend on the monomer concentration at any given time,
but our definition is independent of time and initial
conditions.
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We define the equilibrium constants Ka = k+/k - and
Kb = g+/g_, and the dimensionless ratios h + = k +/g+ and
h - = k /g_. The basic equations can now be transformed
into dimensionless quantities defined by a,, = KbAn and
T = g t:

d =-2ha24+ ha2+ h_ Ea
dT n-2

cc s-I O

+ EZ an -h+al Za,n-alZa,n (3a)
n-s+ I n-2 n-s

da
= h+1(atanI-a1n) + h_(an+l -an) n < sdr

d

-= ael(h+ a.-, - axs) + aes+, - h_ aes

dan = aI(a5n- - an) + (atn+l- a.) n > s.d,r

(3b)

and their average length as follows. The total number
concentration, C = n-s+, a,,, is given in equilibrium by

C. = aoa!l/(1 - a,), (5)

and the equilibrium concentration of monomer is related to
the total concentration of material by

aT= Ena,,= af + I

En- n 1 -a1 (1 -a,)2
al[s(oal)" - 1] aa 2[(aa)s' 1- .1 (

aa1- 1 (ocrl _ 1)2

The dependence of the concentration of polymerized mate-
(3c) rial, aT- a1, vs. the total material, aT, is shown in Fig. 1

for different values of s and a. Note that the differences

(3d)

Thus all concentrations are measured in units of the
so-called "critical concentration", Kb'-, and all times are
measured in units of g-' . We shall also designate the
cooperativity as a = h +/h - = Ka/Kb. That is, a=0 implies
a highly cooperative reaction, and a - 1 implies almost no
cooperativity. a > 1 would represent an anti-cooperative
reaction, and will not be considered here. a is directly
related to the free energy difference between the
a .-I + a1I= aS reaction and the a + a a1+= I reaction,
i.e. AGO = RTln a.

This expression in dimensionless quantities clearly
shows that polymerization reactions are characterized by
three dimensionless parameters, in addition to the two
scales of time and concentration. These parameters are the
seed, s, the cooperativity, a, and h +. a affects mainly
equilibrium conditions, and has almost no effect on mono-
mer disappearance at very high monomer concentrations.
h +, on the other hand, is strictly a kinetic parameter, and
does not directly affect the equilibrium. One could think of
h + as the kinetic cooperativity, different from a, the
thermodynamic cooperativity.
The only other parameters are the initial conditions, and

unless specified otherwise, we assume that only the mon-
omer is populated at r = 0. Thus a,(0) = aT and a,,(O) or
n = 1, where aT represents the concentration of total
material.

EQUILIBRIUM

One can easily verify by direct substitution that the
following functions for a,n are stationary, and therefore
represent equilibrium (since no energy is dissipated in our
model)

atn = a`a'ct n s s (4a)

o"a'=V n s. (4a)

From Eqs. 4, we calculate the total number of polymers
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FIGURE 1 Equilibrium-total polymerized monomer T - a 1) vs.
total protein (aT) for seeds of 2, 3, 4, and o = gS1 values of 10-2 and
10 -6. (a) w = 10 2. Note the substantial amount of polymerized
monomer (t20%) in the region where aT < 1, i.e. where the total
material is less than the critical concentration. (b) Same as a, but with
extended scales. Note that for a given w, the differences between seed
sizes rapidly diminish for aT> 1 - (c) w = 10-6. The cooperativity is much
higher, and the differences between seed lengths is much lower (-1%)
than in a. (d) A comparison of the seed = 2 curves from a and c on an

expanded scale. Although curves of equal w coalesce quickly for aT > 1,
curves of unequal w coalesce much more slowly. This observation is
important because the critical concentration is often determined by
extrapolating back to the x-intercept from large values of a T. As can be
seen from this figure, if the values of CT are not large enough, the
apparent x-intercept will miss the critical concentration and therefore
produce a systematic error. This size of this error depends on W, which is
usually not known a priori.
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between curves depend mostly on a'-Sl, and only to a lesser
extent on s and cu independently. This is because most of the
material appears in the long polymers, whose concentra-
tion depends on the amount of cooperativity "accumu-
lated" by the seed - if a factor of a is accumulated for
each step before the seed, then we define the cumulative
cooperativity, w, as w = a-'. That the equilibrium solu-
tions depend mostly on w is reinforced by Fig. 2, which
shows the equilibrium length distributions for seeds of 2
and 3 in which w = 10 -2. Note that the post-seed slope is
similar for curves of similar T but different seed size. This
is a property of systems having identical w.

It would thus be very difficult to measure the seed length
from equilibrium measurements of the monomer concen-
tration. The differences show up only when the total
material is close to but less than the critical concentration,
a region in which the number of polymerized monomers is
usually very small. There have been measurements of actin
in this region (13, 14), but the data are not yet capable of
establishing quantitative measures of seed size.

In the limit of high concentrations, 1-a <<1, and Eqs.
5 and 6 simplify to aT = W(1 -a1) -2 and Cq=
w(1 -a 1) and therefore

Ceq = (wa T) / (7)

Thus the concentration of polymers in equilibrium is
proportional to aTI"2, and since the average length of
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c
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0

polymers is aT/Ceq, the average length becomes
(a T/W)1/2.
These results are valid only in true equilibrium and are

presented for contrast with results from kinetic analyses
presented next. As Oosawa (15) has shown, the time scale
for relaxation of monomer concentration is very different
(and much shorter) than the relaxation of the long polymer
length distribution. Eqs. 4 apply after the long polymers
have reached equilibrium, but the kinetic analyses, at least
at high concentration, apply only over the time range of
monomer concentration relaxation.

SCALING ARGUMENTS AT HIGH
CONCENTRATION

Pre-Equilibrium and Irreversibility
Eqs. 3 form an infinite set of interrelated nonlinear differ-
ential equations that cannot, in general, be solved analyti-
cally without some approximation. One approach (10) is to
assume (a) the monomer concentration changes only by
addition to and subtraction from polymers longer than the
seed, (b) polymer formation by seed production is irrevers-
ible, and (c) the ratio of the concentration of the seed-
minus-one-length to the s - 1 power of monomer concen-
tration is essentially constant through most of the reaction;
that is, the seed precursor is in "pre-equilibrium" with the
monomer. (This is the same analytical form as obtained
between the seed precursor and monomer in the true
equilibrium Eqs. 4). These assumptions allow the infinite
set of equations to be reduced to two. Assumption a is

l = C- Ca.dT (8)

We take assumption b to mean that

= s-l(al - 1).dT- (9)

(The factor (a I - I) is used instead of a1 so that polymer
formation stops when I reaches the critical concentration.
This extra assumption will not affect the analysis below,
but is taken into account explicitly in Appendix A).
Assumption c implies that

33 ,r = 10-' W = 1C 2

-0.8

b 0.6

as- I = KI'
and together with assumption b, we have

dC
-= Ka'(a, - 1).d-r

-4
2 3 4 5

Length

FIGURE 2 Equilibrium length distributions for w = a'S- = 10 -2, anda T

= 0.6, 0.8, 1.0, 1.2, 1 0.0, as labeled. (a) seed = 2. (b) seed = 3. Since these
distributions have equal w values, they differ primarily in the pre-seed
lengths, and are quite similar in the long polymer distribution. This
underscores the importance of the parameter w used in Fig. 1.

The value ofK is usually taken from equilibrium constants,
but its exact value is immaterial for our discussion. What
matters is that in Eq. 11, a, appears with an exponent that
depends on seed size. Note that these equations are in
dimensionless form, and therefore rate constants such as

g and g+ appear implicitly in the definition of a, but not
explicitly in Eqs. 8 and 9.
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These two equations still cannot be solved exactly but
are considerably more tractable than the original infinite
set. T does not appear in Eqs. 8 and 9, but of course
appears in the boundary conditions as a, (r = 0)=aT. We
begin analysis of these equations (in the high concentration
limit) by considering a transformation of variables that
leaves Eqs. 8 and 11 invariant, but removes the aT
dependence from the boundary conditions. This transfor-
mation is

al = al/CT (12a)

C'= C/IdJ2 (12b)

t =ras/T (1 2c)

Thus in the high concentration limit (al1>>1), the pre-
equilibrium/irreversible equations become

da;= C'a. (13a)dt'

dC'
d= K(a')s, (13b)

and the boundary conditions become a, (t' = 0) = 1 and
C'' = 0) = 0. Thus in the high concentration limit, a, and
C' depend only on t' and K, but not on aT. Even though the
equations have not been solved, the entire dependence ofa 1
and C on aT can be exhibited by transforming back to the
unprimed representation

a, = aTf (a/ r), (14a)
C = ace2 F(aCs2r), (14b)

where the functions f( ) and F( ) are undetermined and
arise from solution of Eqs. 13. We now draw two conclu-
sions from this result.

(a) At T co F( ) becomes constant, and therefore
C (r = cc) is proportional to 6s/2. In fact, C (T = cc) can be
found directly from Eqs. 8 and 11 without assuming the
high concentration limit (see Appendix A). The result is
C (T = Xc) = (2K(as - 1)/s) 1/2. The dependence on a T iS
quite different from the result of the equilibrium calcu-
lation, Eq. 7. That these approximate equations should
produce too many polymers in equilibrium is due to
irreversibility (and not to the high concentration limit, as
shown in Appendix A), but the extent of overproduction
depends heavily on the pre-equilibrium assumption. Even
when one interprets C (r = cc) as the total number of
polymers after monomer relaxation but before polymer
length redistribution, the extent of overproduction is too
large. We will verify this assertion in the next section with
a similar calculation on irreversible equations without the
pre-equilibrium condition. (b) A delay time TD can be
defined as the time it takes the monomer concentration to
reach some arbitrary fraction of its initial value. From Eq.
1 2c, time (that is, the dimensionless time variable, r) scales
as aT-s/2, and therefore no matter what arbitrary fraction is

chosen,

dlog rD S
d log aT 2 (15)

The reason this result is related to the aT dependence of
C (r = cc) can be seen in Eq. 8. Roughly speaking, C (r) is
the instantaneous rate constant for monomer decay. Even
though C depends on time, C scales with ad/2 and so will the
time dependence of monomer disappearance. This conclu-
sion can be verified by linearizing Eqs. 8 and 11 about their
Tr m. c point, and will also be seen in the next section with a
different version of the polymerization equations.

By using the assumptions of pre-equilibrium and irre-
versibility, we have found the dependence of the total
number of polymers on AT, and the dependence of the
delay time on aT. In the next section, we shall find different
results for these relations when only the irreversibility
assumption is used, thus casting doubt on the pre-equilib-
rium assumption.

Irreversible Polymerization
Consider the Eqs. 3 in the limit in which the monomer
concentration is so high that one can ignore all depolymeri-
zation reactions. In this case, the equations all have the
same basic form

dan = {coefficients} alam.dT m
(16)

That is, the time derivative of each a,, equals a sum of
terms, each term of which is quadratic in the a's. In the
spirit of Eq. 12, we apply a transformation to remove all aT
dependence from Eqs. 16 and from their boundary condi-
tions. Since Eqs. 16 are of a different form from Eqs. 8-1 1,
we use a different transformation

a==a/aT (1 7a)
for all lengths n, and

(17b)
By an analogous argument to the one for the pre-
equilibrium equations, we draw two analogous conclu-
sions:

(a) Since C = 02-S+ I ao, and an is proportional to aT for
all n, then C (r = c) is proportional to aT.

(b) Time scales as a -1, and therefore
d log rD/d log aT = -1. Again we note the relation
between the delay time and C (r = cc), and the fact that
irreversibility produces more polymers at r = cc than
allowed for by the equilibrium calculation.

There are now three different predictions for the depen-
dence of C (r = cc) on aT in the a »>> I limit; these come
from the true equilibrium equations, from the pre-equilib-
rium/irreversibility assumptions, and from the true kinetic
equations. Due to the apparent relation between C (r = cc)
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and d log TD/d log aT, one might expect that by linearizing
Eqs. 3 about the true equilibrium given by Eqs. 4, the true
value for TD would be different from that predicted by
either the irreversibility assumption alone or from that
predicted by the pre-equilibrium and irreversibility
assumptions together. The implication is that, insofar as
a l(X) is concerned, irreversibility is an unjustified assump-
tion.
We have checked this implication by comparing numer-

ical solutions of the exact Eqs. 3 with the same equations in
which irreversibility is assured by preventing only the
As+ A1 +A, depolymerization reaction from occur-
ring. In this case, the irreversible polymerization scheme
can be written

dal s-i
-l = _2h+a4 - h+a1 Lan
dT n-2

+ h aan- alas + h a2 + (1 - a)C (18a)
n-2

da
dr +n+

das
dr = h ~alas-, - asal - h-a5 (I18c)
dC = ala5. (1 8d)
d,r

Fig. 3 shows this irreversible reaction scheme forms an
excellent approximation for monomer decay, not at all in
accord with the above reasoning! As mentioned earlier, the
explanation is provided by Oosawa's (15) observation that
there exist two distinct time scales for polymerization. The
first, short time scale governs the disappearance of mon-
omer, but the polymer length distribution relaxes to equi-
librium (given by Eqs. 4) over the second, much longer
time scale. According to our simulations, the total number
of polymers relaxes over the longer time scale - by the
time the monomer reaches its equilibrium concentration,
the number of polymers may be orders of magnitude larger
than will be obtained at true equilibrium. After monomer
decay, most of the polymers must therefore depolymerize
entirely back to monomer so as to elongate the few
polymers that remain. During this process, the monomer
concentration stays essentially constant, but there is a large
flux of material through the monomer stage.

In summary, we have shown that the assumption of
irreversible polymerization is justified over the time course
of monomer disappearance, but fails at longer times by
predicting too many polymers in equilibrium. The extent of
polymer overproduction, however, depends on the validity
of the pre-equilibrium assumption. Our analysis shows, at
least at high concentration, that the pre-equilibrium
assumption must break down, and the relation between
delay time and total protein becomes independent of the
seed size. We show later that under some conditions, the
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FIGURE 3 Fraction monomer (a I/a T) VS. log r, as calculated with the
irreversible approximation Eqs. 18 (dotted line) and with the exact Eqs. 3
using a maximum polymer length of 1,000 to 3,000 (solid line). Each
panel shows CeT = 500, 50, 3, and 1.5, as labeled. (a) seed = 2, h + = 10 -6,
h = 1.0. (b) seed = 2, h+ = i0-, h_ =10 -. (c) seed = 3, h+ = 1,
h =10 -5. In general, the assumption of irreversible polymerization is an
excellent approximation, and starts to fail only for very low concentrations
and long times. Of course, it is inappropriate for describing the relaxation
of the long polymer length distribution after a = 1, even if the starting
concentration is high.

pre-equilibrium assumption does not seem to be valid at
any concentration, whereas under other conditions, notably
large seed size, the pre-equilibrium assumption may be
valid at low concentrations. Thus one should be wary of
using Eq. 15 to determine the seed size without being
assured that pre-equilibrium holds under the relevant
conditions.

NUMERICAL EXAMPLES

In addition to comparing solutions for monomer decay for
the exact (Eqs. 3) and irreversible (Eqs. 18) calculations in
Fig. 3, we have also calculated the time dependence of the
entire length distribution for three sets of parameters, as
seen in Figs. 4-6. These calculations were performed with
the exact set of equations, since although the monomer
concentration is accurately predicted by the irreversible
approximation, all information about the distribution of
long polymers is lost. The calculations here are intended to
give a qualitative feeling for what actually happens to all
components during a polymerization reaction.

BIOPHYSICAL JOURNAL VOLUME 50 1986588



a~~~~~~~~ 2 b

._0 , X ~~~~~~~h;= 10 3 o
' jh10' 0

-2

-4 4

C - 2

/ C

0~~~~
( 1 - -2 2

I 04-4
-2

-200Dashed lie:l200 2 d
/ ~~~~~~~~~~~0

-3 /
/ ~~ ~~~~~~~~23

-4 -4
-2 -1 0 2 3 OD 0 1 2

Log 'r Log Length

FIGURE 4 Time course of polymer concentrations for s -4, h,+-io
h - - 10', aT =500. (a) Solid line: loga.(-r) vs. log'r forn - 1,2, 3,4,50,
200. Dashed line: logC (r) vs. log-r. (b), (c), (d) Same calculation as in a
but plotted as loga,(r) vs. logn. Each curve is labeled by an approximate
logT. The exact values are: (b) r - 0.1, 1.1; (c) r - 12, 96;
(d) T = 730,0.

Note in Fig. 4 that the dimer and trimer and even the
tetramer (seed) increase over most of the time range when
the monomer decreases. Thus "pre-equilibrium" condi-
tions certainly do not apply. In fact, the dimer and trimer
concentrations even surpass the monomer concentration
during part of the time range and end up overshooting their
equilibrium concentrations by several orders of magni-
tude.
We expect the irreversible approximation to hold over

the early part of the polymerization, and thus h - will not
affect the early part of the reaction. It does, however, affect
the final equilibrium concentrations, so that the concentra-
tion overshoot is the result of interplay between h +, which
governs the peak concentration, and a = h+/h which
governs the final equilibrium.
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FIGURE 5 Time course of polymer concentrations for s = 2, h + Io
h - 101', aT- 500. (a) Solid line: loga,(r) vs. logr for n - 1, 2, 50, 200.
Dashed line: logC (r) vs. logr. (b), (c), (d) Same calculation as in a but
plotted as loga (r) vs. logn. Each curve is labeled by an approximate logr.
The exact values are: (b) T = 0.1, 1; (C) -r = 12, 96; (d) r = 1,020, 0.
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FIGURE 6 Time course of polymer concentrations for s = 10,
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calculation as in a but plotted as loga (T) vs. logn. Each curve is labeled
by an approximate lOgT. The exact values are: (b) r = 0.095, 1.1; (c) r =
12, 92.5; (d) r = 980, 00.

Once the monomer concentration drops close to a = 1,
the dimer and trimer concentrations relax principally by
monomer subtraction, a linear process with a rate constant
of h _. This decay of pre-seeds with an h - time scale is clear
in Fig. 4.

Fig. 5 shows the same h +, h _, and aTas Fig. 4, but the
seed has been changed to s = 2. Therefore the cooperativi-
ty, a, remains the same, but the cumulative cooperativity,
w = as- is changed. Again, we note that h - does not affect
the early reaction course. Remarkably, the dimer time
course is quite different between s = 4 and s = 2. For a seed
length of 2 the dimer concentration seems to parallel the
monomer concentration, although at reduced amplitude,
and its time derivative shows several sign reversals. Note
this is not a true "pre-equilibrium" as discussed earlier,
because a2 scales approximately as al/2, not as a2.
A seed of two appears to be a special one for the

following reason. One can identify three special polymer
lengths: (a) the monomer, because it directly interacts with
all lengths and because it is usually in very high concentra-
tion at the beginning of the reaction; (b) the seed, because
the kinetic constants change at that length; (c) the dimer,
because it grows via a term quadratic in a I while all other
polymers grow by terms linear in a -that is, the dimer is
more strongly coupled to the monomer than is any other
polymer length. Thus when the dimer and seed coincide,
there is no pre-seed to buffer the effects of the monomer. In
the early stages of the reaction, if da2/dr is not too large,
then the dimer concentration is governed by creation from
the monomer and elongation to the trimer; from Eq. 3c we
then see that a 2 t h +a 1, near -r = 0, which appears correct
in Fig. 5. If the seed were not two, however, the decay from
dimer to monomer may more effectively compete with the
slower elongation to trimer. Also, the "early", or peak, a2
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concentration becomes much larger, a2 - (h +/h -)a,, and
there may not be enough time to achieve this concentration
before the monomer decreases (see Fig. 4). Thus the
behavior of the s = 2 and s # 2 cases may be quite
different, even though this may not be apparenwt from the
monomer decay alone.

Fig. 6 shows the condition s = 10 and small aT. The
pre-equilibrium approximation does appear valid in this
case, although it clearly takes time for the pre-equilibrium
condition to develop.

Fig. 7 shows the delay time, TD, vs. aTon a log-log scale,
calculated assuming irreversible polymerization. TD in this
case is the time to reach a1I = 0.7 (aT - 1). (As evidenced
from Fig. 3, it makes little difference whether the exact or
irreversible equations are used). As expected, the high
concentration slope is -1, independent of seed. The slopes
at lower concentrations depend on seed size and on h +, h -
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FIGURE 7 Log delay time (measured in dimensionless time, r), evalu-
ated at 30% polymerization, i.e. when al = 0.7(aT- 1) VS. log a T for the
following choices of parameters: (a) Seed = 2. Curve 1: h + = 10 -9, h - =

10-3. Curve 2: h+ = 10 -6, h = 103. Curve 3: h+ = 10-6, h_ = 100.
Curve 4: h+= = 10 6 h = i-3. Curve 5: h+ = 10'5, h = 10 -3. (b)
Seed= 3.Curve l:h+ = 10-6,h = 100.Curve2:h+ = 10-6,h- = 10-2.
Curve3:h+ = 10-6,h = 10 3.Curve4:h+=10O-6,h= 104.Curve5:
h+= l-O5, h_ = 10 -2. Curve 6: h+ = 10-5, h = 10-3. Curve 7:
h+ = 10 -4, h = I0. (c) Seed = 4. Curve 1: h+ = 10 -4, h = 100.
Curve2:h+ = 10 -4,h = 10'.Curve3:h+ = 10-4,h = 10 -2.Curve4:
h + = 10-4, h _ = 10-3. The values of h + and h _ are indicated on the
figure. At high a T values, note that the slopes all tend to - 1, independent
of seed, and that the actual delay time values become independent of h -

Since the slopes at low Ci T may have a wide range of values, depending on
h + and h _, any determination of seed size from the slopes of this figure is
perilous without a priori knowledge of h + and h -

and AT itself. If such information were obtained experi-
mentally, fitting a straight line and multiplying the appar-
ent slope by 2 may in some cases overestimate and in other
cases underestimate the true seed size.

ANALYTICAL REDUCTION OF
IRREVERSIBLE EQUATIONS

The exact kinetic Eqs. 3 are a set of first-order differential
equations with both linear and nonlinear (quadratic)
terms. These equations cannot be solved exactly, but there
are several parameter regimes in which excellent approxi-
mations can be obtained. We shall examine the following
conditions: (a) Very high concentration. If a, is so large
that the addition reactions dominate the subtraction reac-
tions, then only the quadratic terms need be kept. (b)
Somewhat high concentration. The calculation at very
high concentration can be extended to lower concentra-
tions by perturbative techniques. These corrections supply
validity conditions for the high concentration assumption.
(c) Long time. After enough time, a I > 1, and all quadratic
terms become linear. This approximation is useful in
understanding the polymer length redistribution process
after the monomer has equilibrated. (d) Long seed, short
time, low concentration. If the seed is very long, then at
early times the evolution of pre-seeds is (I) linear because
the monomer concentration is not changing, and (II)
mathematically isomorphic to the long time condition
when s = 1. This condition allows a calculation of the time
needed to establish pre-equilibrium among the pre-seeds,
and therefore can be used to derive validity conditions for
the pre-equilibrium assumption.

High Concentration

During the monomer relaxation, we shall assume that
al>>l and that the polymerization (quadratic) terms
dominate the depolymerization (linear) terms. The relaxa-
tion of monomer concentration would be straightforward if
the quadratic terms were absent or at least could be
linearized, but it is precisely these quadratic terms that
represent addition of monomers, and these are the domi-
nant terms over most of the time range of monomer
disappearance. The linear terms are important (although
they never dominate) only near the end of the monomer
relaxation and during the polymer length redistribution.

In recognition of this fact, we shall introduce an integral
transformation of the time variable such that the polymeri-
zation terms become linear and the depolymerization
terms become nonlinear. As long as a I remains large the
depolymerization terms are negligible, and the resulting
set of linear equations can be solved exactly. Despite the
appeal of such a solution, the inverse transformation back
to real time cannot be done exactly, although approxima-
tions are readily available, and are particularly easy at very
early times. Nevertheless, this type of solution is useful as
an adjunct to the numerical solutions presented earlier
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because
(a) In the high concentration limit, all terms involving

h - are neglected, and therefore the reaction depends on
only two parameters, s and h +, not on three. Thus one may
be more confident of data analysis in this region, since the
theoretical model is simpler and more directly related to
the data.

(b) Departures from the extreme high concentration
limit can be found perturbatively.

(c) Validity conditions can be derived for the scaling
arguments presented above.

(d) The solutions might form the basis for more compli-
cated models, such as those involving energy dissipation
(ATP hydrolysis, for example), heterogeneous nucleation,
branching reactions, fragmentation reactions, etc.

(e) The dependence of the delay time TD on parameters
other than aT, such as s and h+, can be obtained and used
in analysis of experiments.

(I) The early time dependence of polymerization can be
shown to scale as ts when hi/<<«1, but not otherwise. (The
s = 1 case can in fact be solved (9) by a different
transformation that eliminates the time variable altogeth-
er, but the inverse transformation must also be done
numerically.)
The derivation of the time-transformation and high-

concentration solution is given in Appendix B; here we
quote the results. The time transformation is defined as

r== acl (to)dto.

then a Taylor expansion of a 1 - aT shows the early time
dependence to be ts, contrary to theories involving pre-
equilibrium, which predict t2. Of course this condition is
easier to achieve for smaller s, and can be seen in Fig. 8,
where essentially all the s=2 curves start as t2, but only the
smallest h + curves start as t3or t4 for s=3, 4, respec-
tively.

Perturbative Treatment of Lower
Concentrations

Of course there should be some effect of h -, and this can
be calculated perturbatively, as shown in Appendix C. Due
to algebraic complexity, we only exhibit the solution valid
when a, - aT, even though the solution from Eq. 22 is
valid over a wider range, provided a <<1.

Eq. 22 shows the decay of 3 1to be a sum of exponentials.
Each rate constant can be written x - h+, where x =

(hs - hr')-/S. When the effects of depolymerization are
included perturbatively, each rate constant acquires a
correction given in Appendix C by

x h_ 2 s -1 h+\
saT(h+ - 1)(1 - h+ + x) aT S s X

s(I + x - h+)

(19)

We define n,, as

#.(r') = a,,(T) (20)
0 5

h X- )]
(25)

s=2

h= 10 1
10-2

10-3
10 6

and therefore

(21), dto
JO M(to)

From Appendix B, we find that if h +< 1,

a7
131(r[) = - [1 - hs(hSr2'-1+1)/s

ll

exp {r'(--h+ + (h+-- h- h Ise (2J+ )1s)} (22)

When h +> 1, on the other hand, 13 becomes

f1(T') = -T [1 - h+(h+- hs-1)-l/se -i2l/1s
ll

exp {T'(- h+ + (h''- hs)l/seiv2l/s)I (23)

For the special case of h + = 1, we find

3(r') = aTO( -

T )e (24)

These solutions are shown in Fig. 8 in the transformed
representation.
As seen above, a (T') can be expressed as a sum of

exponentials, all of whose rate constants depend on s and
h +. When h + can be neglected compared with Ih5- h'-' 1Ils,

0
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FIGURE 8 Solutions of the high-concentration limit Eqs. 22 in the r'

representation. r' is defined in Eq. 19. For very short times, r' a 7T, but
at longer times T' and the true time variable, x, are not so simply related.
h + = 10-6, 10-4, 10-3, 10 -2, as labeled. (a) s = 2 (b) s = 3 (c) s = 4.
Note that for small h +, polymerization at early times goes approximately
as ts.
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These perturbative solutions can be used to define the
validity conditions for the high concentration solution
(when the contribution from h - given in Eq. 25 is small) as
follows. When h + <<1, the uncorrected decay time, x- h +
becomes x-h+ x , h(s-l)/s. (For purposes here, we
ignore complex factors of order unity, and deal only with
amplitudes.) The first term in Eq. 25 has no h - and
therefore comes from depolymerization of long polymers.
For small h +, it is always quite small compared witi the
unperturbed value x for aT>>L, and therefore depolymeri-
zation of long polymers does not materially affect the
validity of the high concentration approximation.
The second term in Eq. 25, however, comes from

depolymerization of the pre-seed lengths, and to within a
factor of 2 or so, it is - h /aT. The condition that it be
small compared to x then becomes

aT >>-lhlls. (26)

The point here is that simply demanding that the forward
rate h+aI be much greater than the backward rate h -

would produce the condition aT>>o -1. In fact, the high
concentration condition is even easier to obtain for small
seed length and small h +, due to the extra factor of hVIS in
Eq. 26. This factor takes into account the fact that the flux
of polymer between lengths n and n + 1 is biased by the
relation an > an+l
Note this validity condition seems to be upheld in the

numerical calculations in Fig. 7. That is, the logrD vs.
logaT curves approach a slope of -1 more in accord with
Eq. 26 than with the condition a»T>> cr

Long Time Polymer Length Redistribution

Here we consider the relaxation of long polymers, as
discussed in detail in Appendix D. Our approach is to note
that da1/dr is dominated by addition to and subtraction
from long polymers. That is, the dominant terms are

dal1 = (1- aa) E an-dT n-s+l

When
co

a= 1,YEan
n-s+ 1

is usually large, and therefore a1 will remain 1 despite
changes in the other terms in dal/dr. Given that a 1, all
other terms become linear. For example, if s . 2,
da2
-= h+ + h-a3 -(h+ + h)ja2, (27a)
dT

=-(h+ + hj)an + h+(an-I + h-an+,
dr

n < s,

da,
- = -(1 - h-a ± h + a.,,,dr

(27b)

(27c)

dan
-=an,, +a(n+l - 2an n > s.
dr

(27d)

Being linear, these equations can be solved by diagonal-
izing an infinite dimensional matrix. This can be done
exactly for s = 1 and approximately when h <<1, the
usual case. The results from Appendix D show that the
pre-seed lengths have a dominant relaxation rate equal to
h - as can be seen in Figs. 4-6. The post-seeds have an
infinite set of relaxation rates, X, that fall in the range
-4<X<0. The eigenvector associated with a given X (i.e.
the configuration of long polymers that relaxes at rate X) is
given by sin [n cos-'((X + 2)/2)]. In other words, a relaxa-
tion rate of X corresponds to a "spatial" (in the concentra-
tion vs. length space) frequency of cos' ([X + 2]/2). Thus
for long spatial periods, P, the relaxation times are T =
(P/2ir)2. This result is essentially that for diffusion, since
any one polymer may be envisioned as taking a random
walk in length space. Thus changes in length by amount P
require amounts of time that scale as p 2.

If we set P equal to the average polymer length in
equilibrium, then we find the "typical" relaxation time for
the long polymers is a T/4X2CW. (Remember, of course, that
the relaxation of a particular length takes place over many
times X-'.) To make this concrete, if g_ = 1 s-' and
w = 10-6, polymer relaxation may well take weeks, even
though monomer relaxation may take only minutes.

Long Seed: Establishment of
Pre-equilibrium

When the seed size is large and aT small, the effect of long
polymers on the monomer kinetics takes a very long time.
In the meanwhile, the pre-seeds may have time to equili-
brate with the initial monomer concentration. This situa-
tion is mathematically identical with the s = 1 condition, at
least up to the time when the long polymers accumulate.
Thus by examining the s = 1 case, we can derive the time
needed for the pre-seeds to reach pre-equilibrium. If this
time is less than the monomer decay time, then the usual
pre-equilibrium assumption is valid.
The details of the s = 1 polymerization are given in

Appendix E. The relaxation time for polymers of length n
to equilibrate with the monomer, provided that aTa<<1,
is

(-1 - aTa + 2IaT)Y'h' [1 + In (n - 1)]. (28)

This time must be substantially less than the time for
monomer relaxation if the pre-equilibrium assumption is to
hold. A lower bound on the monomer decay time can be
obtained from the high concentration limit, even though
the reaction is not at high concentration. The true relaxa-
tion time may be much slower, so the following condition is
somewhat conservative. Nevertheless, we can calculate the
1 /e delay time for monomer decay from Appendix B. The
resulting condition for the validity of the pre-equilibrium
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assumption is

aTcdl + In (s - l)](h+/s!)'1' << 1 + aTa - 21a-To. (29)
It would seem that this condition is easy to satisfy, but it
must be remembered it is derived assuming aCT<u<a-',
s>>1, and h+<<1. In fact, there is no pre-equilibrium
when s = 4 and a T - a, (calculation not shown) but Fig. 6
shows an excellent pre-equilibrium when s = 10 and
aT or.

PREVIOUS INVESTIGATIONS

Oosawa (1, 15) and collaborators pioneered work on
protein polymerization. They drew the analogy with con-
densation phenomena, pointed out the importance of the
critical concentration, and showed that the time scale for
monomer decay was very different from the time scale for
polymer length redistribution. Oosawa also used the pre-
equilibrium assumption in deriving kinetic solutions,
including the result that d logrD/d loga, = -s/2. This
assumption and result have since been used by many
workers (10) for data analysis. But as Frieden and God-
dette (11) have shown numerically and we have shown
analytically, the pre-equilibrium assumption is highly sus-
pect, particularly for small seeds. Why was this not
discovered earlier?
The pre-equilibrium hypothesis is attractive because it

reduces an infinite set of equations to two, and advanced at
a time when large computers were not as powerful or as
accessible as today. Further, there was no direct experi-
mental way to check the simple theory. Particularly since it
is believed that many protein polymerization reactions are
more complicated than the basic model discussed here, one
could always ascribe discrepancies to ATP hydrolysis,
fragmentation reactions, conformational changes, etc. It
gave sensible sigmoidal polymerization curves, and the fact
that too many polymers were predicted was attributed
(somewhat justifiably) to the assumption of irreversibility.
Wegner and Engel (3) used a steady state assumption

(i.e. da2/dr - 0) to derive an equation similar (but by no
means identical) to the pre-equilibrium Eq. 11. Their
mathematics corresponds to our definition of s=2,
although they used a different definition of seed size. As it
turns out, this steady state assumption is nearly true when
s=2 and rt 0. Wegener and Engel tested their equations
against computer solutions of the exact equations for two
similar conditions (a T = 3.74 in both cases, a = 6 x I -' in
one case and a = 2.2 x 10-7 in the other) and found the
results quite acceptable with regard to monomer relaxa-
tion. This success was later taken (4, 10) as justification for
applying the pre-equilibrium assumption to all seed
lengths.

In many cases a pre-seed is more likely to decay than to
elongate (h >>h a1, or a1«I<<-1, almost the antithesis
of the high concentration limit used here). Thus many
cycles of elongation/decay must occur before the pre-seed

becomes a seed, and there is plenty of time for pre-
equilibrium to occur. Although it is often true that
aT<U -I, the curves in Fig. 7 seem to be in the high
concentraton limit (i.e. show no effects of h -) even when
aT iSseveral orders of magnitude less than 0-'. Why does
the validity condition for high concentration, Eq. 26, have
the apparent extra factor of h 1Vs?
One answer is as follows: Instead of comparing the rates

of decay and elongation for a given pre-seed, consider the
"flux" of concentration between two adjacent pre-seed
sizes, for example n and n+1. Thus we compare the
elongation rate of the nth-mer, h +a,,a I and the depolymeri-
zation rate of the n+ 1 th.mer, h -a n+I. The net flux must
be toward the longer oligomers because we are studying a
(net) polymerization reaction, and the flux is positive
mainly because an»>>an+, not simply because a I>o-`. In
other words, we are justified in ignoring the depolymeriza-
tion step for length n (in some circumstances), not because
it is small compared with the elongation rate of size n, but
because it is small compared with the elongation reaction
of size n-1.

This reasoning works provided a,,>>a+l where both n
and n+ 1 are pre-seed sizes. The ratio aO/an+1 is actually
accentuated as n gets closer to s, due to mass action as can
be seen in the "plateau" region of Fig. 6). Thus if the seed
size is very large, we expect the early pre-seed lengths to be
more nearly equal, and the high concentration limit harder
to achieve. On the other hand, if the seed length is small, all
the pre-seeds are affected by the seed, and the high
concentration limit (or at least its perturbative expansion)
is applicable over a wider range of a T than simply
aT>>0 `. This is exactly the effect of the "extra" factor
hi/s in Eq. 26. We conclude that small seed reactions can,
and in some cases should, be treated differently than large
seed reactions.

EXPERIMENTAL DETERMINATION OF
KINETIC PARAMETERS

We outline in this section a way of determining the various
kinetic parameters from experimental data, based on the
above solutions. We emphasize that this method may not
be optimal-a better method might be based on lower
concentration experiments, but the theory is harder to deal
with in that region. Note, however, that the theory is
simpler in the high concentration region, and particularly
that there are fewer parameters. Thus fitting to both low
and high concentration ranges may give a much better test
of the applicability of the original Eqs. 2 than fitting to
either concentration range alone. It is always possible, of
course, to resort to numerical fitting of the (numerical)
solutions of Eqs. 2, but this may in some cases take an
impractical length of time.
A detailed discussion of the practicalities of making

measurements would be out of place here. We shall assume
in the following that some measure of the monomer
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concentration as a function of time is available, possibly
from fluorescence, light scattering, viscosity, chemical
separation, microscopy, or other methods. We emphasize
that any technique allowing the measurement of concen-
trations of specific lengths other than monomer (e.g. in
some cases, electron microscopy) is an extremely valuable
addition to techniques that simply measure the monomer
alone. It would allow the separation of many theoretical
possibilities that would otherwise appear similar on the
basis of monomer disappearance over a limited (by perhaps
practical aspects) concentration range.

First we note that the critical concentration (equal to
g_/g+) can be obtained from equilibrium measurements.
g+ can be obtained by adding monomer to a known
number of long filaments and recording the initial rate of
polymerization (16).
With g+ and g_ in hand, the polymerization experiment

starting with only monomer should be run at high enough
concentration such that d logtD/d logaT = -1. From the
absolute value of tD at these concentrations, one can
numerically determine a relation between seed size and h .

That is, numerical solutions of Eqs. 18 can be used to
generate logtD vs. logaT curves for a given seed size, as in
Fig. 7. The results will be independent of h for large
enough aT, and the absolute time scale will depend only on
h + and s. Actually, if the delay time is picked so that
al;z OaT, then Eq. 22 can be used instead of the more
laborious process of solving Eqs. 18.
Once h + is known for a given seed size, h _ can be

determined from the slope of tD at smaller values of aT
where logt D vs. logaT # - 1, again for a given seed size.

At this point each tentative seed size has an associated
h + and h , and the experimental curves can be directly
compared with simulated curves, one curve per seed size.
This comparison is definitely diagnostic of seed size when
aT iS large and hls<< 1, as noted above, and probably
diagnostic at other values as well. Once the seed size is
determined, the experimental curves should be compared
with the theoretical ones for a wide variety of aT values, as
a validation procedure. If this procedure shows discrepan-
cies, then the original model, Eqs. 2, may not be appropri-
ate.

PROSPECTS

We have presented extensive analysis of the simplest
cooperative polymerization scheme, and an experimental
strategy to determine the relevant parameters. But what if
the experimental reaction does not have this simple form?
Our experimental procedure can probably establish that
certain data are consistent with the simple model, but it
does not establish uniqueness. Further, there may be other
complicating factors. For example, actin polymerization in
vivo involves an ATP-ADP cycle (5, 6, 17). Consequently,
the rate constants are different for the two polymer ends.
Furthermore, fragmentation and reannealing may occur.
We briefly address these issues below.

First, polymerization reactions may differ simply by
changes in scale, represented by g and g+, and not in the
internal physics, represented by s, h + , and v. It is
conceivable, for example, that the effect ofATP hydrolysis
on actin polymerization is simply a change of scale-
ADP-actin does polymerize, albeit with a higher critical
concentration, and it has been suggested that the ATP
hydrolysis takes place on the inner monomer units, not on
the ends of the polymer. One could thus imagine that under
high concentration conditions, the binding of ATP to
monomeric actin would shift the time and concentration
scales relative to ADP-bound actin, but leave everything
else the same. This possibility must be checked at high
concentration, since otherwise there is the complication of
polymerizing with an ATP-monomer but depolymerizing
with an ADP-end unit, a complication that affects the
statistics (and perhaps the biology), but not the underlying
physics. Of course, the ATP hydrolysis may well affect h +
and a, as well as increase the complexity of the reaction by
requiring two types of monomer and many types of poly-
mer (depending on the statistical arrangement ofATP and
ADP along the chain).
One simple extension to our model is to assume the rate

constants depend on polymer length up to some length, s.
This increases the number of parameters to fit, but does
not affect our basic formalism, and in particular does not
affect our conclusions based on scaling arguments, nor the
simplification obtained at high concentration. Frieden and
Goddette ( 11) use this extension in their numerical simula-
tions of actin polymerization, and have also concluded that
the pre-equilibrium assumption is often suspect.

Potentially more troublesome are the possibilities of
fragmentation, reannealing, and/or heterogeneous seed
formation. These processes will not affect the thermody-
namics of polymerizaton (in contrast to ATP hydrolysis),
but will affect reaction rates via terms in the differential
equations that have not been considered here. Thus our
scaling arguments may be affected in a model-dependent
way. One possible approach is that of Bishop and Ferrone
(12) who use a perturbative expansion near r = 0, and
show that these "extra" processes can often be represented
by addition of simple terms in a general way. The solutions
of their equations then provides diagnostics for which
processes are actually involved experimentally. However,
Bishop and Ferrone made the pre-equilibrium assumption,
which cannot be relied upon for small seed lengths or at
high concentration. Still, their conclusions may be war-
ranted for large seeds and low concentrations, as for
sickle-cell hemoglobin (18), and their approach of classify-
ing cooperative polymerization processes by the type of
differential equation involved may prove useful even when
the pre-equilibrium assumption is not valid. We note that
in a slightly different context, fragmentation and reanneal-
ing play a major role in colloid formation. See, for example,
Heicklen (7), Bentz and Nir (8), Hendriks and Ernst (9)
and references contained therein.
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SUPPLEMENTAL MATERIAL

Upon request, the authors will furnish the results of five
more sample calculations, similar to Figs. 4 and 5, but for
different values of aT, h , or h _

APPENDIX A

We derive here the total number of polymers in equilibrium, C(r = as), for
the pre-equilibrium/ irreversible assumptions. The equations to be solved
are:

because even though #.(r') and a,(r) refer to the concentration of the nth
polymer, they are different functions of their respective arguments. Eq.
B1 is the requisite transformation, and once I (T) is found, the inverse
transformation can be calculated from

fT dto
JO=Jo o)(t) (B4)

Thus in the absence of depolymerization, the kinetic equations become

d=ll s-i
- -2h+fo1 - h+Z6.8 - G - O (B5a)

d = C - CaldC

-= Ka,'(a, - 1).
dT

(Al)

(A2)

Note that by simply setting the derivatives to zero, we find that a (X)-I
but that C (Xo) is not determined.

Define z = ln(a - 1), and therefore

dz 1 da1
dT = al- d= C,

d2z _dC=_ a-l(a1).
=-dC a-'(a, - 1).

(A3)

(A4)

d#n = h+(On_l-tn)dT'
2 S n<s

dj33 = -h+#s- Osdr'

dG
d-r'

(B5b)

(B5c)

(B5d)

We now have a set of s+1 linear first-order differential equations. One
way to solve them is to take the derivative of both sides of Eq. B5a, and by
substituting from Eqs. B5b-d, we obtain

(d + h+) 1 = (h2+- h+)f,1.

Note that Eq. B5b is equivalent to

andsince at r -0,dz/dr- -C-0,then

fc( ) dz d fd- =-Kf -)a-' da,.
o dr d

Sincea,(r-o)- 1,

C(Xo) = [2- (C4T- 1)].
s

(A5)
and therefore we can reduce Eq. B6 to

(d + h+ 01 = (hs - hs-1)01.(A6)

This has the solution # I = exp{Rr'l, where R is given by

APPENDIX B

Here we solve the high-concentration limit of the exact kinetic equations.
Note that every quadratic polymerization term in Eqs. 3 contains an a,
factor. If time can be transformed in such a way that the right-hand side
can be divided by a 1(r), then we will have achieved the necessary
transformation. Thus we set

and note that

T'= f1 (to)dto

d dr' d d
dT dr dr' da '

(Bi)

(B2)

R = -h+ + (h+ hs+l)l/s. (B9)

When h + 1, there are s independent solutions for R, and # I is simply
a sum of exponentials. If h + = 1, on the other hand, R is real and
degenerate, and # I is an s-order polynomial in r' times an exponential. In
either case, the coefficients are determined by initial conditions-the
derivatives of #I at r' = 0-as follows: From Eqs. B6 and B7,

[d(±' h+ ,1] =0 for 2n< s. (B1O)

Thus ,B ,(0) = aT and df, I(0)/dr' = 2h +a T and by induction,

We shall use the notation that

3(T) = a"(T); G(r') = C(r), (B3) d ) 1(°) = (n + 1)(-h+)naT n < s, (BI 1)
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Thus

But

d2z dz d dz

dr2 dr dz dr

(B6)

(d+ h,)l.=h,-I 2zn<s, (B7)

(B8)
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and from Eq. B8, we also find

(d) (°) = aT[h+ - hs+- (s + 1)(-h+)$].

When h + : 1, the solution for # 1(f') can be written

3I (r') = E B. exp {r'(-h+ + ye'I/)
n-I

where

y = Ihs - h$+-lll/s h > I (B1I3a)

y = eiT/SIhs - hs-1I11s h+ < 1 (B1 3b)

By considering the nth derivative of eh+r'#j, at T' 0O, then Eqs. BI 1-B13
imply that

Thus (i - aT(1 - h+- - (r'Y)/s! + *). This special form is clearly
diagnostic of the seed size, but is not valid for all values of h +. It is in
general not possible to transform back to the r representation exactly. For

(B 12) very short times, when , I - aT, of course T' = TaT, and for slightly longer
times, a Taylor expansion could be used. Extensive numerical approxima-
tions to transform back to r probably involve more work than simply
solving Eqs. 18 numerically, but the analytical solutions in ' are
themselves useful at small T' and also as test cases for diagnostic analysis
of various parameters. If a certain procedure for determining the seed, for

(B 13) example, doesn't work in the T' representation, then it is unlikely to work
in the r representation, at least in the high concentration limit.

APPENDIX C

Yet another way to solve Eqs. B5 is by matrix methods, which will prove
more useful with the perturbation theory to follow. We define B -

d(lo/d7' and,B = (flj, B - - - ,B), and then write Eqs. B5 as

dTo (C1)

(B14) wher

(B15)

(B16) M=

These equations for B,, can be solved by a discrete Fourier transform, and
the result for .3 is

(-' e- 2il

n-I S [ Y 1

exp {tr'(-h + ye2n"r/s) (B17)

When h + = 1, (no kinetic cooperativity), then f 1 has the special solution

fli(T ) = aT(l - Tl)eT'. (B18)

These solutions (Eqs. B17) are shown in Fig. 8 for various values of s and
h +, in the T' representation. Remember, from Eq. B4, that ,B ,(r') = 0
corresponds to T - 00.
When hVS « 1,< can be easily expanded in a Taylor series about

T' = 0. Since the coefficient of the (Tk/k!) term in the Taylor expansion is
simply the k th derivative of , evaluated at T' = 0, then

(d\k ~~saT h 2#w]k
(d)1(L) ET e I2/] [-h+ + ye2i/h k (B19)

and in the limit that h+ << y, i.e. hVl' << 1,

( d) k() k E e2frk/=-_a, for k = s
d,r= 0n-I

-=0 for k <s. (B20)

,eM is given by

-2h+ -h2 0 0 0 ... 0 h+- h+ 0

1 0 0 0 0 ...0 0 0

0 h+ -h+ 0 0 .. .0 0 0

0 0 h+ -h+ 0 0 0

0 0 0 O O ... h+

0 0 0 0 0 ...0

0 1

-h+ 0

h+ -1

(C2)

The eigenvalues and eigenvectors can be found and the solutions below
can be verified by substitution. Note that since M is not Hermitian, we
need to calculate both the right and left eigenvectors, which are not equal
in general. The eigenvalues A are given by X = -1 and X = -h+ +
(h+- h'-' ) '/s. For notational convenience, let x = (h+- h+-' )1/s, and if
the right (left) eigenvectors are designated R(L), then for A = -1 we
find

0

0 1

0

1

(C3)
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s

ZBn= aT
n-I

Z B,,ei(21+I)/s = -aTh+(h+-' - hs )-'Is
n-I

s

, Beiw2n+1 = 0 2 s m <s.
n-i

h+/(h+- 1)2

h+(2h+- 1)/(h+- 1)2

1

(h+-l)h+
[(h+-l)h+]2

. . .

[(h+ -1)h+] 3

h+ h+- 1)S-2
i1-h+ h+
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andforA- -h+ +x,

(x/h+)s2/(h+ - 1)

(x/h+)'-2(x + h+)/(h+ - 1)

x/h+

(x/h+)2

(x0h+) -3

O

We now keep all terms during the transformation of Eqs. 18 into Eqs.
B5, and then discard all terms quadratic or higher in 1 /# 1. In other words,
we allow depolymerization reactions to occur before the seed (perturba-
tively), but still forbid depolymerization of the seed-plus-one length. We
also assume that the small parameter, A - 1 /# I l/aT, which limits the
validity of this approximation to early times. In this way,M remains as in
Eq. C2, and At' becomes

M=Io

x - h+

h+/x

(h+/x)2

(h+/x)s-2

(h+IX)s-2h+(l + x - h+)

(C4)

These eigenvectors can be used in perturbation theory in the following
way. To find the eigenvalues and eigenvectors ofM + AM{, where A is a
small parameter, expand the right eigenvector as

Go

R = E AnR(n),
n-0

similarly for the left eigenvector, and expand the eigenvalue as

x = E X(n)
n-0

Then substitute into (M + AM')R = AR, and solve by powers of A. For
A0, we get

M. =R(°) R(°) (C5)

and for A' we find

M - R(l) + M' . R(0) = X(t)R(°) + AX(0Rt". (C6)

Multiply Eq. C6 on the left by the zero-order left eigenvector L(°) and
solve for A (') to obtain

A(I = L(°) . R(°)* (C7)=L(0) l - R(0)
Thus the first-order correction to the eigenvalues may be obtained by
using L(°) and R(°) from Eq. C4 and by deriving A' from the basic
differential equations. Even though Eqs. C1-C2 are valid over a wide
range of , ,, we shall now derive Al by assuming fl I aT; that is, our use
of Al will be limited to the initial phase of monomer relaxation. This
greatly facilitates the mathematics, and is still useful for determining
d (log TD)/d (log aT) provided the polymerization reaction not gone too
far.

0 2h+h_ 0 0 0 0 0..°

0 0 0 0 00 ... 0

0 0 -h_ h_ 0 0 ... 0

0 0 -h_ h_ 0...

0 0 0 0 O O ...-h_

0 0 0 0 00 ... 0

By applying Eq. C7, we find that the first-order correction to the
eigenvalue AX() = -1 is

[ h - I\S-1] I1 h
A(l)=(1 - h)-'[l k(h )J I - h+

and the correction to the eigenvalues A (0) = - h + + x are

s(h+ - 1)(i + x - h+)
- h

s

h [s ( -h+ ) h+ ( - )] (C1)

APPENDIX D

Once the polymerization reaction reaches thea = 1 stage, the resulting
differential equations are linear, and are amenable to matrix manipula-
tions. In contrast with the earlier appendices, the matrices used here are
infinite dimensional, and require somewhat different techniques.
An infinite-dimensional matrix has an infinite number of eigenvalues;

the number of eigenvalues may be countable or uncountable, and the
eigenvalue spectrum may be discrete or continuous. As an example,
consider the quantum mechanical simple harmonic oscillator. Both the
Hamiltonian and the momentum operator can be written in matrix form
with a countable number of rows and columns, using the energy eigenvec-
tor representation. The eigenvalue spectrum of the Hamiltonian is
discrete, countable, and bounded from below, while the corresponding
spectrum of the momentum matrix is continuous, uncountable, and
unbounded. In the particular case for this appendix, we will solve the
matrix eigenvalue equation by transforming it into a differential equation
for a generating function, and then show that the eigenvalues form a
continuous spectrum, bounded on both sides.

If we define at - (a2, a3, * ), then the differential equation can be
written

da= Ra + (h+, o, o .... )t.
dr

GOLDSTEIN AND STRYER Cooperative Polymerization Reactions

1 - h+h_

0

0

00

(C8)

(DI)
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If, for example, s = 4, R is given by

0 00

h+ -h+--h h_ 0 0 0

0 h+ -h+ -h_ 1 0 0 ...

0 0 1 -2 1 0 ..

0 0 0 1 -2 1 ...

(D2)

E2 -n-I E -Vn+I-_E X Vn

n-2 n! n-I n! n-I n!.
(D7)

If we shift dummy variable, n, on the first two sums and then take the
derivative of the entire equation, the result can be written

d2f(x) _ A df(x) + S(X) = °'

dx2 dx
(D8)

where

f(x) = Y-
n- n!

Note that R is tridiagonal and that sign(R1j) = sign(Rj,). Such a matrix is
guaranteed to have real (and in our case negative) eigenvalues, and can be
cast into symmetric form (19) by a similarity transformation that
effectively replaces R,j with (R,jRji)I/2 . If this is done, and we note that
usually h +<<h , i.e. the reaction is highly cooperative, then the pre-seed
entries along the main diagonal (in Eq. D2 the first and second entries
corresponding to the dimer and trimer) become nearly block diagonal.
This means the pre-seeds have a dominant relaxation rate of
h - + h +, as evidenced in Figs. 4-6.
Once the pre-seed relaxations have been solved as nearly block-

diagonal, the remaining task is to solve for the eigenvalues of
R' = S -2I + RMP where I is the unit matrix, and

Thus we can solve Eq. D8 forf(x) and then obtain v. from

[(

=

dx)
f ])x-o (D9)

The solution of Eq. D8 takes the formf(x) = ekx, where k is given by k =
(A/2) ± [(A/2)2- 1]1/2. If IAI>2, the corresponding v. grow without limit,
and we must reject these solutions as incompatible with conservation of
total protein. If IA<2, on the other hand, vn is bounded. In particular,
from Eq. D9,

vn = sin [n cos-'(A/2)]. (DI0)

1 0 0 0 ...

0 1 0 0 ...

1 0 1 0 ...

. . . . . . . . . . . . . . .

+- h- 0 ...

0 0

. . . . . . . . .. i

(D3)

Thus the eigenvalues X of S - 2I become X = A- 2, and for
each eigenvalue -4 < X < 0, the eigenvector is given by v =

sin [ncos-'(X + 2)/2].

APPENDIX E

Here we estimate the time required for a given polymer length to come to
equilibrium for a seed of one and a T<< -1. This is a useful analogy to the
situation when the seed length is very long, and can be used to a lower
bound for the time necessary to achieve pre-equilibrium of pre-seeds.
Since s = 1, we set h + = h _ = 1 with no loss of generality. The fractional

(D4) change in a, fromT to T is given by

aT al(oo) aXT

aT I +aT
(El)

R' been decomposed in this manner to draw a mathematical analogy
with the problem of phonon structure in one-dimensional crystals. S then
represents a semi-infinite chain of atoms with identical nearest-neighbor
interactions, while R'p represents a substitutional impurity at the end
position. - 2I simply shifts all eigenvalues equally, and can be added back
at the end of the calculation. The physics of impurity vibrations shows
that the effect of R'p is to significantly shift at most one eigenvalue (20),
and that because our case corresponds to lighter-than-normal atom
substitution, the resulting shifted eigenvalue corresponds to a localized
vibration outside the normal spectrum. In our terms, this means the seed
length (impurity atom) acquires a somewhat faster relaxation rate, but
this extra rate has little effect on the other lengths.

It remains to find the eigenvalues and eigenvectors of S. Let v be an

eigenvector of S with eigenvalue A. From the definition of S, then

V2= Av,

Vn + Vn+l = AVn

(D5)

(D6)

Eq. D6 is exactly the recursion relation for Chebyshev polynomials, and
indeed, they are closely related to the final eigenvectors. If we multiply
Eq. D6 by x'ln!, then sum from n = 2 to -, and then add x times Eq. D5,

from the true equilibrium Eqs. 4, and therefore when aT<< 1, we are

justified in assuming a = aT throughout the reaction. The differential
equations become linear in this regime,

da2
= aT(aT 2) + a3 a2

dr

-= aT(an-I an)+an+l -an n > 2.

dr

This can be written symbolically as

da = Ma + b,
dT

where at = (a2, a3, * *) and the solution

Ot(T) =(emfT I)M-lb.
M -' b gives the equilibrium solution,

(M-lb)T = (-aT2 -a3 .)

(E2)

(E3)

(E4)

(E5)

(E6)
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-h+-h_ h

0

S=
0

we obtain

O ...*1
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and exp{MrI can be found as follows. Define the diagonal matrix C as
Cij=-b1jCaT, and then note that

O 1 0 0 ...

1 0 1 0 ...

CMC'+ (atT +l1) I= JG 0 1 0 1 ...

O 0 1 0

L... ........... .

(E7)

This is exactly the same matrix dealt with in Appendix D. Thus the
eigenvalues ofM are -1 -aT+A -a where -2<A<2. We use the fact
that the eigenvectors are given by sin (n cos -' [A/2]) to (a) transform M
to diagonal form, (b) exponentiate, and (c) transform back to the original
representation. Thus

(eMt)jk = f dAF(A) sin Acos eT(-I-'+A-T)

* sin (k cos- 2ayT, (E8)

where F(A) contains any normalization of the eigenvectors. The result is

j@) - 1 -Jf dAF(A) sin -1] cos-' A e

*Esin (kcos _.(E9)
k- 2 2

Note that the time for a term such as Ae t" to decay to e1 is t =
[ln(A)+ I]/k. If we assume the integral in Eq. E9 is dominated by the
slowest decay time (thus producing an upper bound on the decay time),
then A t 1. After putting back the constants h _ and h _, the decay time to
equilibrium for the nth species, TD,, becomes approximately

TD;n = h [ 1 + In (n - 1)] [1 + uaT - 2 aT]'* (E I0)
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