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ABSTRACT The mechanical equilibrium of bilayer membrane cylinders is analyzed. The analysis is motivated by the
observation that mechanically formed membrane strands (tethers) can support significant axial loads and that the
tether radius varies inversely with the axial force. Previously, thin shell theory has been used to analyze the tether
formation process, but this approach is inadequate for describing and predicting the equilibrium state of the tether itself.
In the present work the membrane is modeled as two adjacent, thick, anisotropic liquid shells. The analysis predicts an
inverse relationship between axial force and tether radius, which is consistent with experimental observation. The area
expansivity modulus and bending stiffness of the tether membrane are calculated using previously measured values of
tether radii. These calculated values are consistent with values of membrane properties measured previously.
Application of the analysis to precise measurements of the relationship between tether radius and axial force will
provide a novel method for determining the mechanical properties of biomembrane.

INTRODUCTION

When a red cell that has adhered to a surface is subjected
to a fluid shear force, long, thin hollow membrane cylin-
ders or “tethers” are readily extracted from the body of the
cell as shown in Fig. 1 a (Hochmuth et al., 1973). As long
as the fluid shear force exceeds a value of ~107¢ dyn, this
tether will steadily increase in length because of the flow of
membrane material from the cell body. A rapid increase in
the force on the cell produces a rapid increase in the length
of the tether without the addition of material from the cell.
This, in turn, produces a decrease in the radius of the
tether, which can be detected under the microscope as a
lightening of the tether shadow. Thus, there is an inverse
relation between tether force and tether radius.

As shown in Fig. 1 b, it is also possible to extract a tether
from the spherical body of a red cell that has been
aspirated into a pipette (Hochmuth et al., 1982). In this
particular experiment, the radius of the tether (which is
either invisible or appears as a faint shadow under the
microscope) can be determined by using the condition that
the membrane surface area is conserved (Hochmuth and
Evans, 1982). Thus, the decrease in the surface area of the
membrane material within the pipette is approximately
balanced by an increase in the membrane surface area of
the tether as it increases in length. The former is propor-
tional to the pipette radius and the change in length of the
membrane projection within the pipette, whereas the latter
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is proportional to the tether radius and the change in length
of the tether. Because every quantity in this material
balance is known except the tether radius, the value for the
tether radius can be calculated readily. A typical value is
20 nm. Hochmuth et al. (1982) have observed that the
radius varies inversely and reversibly with the tension in
the membrane of the cell. Because the membrane tension
times the circumference of the tether is equal to the tether
force (Hochmuth and Evans, 1982; Waugh, 19824), we
again conclude that the radius is inversely related to the
force on the tether.

In addition to tether formation from red cell mem-
branes, tethers can be extracted from large phospholipid
vesicles (Waugh, 1982b). These experiments show that
tethers can be formed from a bilayer membrane that does
not have an associated membrane skeleton, and that
tethers formed from bilayer membranes with no shear
rigidity can support significant axial loads under static
conditions. This simple observation reveals the inadequacy
of thin shell theory to describe the mechanical equilibrium
within the tether. In a thin membrane with no shear
rigidity, the stress resultants must be isotropic under static
conditions (Waugh, 1982a). However, as we will show, the
circumferential stress resultant in the tether is much
smaller than the axial stress resultant. Thus, under the
loading conditions in tether formation experiments, the
equations of equilibrium for a thin shell are not satisfied for
a membrane with isotropic stress resultants.

The experimental observations discussed above indicate
that there is an inverse relation between the tether radius
and the force on the tether and that this relationship exists
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FIGURE 1 Schematic illustration of tether formation experiments. (a)
In the flow channel, point-adherent cells are subjected to fluid shear stress
generated by flow in the channel. When the force on the cell exceeds 1.0 x
107 dyn, a tether forms between the body of the cell and the attachment
site. (b) Hypotonically swollen cells are aspirated into a glass micropi-
pette. The cell adheres to a glass bead that is withdrawn by a second
pipette at a fixed rate. The tether radius can be determined from
measurements of the tether length, the pipette radius, and the displace-
ment of the cell projection in the pipette as the tether forms. The
membrane force resultant (tension) can be determined from the applied
suction pressure and the cellular dimensions.

in the absence of significant membrane shear rigidity.
Thus, the goal of the analysis presented here is to obtain an
inverse force-radius relationship in terms of the “elas-
ticity” of the membrane material in the tether and cell
body. Our analysis, which is based on the mechanical
equilibrium of thick, anisotropic liquid shells, shows how
isotropic stresses in the plane of the membrane can produce
highly anisotropic stress resultants. We assume that the
tether membrane does not possess a shear rigidity because
tethers can be formed from phospholipid vesicles. Further-
more, it is likely that tethers formed from red cell mem-
brane have properties similar to tethers formed from
phospholipid vesicles because red cell tethers appear to be
devoid of cytoskeleton. Berk and Hochmuch (1986) have
shown that the lateral mobility of fluorescent markers in
the tether membrane is similar to the mobility of probes in
spectrin-free erythrocytes (Koppel et al., 1981). Also,
preliminary electron microscopic examination of tethers in
thin section in our laboratory indicates a lack of spectrin
within the tether.

A THICK ANISOTROPIC LIQUID SHELL

On a molecular scale the membrane consists of long,
flexible, hydrocarbon chains joined to polar phosphate
head groups. Observations of the mechanical behavior of
lipid bilayer membranes above the phase transition indi-
cate that the membrane is liquid-like, i.e., it has no surface
shear rigidity to resist anisotropic stress in the plane of the
surface. However, because the molecules are constrained
by the hydrophobic effect to remain in the surface, there is
a preferred thickness and area per molecule for the mem-
brane, i.e., the membrane exhibits solid character in its
resistance to change in thickness or surface area. Thus, the
membrane is anisotropic in three dimensions but isotropic
and fluid-like in the two dimensions of the surface plane.
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Consider a curved element within the cylindrical tether
membrane as shown in Fig. 2. The radial coordinate is r,
the coordinate along the axis of the tether is z, and the
angle of the rotation around z is ¢. On the exposed surfaces
of this membrane element we define the state of membrane
stress with the principal stresses o,, o, and o,. The
dimensions of the deformed element are related to its
undeformed dimensions by the principal extension ratios:

dz =\,dz, (1)
dr = \dr, )
rd¢ = A,r,de,. 3)

The constitutive relation for the shell must preserve the
essential features of the membrane behavior, namely,
small area expansivity and low (zero) shear rigidity. We
make the further assumption that the membrane is volu-
metrically incompressible. (Jusitification for these
assumptions is given in the Discussion.) We define the
surface isotropic stress:

= (0, +04)/2, 4)
and the surface shear stress:
o= (0, — 0,)/2. (5)

The condition of zero surface shear rigidity requires that
g, = 0. Therefore

0,=0,=0. (6)

Because the resistance of the membrane to area changes is
large (area strains are small), a simple linear relationship
between the internal stresses and the fractional area
change of the element, «, is sufficient to describe the
material behavior:

g — o, =Ka(r), @)

where the radial dependence of « is indicated. Justification
for the form of Eq. 7 is given in the Appendix. The elastic
modulus K has units of dyn/cm?. For the sake of simplicity
we assume that K is independent of position within the
shell. Clearly, in light of the inhomogeneity of the molecu-
lar structure in the radial direction this may be an oversim-
plification of the actual material behavior. However, our
present goal is not to provide a detailed description of
molecular interactions within the bilayer, but to model

FIGURE 2 A material element
within the membrane cylinder.
The coordinate system and prin-
cipal stresses of the membrane
cylinder are shown. The radial
coordinate is r, the axial coordi-
nate is z, and the circumferential
coordinate is ¢. The principal
stresses in these directions are ,,
g,, and g, respectively.
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with a minimum of complexity the essential features of the
membrane behavior at high curvature.

With Eq. 7, the radial dependence of the difference
between the surface-isotropic stress ¢ and the radial stress
o, can be obtained by specifying the radial dependence of
the fractional area change a(r). In terms of the principal
extension ratios the fractional area change is given by

a=M\\ — L. (8)

In terms of the area of the material element A(r) it can be
written:

A(r)
A,

a(r) = - 1. 9)
The unstressed area A, is not a function of r because it is
assumed that the stress-free state is a flat membrane.
(Formally we take the stress-free cylindrical radius to be
very large.)

For convenience, the area change a(r) can be expressed

relative to the area change of the mid-surface a,, =
A, /A, — 1t

(10)

With the use of Eq. 9, the quantity @ — a,, can be written
as

a=aqa, + (a — a).

a—a,,,=(l +aav) [A(’)/Aav— 1] (11)

The ratio of the area A(r) to the area of the mid-surface
A,, in terms of r is

(12)

where L is an arbitrary cylinder length and R,, is the radius
of the mid-surface. The substitution of Eq. 12 into Eq. 11
and the substitution of this result into the right hand side of
Eq. 10 gives

r
a=a, + (1 + a) (R—“— 1). (13)
Finally, when Eq. 13 is substituted into Eq. 7, we obtain an
expression for the radial dependence of the stress differ-
ence

(14)

av

7 —0,-Kay + K(1 +a,,,)(Er—— 1).

Radial Force Balance

Because o, = 0, the axial and circumferential stresses are
equal to the surface-isotropic stress (Eq. 6). For this case, a
radial force balance on the material element shown in Fig.
2 gives

d o —
o 1% (15)

dr r

FIGURE 3 Schematic showing
the quantities used in the radial
force balance for a single thick
shell. The circumferential stress
is ¢ and the inner and outer
pressures are P; and P,, respec-
tively. The radial coordinate is 7,
the inner and outer membrane
radii are R, and R,, and the
membrane thickness is A.

When Eq. 14 is used to express the stress difference in
terms of r, Eq. 15 can be integrated to obtain the radial
dependence of g, (see Fig. 3). Application of the boundary
condition, ¢, = —P;, at r = R;, and integration to an
arbitrary r gives

ai+l

g (r)=—-P + K[T (r—-R)-In (%‘)] . (16)

Application of a second boundary condition (¢, = —P, at
r = R,) to Eq. 16 yields a relationship between the pressure
difference P, — P, and the tether dimensions and proper-

ties:
a,, + 1 R,
h—In|==
R, In (Ri )] an

P-P,-K

where h = R, — R, R,, = (R, + R))/2, a,, = a(R,,) and
the identity, (o; + 1)/R; = (a + 1)/R,,, has been used
(see Eq. 12). The membrane equation of equilibrium for a
cylinder can be recovered from Eq. 17 if we use a series
expansion for the logarithmic term:

xr X x
In( x4,
n(l +x)=x 2+3 4+

>

-l<x<l.

(18)

After algebraic manipulation, we find:

K, [\ B\
APRav=Kmaav —E(R_‘v’) + O(R_") A (19)

where K, = Kh is the membrane area expansivity mod-
ulus. The first term on the right hand side is the result for a
thin membrane, and the second term gives the “first order”
correction as the cylinder radius becomes small. The terms
of order (h/R,,)* are <1.0% of the first order correction,
and these terms can be neglected without significant
error.

R P
—_— _PI‘ f
o4

FIGURE 4 Schematic of the axial force balance for a single thick shell.
The axial stress is o, the inner and outer pressures are P; and P,, and the
axial force is f. The radial coordinate is 7, the inner and outer radii are R;
and R,, and the membrane thickness is A.

T
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Axial Force Balance

The summation of forces in the axial direction (Fig. 4)
gives

f 5 2mrdr = PaR? — ParR: + f, (20)

where f is the axial force on the tether and ¢, = 5. With
Eqgs. 14 and 16, Eq. 20 can be integrated to obtain:

S
TR,

@n

K )
=K, a,, (1 + )

2RL) T 2R,

Here, as before, K, = K - hand R,, = (R, + R,)/2. Note
that h2/12R?%, ~0.01 and can be neglected compared to
one. Egs. 19 and 21 can be combined to eliminate the term
K.h?/12R?2, and recover the axial force balance for a thin
membrane:

f+ AP(WRE,,) = Kmaav (27rRav)' (22)

Alternatively, Eqgs. 19 and 21 can be combined to eliminate
Ka,, and obtain a relationship between the external forces
and the tether radius:

Knh?
£ — APR?, - 61"; . (23)

For tethers extracted from flaccid cells, the pressure
difference, AP, is zero, and an inverse relationship between
force and tether radius is readily obtained. For a tether
extracted from a cell that has been aspirated into a pipette,
typical values for AP and R,, are 3 x 10*dyn/cm?and 15.0
nm (Hochmuth et al., 1982). Thus, APR2, = 0.75 x 107%
dyn, which is two orders of magnitude smaller than the
force needed to form a tether (~1.0 x 10~® dyn) (Hoch-
muth et al., 1976). Thus, the pressure term in Eq. 23 can be
neglected, and a simple inverse relationship between force
and tether radius is obtained:

K h? 1
- — 24
S 6 R,, 24

Stress Resultants

Although the local state of internal stress is isotropic in the
plane of the membrane, the stress resultants T, and T, are
not. The stress resultants are defined such that the product
of the stress resultant times the length over which it acts is
equal to the integral of the stress over the cross-section (see
Fig. 5). In the z direction,

@rRT, - [ 2nr) dr. (25)
The integral is evaluated using Eqs. 14 and 16, and Eq. 21
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FIGURE 5 Cut-away view showing the stress resultants, T, and T, and
the distribution of stress in the axial and circumferential directions. The
total stress o is shown as the sum of the mean stresses {0, ) and (s,) and
radially dependent stresses o,(r) and a,(r) for each direction. The stress
resultants T, and T, act at the midsurface, R,,.

is used to simplify the result:

f P -P, n\
L-%r. " 2 R|1+3RC
P, + P
—h M . (26)
2
In the ¢ direction, the stress resultant is defined by
T¢-L=L&E-Ldr, @7

where L is an arbitrary length in the z direction (see Fig.
5). Again, using Eqgs. 14 and 16 we evaluate the integral

(Pi+Po)

T¢=(Pi_Po)R-v_h )

(28)
Note that these expressions for the stress resultants contain
terms arising from the hydrostatic pressure. In the limit as
the thickness of the membrane goes to zero, these terms
also go to zero. Furthermore, it should be recognized that
membrane tensions are measured experimentally relative
to an “unstressed” state in which the hydrostatic pressure
is non-zero. In the unstressed state, f = 0, P, = P, = P,
and the “reference” values for the stress resultants are:
T, = Ty, = — Py h. Thus, the quantity (—P,,, &) should
be subtracted from Egs. 26 and 28 to obtain expressions for
experimentally measured stress resultants. Because the
pressures applied to the cell are typically small compared
with atmospheric pressure, and (as discussed above) the
pressure term in Eq. 26 is small compared with the force,

Tz - Tz,

= 27R,, (29

T¢_T%=(Pi_Po)Rlv
. Po_Patm
2 2

It is important to recognize that although the stress

k. (30)
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resultants approach the membrane limit as the shell
becomes thin, the difference between the stress resultants
in the thick shell can be appreciable, even though the
stresses themselves are isotropic in the surface plane. To
obtain the difference in terms of the membrane properties,
we use Egs. 19 and 21 to substitute for the force and
pressure difference terms in Egs. 26 and 28, and then take
the difference of the results to obtain

K h?
T,—T¢=12mT, (31)

where terms of order (h/R,,)* have been neglected.

TWO LIQUID SHELLS

A more general model than that presented in the previous
section is one that consists of two uncoupled, thick liquid
shells as shown in Fig. 6. Each shell represents a single lipid
monolayer and together they form a bilayer. A two-
dimensionally isotropic state of stress (o, = 6,) exists in
each shell. Between the shells we allow for the existence of
a three-dimensionally isotropic state of stress given by the
intramembrane pressure P,. We postulate that along the
hydrocarbon chains of the monolayers there are only two
degrees of freedom for the transfer of momentum while at
the end of the hydrocarbon chains at the terminal methyl
groups there are three degrees of freedom and thus, in this
region momentum can be transferred in three directions to
create an isotropic pressure P,,.

a
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FIGURE 6 The double thick-shell model. (@) Schematic of lipid bilayer
showing the lamellar structure. There is a “slip plane” between the two
monolayers that allows the two layers to deform independently in the
surface plane. (b) Schematic of the continuum model is used to approxi-
mate the bilayer. The radially dependent stresses are depicted for the
inner (o;) and outer (o, ) layers. The slip plane is depicted as a thin region
of isotropic fluid. The cylindrical coordinates, 7, ¢, and z, and the inner
and outer pressures, P; and P,, are shown.

Radial Force Balance

Fig. 7 gives a cross-sectional view of two liquid shells. To
simplify the analysis, each shell has the same thickness A’.
The distance between the shells is A, and the intramem-
brane pressure is P,,.

The radial dependence of o, in the inner and outer shells
is obtained analogously to the derivation of Eq. 16. We
integrate over the inner shell from the inner boundary, ¢,, =
— P,at r = R,, and we integrate over the outer shell from
the outer boundary, o, = —P,atr = R,

ﬁﬁfo—ko_mea] (32)

oy, + 1

O',IS—P5+Ki|:

aro‘_Po_Ko

r

» (R,—r)+In (Ro )] , (33)
where R,, = R, + h'/2, R, = R, — h'[2, a,, is the
fractional area change of the midsurface of the inner layer
and a,, is the fractional area change of the midsurface of
the outer layer. Recognizing that 6, = —Ppatr =R, — A’
and o, = —P,atr = R, + h’, we can combine Eqs. 32 and
33 to eliminate P,, and obtain the radial force balance for
the double shell:

n (R| + hl)Ro
(R, — h)R;’

v + 1 v + 1
a- hr+a‘o _

P.—-P,-K
' Ravi Rav.,

(34)
where we have let the moduli of the two layers be equal:
K; = K, = K. This result can be simplified by using a series
approximation for the logarithmic terms (Eq. 18) and
neglecting terms of order (h'/R,,)*

h, + k'
- A
aav aav( ZR.V )

Kn"
12R3,”

2Kk’
Pi—Poz—é—

av

(35)

Here we have substituted o,y = (0, + @,)/2 and Aa,, =
(ata, — @4y,)/2. Thus we see that for the bilayer there are
three main contributions from the membrane to balance
the transmembrane pressure difference. The first term
corresponds to the membrane stress resultant, the second

FIGURE 7 Cross-sectional view showing the radial force-balance for a
double thick shell. The inner and outer pressures are P; and P, and the
pressure at the center of the membrane is P,,. The thickness of each layer
is k', and the distance between the layers is A,,. The inner radius is R;, the
outer radius is R, and the radius of the membrane center is R,, =
(R; + R,)/2. The surface-isotropic stresses in the inner (o;) and the outer
(o,) layers are radially dependent.
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term is a bending resistance resulting from the difference
in the stress resultants in the inner and outer layers, and
the last term represents the intrinsic bending resistance of
each individual monolayer. Also note that as the radius of
curvature becomes large compared with the membrane
thickness, we recover the thin membrane result. Letting
K., = 2Kh’ we find:

K, m Xay h

P - P ,
' ¢ REV RﬂV

— 0. (36)

Axial Force Balance

The sum of forces in the axial direction is (see Fig. 8)

Ri+h _ R _
jl; ordr + jl;o 0o dr = PuR, Ay,

Pri_Pop S
S RI- SRS (3T)
The integrals in Eq. 37 are evaluated using Eq. 14 applied
to each layer and Egs. 32 and 33 for the radial stresses in
each shell. Taking the elastic moduli of the two layers to be
equal we find

’

Kh
T (aavi + 1) Ravi

”
1
* 12R§vi]

1+

”?

12R2,

o,

+ (0, + 1) Ry, — Kh'R,, = i. (38)
2

This result can be simplified using a series expansion to
express 1/RZ and 1/R2 in terms of R and power series in
h/R,:

1 1

hy + R
RL,R|

3t b
Ry 2R,,

h, + h'\?
_4( IR, ) +]

1

and

1 1 +h,,.+h’+3h,.,+h'2
R, R, Ry, 2R,,

hy, + h'\?
+4( R ) +] (39)

Using these expansions and neglecting terms of order
[(hm + R')/2 R,,] Eq. 37 becomes

b+ '\l  Kn?
m . (@
Y + A"‘“( 2R, )] * Tk, @O

f
— = Kh'R
27r av

FIGURE 8 Cross-sectional view
of the upper half of the cylinder
showing the axial force balance.
In addition to the quantities
defined in Fig. 7, the axial force f
is shown.

Again there are three main components to the membrane
response to the applied force: the stress resultant, a bending
resistance due to the difference between the stress resul-
tants in the inner and outer layers, and the intrinsic
bending resistance of the individual layers. Eqs. 35 and 40
can be combined to obtain a relationship between the
external forces and the dimensions and properties of the
tether. Recognizing that (P, — P,)/R2, « f/2, we find

f , , Kh' h¢2
21r_l(h Ay, (hy + R') + 6 R, (41)
Slip

In Eq. 41 the second term on the right accounts for the
bending of each liquid shell while the first depends on the
difference in the average expansion (or compression)
between the two shells. If the monolayers are uncon-
strained and can slide freely relative to each other, the
average stress in each layer will be the same, and Aq,, = 0.
If we let h,, = O (see Figs. 7 and 8), then A’ = h/2 and Egq.
41 becomes

K.h2 1 f
48 R, 2r°

(42)

Eq. 42 when compared with Eq. 24 shows that if a single
liquid shell subjected to a force f was cut down the middle
and each half was unconstrained and allowed to slide
freely, then the average radius of the cut shell would
decrease to one-fourth of its original value.

At the opposite extreme from “free slip” is the case
where the two layers of a double-shelled tether are tightly
coupled together. This could be accomplished by capping
the ends of the tether or “gluing” the two surfaces together.
For this case, let h,, = 0 and note that

a,,. — ¢, R,, — R, h'
A _ v av; ~ av, avi _ . 4
v 2 2R, 2R, 3)
The substitution of Eq. 43 into Eq. 41 gives
K.h? K.h? K. p: f
- -, 44
2R, " 4R, "12R, 2 (44)

which is, as expected, the result for a single liquid shell
(Eq. 24).

Because of the lamellar molecular structure of a real
membrane, the constituent monolayers can slip relative to
each other. However, because the red cell or vesicle is a
closed capsule, the amount of slip that can occur is limited.
To evaluate the “slip term” in Eq. 41 for a tether formed
from a closed surface, imagine the system to consist of a
spherical cell body, the tether and a membrane projection
into a pipette (Fig. 1 b). Again for simplicity, let h,, = 0.
For this case, the area of the cell 4, is

A.=2nR,L, + 4rR? — wR: + 27R,,L,, (45)
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where R, is the radius of the cell, R, is the radius of the
pipette, L, is the length of the tether, and L, is the length of
the projection into the pipette. Expressions for the outer or
inner areas of the monolayers are obtained by adding or
subtracting A’/2 from R,, R, and R, in Eq. 45. Because an
increase in the length of the tether requires displacement of
material from the pipette, a relationship exists between the
tether radius R, its length L,, the pipette radius R, and the
change in the length of the projection in the pipette as the
tether is formed AL RL, = —R, AL, (Hochmuth and
Evans, 1982). Using this expression and the expressions for
the areas of the inner and outer monolayers, we can
estimate Aa,,:

Ay — A WL+ Ly + 4R — Ry)

A = ’
= A, A

(46)
where L, is the length of the projection in the pipette when
L =0.

When Eq. 46 is substituted into Eq. 41, an expression for
the “slip” term in terms of the tether length is obtained.
For a given tether force f, the tether length will have a
significant influence on the tether radius when the second
term in Eq. 41 becomes comparable to the first. These
terms are equal when

A
67 R,

L= Ly, — (4R, — R)). (47)
When R, = 3.06 um, R, = 1.0 um, and L, = 4.0 um, the
calculated value for A4, is 140 um* With R, = 20 nm, the
calculated value for L, from Eq. 47 is 360 um. Thus, a
tether must reach a length in excess of 300 um before the
“slip” term is comparable to the bending term in Eq. 41.
Usually experiments are performed with tethers <100-um
long, and the slip term can be neglected.

DISCUSSION

In analyses of the deformations of biological membranes,
the membrane is usually treated as a very thin material
and the state of stress in the plane of the membrane is
defined in terms of stress resultants, which are integrals of
the stresses over the thickness of the membrane. This is a
very successful technique as long as the thickness of the
membrane is small compared with the principal radii of
curvature. However, membrane tethers can have radii as
small as 10 nm, only four times larger than the thickness of
a phospholipid monolayer. In this case, the membrane
cannot be considered “thin.” To analyze the deformation
of a tether we postulate a three-dimensional state of stress
in which the stress is isotropic in the plane of the
membrane (i.e., g, = 0,). This model preserves the “two-
dimensional liquid” character of the membrane and allows
the liquid tether to achieve static equilibrium when
exposed to an axial load even though the stress resultants
are anisotropic.

As long as the tether is short enough to permit the slip

term in Eq. 41 to be neglected, our analysis predicts the
experimental observation that the axial force and the
tether radius are inversely related to each other. This
force-radius relation can be written in terms of a bending
constant B":

B f
- 48
R,, 2w (48)
where
B’ = K.h?/12. (49)

The thickness of a monolayer is 4’ and K, is equivalent to
the area expansion modulus for a bilayer membrane. The
coefficient B’ is thermodynamically equivalent to the
bending stiffness defined by Evans and Skalak (1979). A
value for the bending constant B’ (and thus a value for the
area modulus K,) can be calculated using Eq. 36 and the
experimental data of Hochmuth et al. (1982) for normal,
human red cell membrane. In these experiments, the tether
force f was not measured directly, but it can be deduced
from measured values of the isotropic tension in the cell
membrane, T. If we assume that the isotropic tension in the
membrane is continuous and becomes equal to the axial
stress resultant in the tether T,, and if we assume that 2«
R, T, = f (Hochmuth and Evans, 1982; Waugh, 1982a),
then

B'=R%LT. (50)

Recently, Gilbert and Hochmuth (unpublished observa-

Radius (nm)

" n

"
1.50 2.%0 3.5

Force (10-6 dyn)

1 I

FIGURE 9 Force dependence of tether radius. Data were obtained from
Gilbert and Hochmuth (unpublished observations). The force was calcu-
lated from measurements of membrane tension (f = 2w R,, T'). A total of
seven cells were measured. In five cases a consistent dependence of tether
radius on force was observed. Two cells showed negligible dependence of
radius on force. Average values for the five cells that exhibited a
force-dependent tether radius are indicated by the stars in the figure.
Error bars represent plus or minus one standard deviation (n = 5). The
solid line gives the theoretical prediction (Eq. 48) for a bending stiffness,
B’ = 0.85 x 10~'>dyn cm.
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tions) repeated the experiments of Hochmuth et al. (1982)
for normal, human red cell membrane. They found that for
a given T, the value for R,, was ~15% greater than that
previously reported. Their data are shown in Fig. 9 along
with the theoretical prediction based on Eq. 48, and a value
for B’ of

B’ = 0.85 x 10" dyn cm.
For k' = 2.0 nm, the value for K, calculated via Eq. 49 is
K, =250dyn/cm.

These values are consistent with values for the membrane
properties measured with other techniques. Evans (1983)
obtained a value of 1.8 x 10~'? dyn cm for the bending
modulus of the erythrocyte membrane from observations
of surface buckling as cells were aspirated into micropi-
pettes. Those measurements probably include contribu-
tions from both the membrane bilayer and the membrane
skeleton. Thus, our value of 0.8 x 10~'>dyn cm for tethers
(which probably comprise only bilayer) represents a rea-
sonable fraction of Evans’ value. A value of 450 dyn/cm
for the area expansivity modulus of red cell membrane was
measured by Evans and Waugh (1977) by micropipette
aspiration. Kwok and Evans (1981) measured the expan-
sivity modulus for egg lecithin bilayers and obtained a
value of 125 dyn/cm. Recently, Evans and Needham
(1986) found that addition of cholesterol to bilayers
increases the modulus severalfold, but that the increase is
mitigated by the further addition of protein into the
surface. Thus, our value of 250 dyn/cm falls within the
range reported for bilayers and is smaller than the red cell
membrane expansivity by about a factor of two. The
present analysis yields reasonable values for material prop-
erties and provides a theoretical framework for interpreta-
tion and design of future experiments. Application of this
analysis to precise measurements of the force-dependence
of tether radius will provide a novel, independent method
for determining bilayer expansivity and bending stiffness.

The assumption of incompressibility is based on a com-
parison of the volumetric compressibility and area com-
pressibility moduli of bilayers. Srinivason et al. (1974)
applied volume dilatometry to hydrated amphiphilic
bilayers. Based on their measurements, a value of 10'°-10"!
dyn/cm? has been estimated for the volumetric modulus
(Evans and Hochmuth, 1978). The area compressibility
modulus of bilayers depends on their composition, but falls
in the range of 100-800 dyn/cm (Evans and Needham,
1986). Dividing by the membrane thickness (~50 nm) we
estimate a three-dimensional area modulus of on the order
of 10° dyn/cm?, one to two orders of magnitude smaller
than the volumetric modulus. Thus, the assumption of
incompressibility is justified.

The assumption of surface-isotropy in the stresses
(o, = 0.) is based on observations of the mechanical behav-
ior of large, thin-walled phospholipid vesicles above the
phase transition. When aspirated into micropipettes, the
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vesicles deform freely until further deformation is limited
by the fixed surface area and volume of the vesicle. To
describe this behavior, Evans and Skalak (1979) and
Waugh (1982a) used a constitutive model of a two-
dimensional Newtonian-like fluid, for which the surface
shear resultant is direcly proportional to the rate of surface
shear deformation. Under static conditions, the surface
shear resultant is identically zero. This model is consistent
with the molecular organization of the bilayer. There are
no molecular associations between adjacent molecules in
the surface to elastically support significant surface shear
resultants. In the present analysis we have extended earlier
two-dimensional liquid models to three dimensions. We
postulate that under static conditions, shear stresses in
directions tangent to the surface plane are identically zero.
The model is consistent both with the observation that
bilayer membranes exhibit no surface shear elasticity and
the lack of intermolecular associations along the entire
length of the amphiphilic molecules that constitute the
bilayer.

A limitation of the applicability of this theory may come
from the linear constitutive relationship that is used (Eq.
7). For extremely small tethers (R,, = 8.0 nm), maximum
strains could approach 25%. For such large deformations,
it is entirely possible that the linear relationship will not
apply. Other constitutive relationships could be used in the
present theoretical framework to account for nonlinearities
in the stress—strain relationship. For example, a two-
dimensional van der Waals equation of state could be used.
A second limitation may result from the assumption that K
is constant over the thickness of the monolayer. Clearly,
the molecules of the surface are heterogeneous along their
length. If there were significant variations in K along the
length of the molecule, the predictions of the present
analysis might be inaccurate. By allowing for the existence
of a three-dimensionally isotropic liquid layer at the center
of the membrane, we have tried to accommodate some
variation in K within the present model. To account for
variations in K along the length of the molecules more
precisely, a detailed statistical analysis of the molecular
interactions would be required. Such an analysis is beyond
the scope of the present work. In the present analysis we
have attempted to capture the essential features of the
membrane mechanical behavior with a minimum of alge-
braic complexity. In the event that the present theoretical
predictions are not born out by further experiments, more
complex constitutive relationships could be incorporated
into the analytical framework. At present, the need for
such additional complexity has not been demonstrated.

Because the monolayer of a lipid bilayer comprises only
20 or so molecular units in the thickness direction, the
application of continuum theory, in which there is defined
a local state of stress that varies with position, might be
questioned. In general, the internal stress arises from the
forces between molecules in the material. These forces vary
as the molecules are moved together or apart by deforming
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the material. In classical continuum theory local molecular
fluctuations are removed by averaging over space. This is
impossible to do across the thickness of a biomembrane
because it is so thin. Therefore, in the present analysis we
postulate that the stress represents a time-averaged force
per molecule. This removes the effect of molecular fluctua-
tions at a point. Application of a continuum theory at the
molecular level has been used successfully in the past. For
example, the diffusivity of molecules is accurately pre-
dicted with the Stokes—Einstein equation. Justification for
using a continuum theory at a molecular level rests on the
accuracy and reliability of its predictions. That the present
analysis yields values for membrane expansivity and bend-
ing stiffness that are consistent with other methods is
important preliminary justification for this approach.
However, additional experiments will be needed to test the
reliability of our predictions.

APPENDIX

Thermodynamic Development of the
Constitutive Equation

The constitutive equations for the shell must reflect the actual membrane
behavior. The essential features of this behavior are low (zero) shear
rigidity, small area expansivity, and volumetric incompressibility. There-
fore, to describe the behavior of the membrane mathematically we first
identify parameters that characterize these three different modes of
deformation: volume change, area (or thickness) change, and surface
shear. To characterize the change in volume we simply use the fractional
volume change:

v=NMA - 1 (A1)
To characterize the surface shear, we use the normalized extension ratio,
X, defined by Evans and Skalak (1979) for two-dimensional continua:

= VA, (A2)

The choice of an area deformation parameter is less obvious. Use of the
fractional area change (a =A,A, — 1) is inappropriate because the
functions v, X, and « are not linearly independent. (The Jacobian J is zero
when A, = A\,.) That at constant volume an increase in material area
requires a decrease in material thickness provides us with a clue to the
proper form of the area parameter, namely, that it ought to contain the
ratio of the area change (A,\,) to the thickness change (),):

(A3)

The square root is introduced so that & will reduce to a for the
incompressible case. Note that for v = 0, \, = 1/A,\, and

&=\, — 1 =a. (A4)

The parameters v, X, and & are linearly independent (J = X,/ VX, # O for
all X’s). This is an essential characteristic for the thermodynamic treat-
ment to follow because it must be possible to vary the different parame-
ters independently. Next we identify the stress terms that are conjugate to
the deformation parameters. To do this, consider the work done on a
material element (Fig. 2) for a small variation in the deformed state. In
terms of the principal stresses and the principal extension ratios, the
variational work per unit undeformed volume (d W/V,) for the differen-

tial element is

dw

=0 M NON, + 0 AN ON, + 0, A A0N,, (AS)

[

where 6 indicates a virtual change in the extension ratio. With Egs.
1-A3, Eq. A5 can be re-expressed in terms of the parameters, v, &, and
X:

dW_a,+E

_ v+1)
v 2 dv + (6 —0,)

G@+n"

20 (vt 1)"%, (A6)

wheres = (o, + 0,)/2and o, = (o, — 0,)/2. Eq. A6 appears complicated
because of the scaling terms v + 1 and & + 1. Recognizing that for an
incompressible membrane with small area expansivity these terms are
approximately unity, we are left with just the sum of the products of each
deformation parameter and its conjugate stress. Each parameter is
functionally related to its conjugate stress. This conclusion is based on a
thermodynamic argument: For a system with three independent revers-
ible work modes (given by v, X, and &) there are four degrees of freedom.
For an isothermal deformation, the work on the system is equal to the
change in the Helmholtz free energy. Thus, an isothermal deformation
can be considered to be a change in the state of the system, specified by v,
X, and &. Because the parameters are linearly independent we can hold
any two fixed and vary the third. Fixing of two parameters and the
condition that the deformation be isothermal places three constraints on
the system, leaving one degree of freedom for variations in the third
parameter. Because there is only one degree of freedom, the parameter
and its coefficient (conjugate stress) cannot be varied independently, i.e.,
they must be functionally related. These functional relationships repre-
sent isothermal equations of state (see Evans and Skalak, 1979). Thus, we
expect there to be a relationship between v and the sum s + g,, between &
and the difference 3 — ,, and between A and the quantity o,. The form of
these equations depends on the nature of the material. For bilayer
membranes, two of these equations are trivial. The incompressibility
condition requires that v = 0. The lack of shear rigidity requires o, = 0.
Because the changes in surface area are small, the third relationship can
be expressed as a simple linear relationship:

g —o,=Ka. (A7)
For the case of an incompressible membrane, & = «, and the constitutive
relationship given in Eq. 7 is obtained.

The reader should be advised that we have neglected transverse shear
throughout this discussion. This is appropriate in the present circum-
stances because of the symmetry of the cylindrical geometry and the
loading conditions. In general, however, the transverse shear may not be
negligible, and the present development may need to be expanded to
include it.
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