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ABSTRACT We consider the lateral distribution of intrinsic membrane proteins from the viewpoint of the statistical-
mechanical theory of liquids. We connect the information in freeze-fracture electron micrographs-positions of proteins
but not lipids or aqueous species-to a well developed theory of liquid mixtures. An algorithm, based on the
Born-Green-Yvon integral equation, is presented for deducing forces between proteins from correlations among protein
positions that are observed in micrographs. The algorithm is tested on simulated micrographs, obtained by Monte-Carlo
methods, where forces between proteins are known analytically. We conclude that valid estimates of such forces, both
attractions and repulsions, can be obtained from the positions of a few thousand proteins.

1. INTRODUCTION

Most research on the structure of biological membranes
has focused on transmembrane organization, i.e., the loca-
tion of molecules and functional groups along a line normal
to the membrane surface. A smaller body of research, of
which this paper is a part, addresses an orthogonal prob-
lem: the nature and basis of the lateral distribution of
molecules in membranes.

Biological membranes generally are not ideal lateral
mixtures of their components. Inhomogeneous lateral dis-
tributions of both lipids and proteins are well documented
and reflect the functional specialization of different
regions of membrane (for reviews see Oliver and Berlin,
1982; Fraser and Poo, 1982; Jain, 1983; Malhotra, 1983;
Holmes et al., 1984; Almers and Stirling, 1984; Gumbiner
and Louvard, 1985). Striking examples of large-scale
(-,Lm) inhomogeneities in the distribution of intrinsic
membrane proteins include the ion channels in myelinated
nerve fibers (Waxman and Ritchie, 1985), the purple
patches in the membranes of halophile bacteria (Stoecke-
nius et al., 1979), and the densely packed plaques in gap
junctions (Loewenstein, 1981; Peracchia, 1985). Less well
studied are smaller-scale (10-100 nm) heterogeneities that
may reflect, among other things, enzymatic pathways and
recognition mechanisms. The triggering of degranulation
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by the local clustering of immunoglobulin E receptors in
mast cells and basophils is one example of the latter
(Metzger and Ishizaka, 1982).
Such phenomena can have diverse causes, including the

attachment of proteins to extramembranous structures. In
the absence of such factors, the distributions must reflect
forces acting within the membrane. Further, it should be
possible to obtain information on these forces by using
statistical-mechanical methods to analyze the positional
correlations among the proteins. Freeze-fracture electron
microscopy is a convenient source of data about the lateral
distribution of intrinsic membrane proteins. The analysis
of forces based on such micrographs began over a decade
ago (Markovics et al., 1974) and has been reviewed
recently (Abney and Owicki, 1985).
The present paper contains two theoretical and one

empirical contributions to the subject. First, it shows how
the overall problem can be embedded in a powerful
statistical-mechanical approach, essentially the MacMil-
lan-Mayer theory of solutions. This permits a more rigor-
ous treatment, allows a semi-quantitative discussion of
approximations, and suggests extensions by connection to
an already well-developed body of theory. Second, the
paper presents and tests an improved algorithm for obtain-
ing forces from electron micrographs, a method based on
the Born-Green-Yvon (BGY) integral equation.
Assuming that electron micrographs accurately repre-

sent the positions of particles in an equilibrated fluid, the
question remains whether the number of particles that can
realistically be observed in a freeze-fracture electron
micrograph is sufficiently large, i.e., whether positional
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correlations can be determined with sufficient precision,
for the inference of particle interactions to be meaningful.
We address this question empirically: by simulating fluids
whose particles interact with known pair potentials, then
inferring pair potentials from the positions of a thousand to
a few tens of thousands of particles, and finally comparing
these computed pair potentials with the fluids' true pair
potentials. We conclude that valid estimates for a pair
potential can be obtained, in particular if the BGY scheme
is used, from the positions of a few thousand particles.
A companion paper (Abney et al., 1987) applies the

theoretical results to the structure of gap junctions. A
preliminary report of some of this work has appeared
elsewhere (Braun et al., 1984).

2. THEORY

In this part of the paper we derive the general relations that
allow the extraction of some information about particle
interactions from observed particle positions. We follow
standard textbook accounts on the statistical mechanics of
fluid mixtures, particularly the McMillan-Mayer theory
of solutions (e.g., Hill, 1956, 1960; McQuarrie, 1976).

2.1. If Only One Species Is of Interest, a
Fluid Mixture Can Be Treated Formally
Like a Pure Fluid

Consider an equilibrated fluid composed of an arbitrary
number of polyatomic species 1, 2, 3,. . . as an open system
characterized by a volume V, a temperature T, and the
activities zI, Z2, ... of each species. A patch of mem-
brane-containing a protein species, assorted lipid species,
water, and other components-is an example of such a
fluid. We restrict our attention to a single phase of the
system; if two or more phases are present (for example,
protein-rich and protein-poor), then the theory can be
applied separately within each phase.
Assume that we are interested in species 1 (here, the

membrane proteins) and that we have some means of
observing the center-of-mass positions of all such mole-
cules. The set of center-of-mass positions of all N, mole-
cules of species 1 may be called the configuration of species
1 and denoted IN,). The total configuration of the fluid
(i.e., all coordinates of all N = N,, N2, .. . molecules) is
denoted IN). It is useful to separate the degrees of freedom
that are of interest to us: IN - N, refers to all coordinates
other than those in IN1). Besides center-of-mass coordi-
nates of species 2, 3, . . ., IN - N ) specifies the rotational
and conformational coordinates of all species, including
species 1.
The conditional probability of encountering a total

configuration, N, given that N1 molecules of species 1 have
a configuration IN1), is

zN2z N3 -,eU(jN,jjN-N, })P(INIII{N1)) = ZIZ !3... e . N (1)
*N.N2!N3! ...

Here, ,B is 1 /kT (where k is the Boltzmann constant) and
U(IN,I}, IN - NJ ) is the total potential energy of the fluid.
*N, is the partition fluid for a system that contains N,
molecules of (observed) species 1 and is open with respect
to the other species.
We now derive an expression for the effective force

exerted on one molecule of species 1 by the remaining
molecules of that species. For a given total configuration,
IN), the actual force on molecule i of species 1 is simply the
negative gradient of the total configuration potential,
-v,U(INj 1, {N - N, 1). For a given configuration, IN,1, the
effective force, fi ({N I), can be defined as the average
actual force on molecule i of species 1:

f (IN,1) -vU(1Nj1, IN - Nl 1))IN-N,I
= f _v,U({Nj, IN - Nj)P({N)I{Nj) dIN - NJ. (2)

The average is taken over the entire set of total configura-
tions that are consistent with the configuration N)II, i.e.,
over all possible IN - N1J. Note that the effective force
defined in this way depends on the positions of all mole-
cules of species 1.

Finally, we turn to the effective configuration potential,
U(1N1)), which we define by integrating over all unob-
served degrees of freedom:

e-16U(INII)

cozN2z N3

N2 ,N3.-o N2!N3! .. e 3NN,- o * (3)
Z2Z . eft jj,N1 d {N I

-0 N -3fN2,N _o N- 2!N3! ....Eed{

Note that in the denominator the total configuration
potential is for a fluid devoid of species 1, i.e., N, = 0. We
also define the associated canonical effective configuration
integral

ZN = f e-U(INI ) dIN,l (4)

From these definitions follow several properties of U(1N 1)
that justify its interpretation as an effective configuration
potential for species 1: First, U(1N1)) is zero if N1 is zero,
i.e., it is associated with the presence of molecules of
species 1. Second, its gradient with respect to the position
of a molecule of species 1 is the effective force on that
molecule. Third, it can be used to form a configuration
integral, ZN,, that governs the probability for encountering
a particular configuration, IN1). Fourth, this configuration
integral will be seen to be related to osmotic pressure in the
way expected of a quantity bearing the name (see Section
2.5).
The three quantities we have defined, configuration

probability, effective force, and effective configuration
potential, permit us formally to treat a fluid mixture as we
would treat a pure fluid. Only the adjective "effective,"
qualifying force and potential of the fluid, reminds us of
the presence of other molecular species. The unobserved
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species and the unobserved degrees of freedom of the
observed species manifest their effects only through the
functional form of U(IN1}). For example, the effects of
deviations from cylindrical symmetry in a membrane
protein are integrated in a Boltzmann-averaged sense (Eq.
3) and are replaced by effective cylindrically symmetric
interactions. Henceforth all the forces and potentials that
we discuss will be implicitly effective ones; we will simplify
notation by usually omitting the species subscript from N1,
{N1I, U(UN1I), etc., and will from now on refer to "par-
ticles" rather than molecules of species

In a fluid of N (observable) particles, the conditional
probability density, p(nl)(n), of encountering any n particles
in the partial configuration mnl, regardless of the positions
of the remaining N - n particles, is

N r e-#U(INI)
(N - n)! J ZN d{N - n} png(")({n}). (5)

Here, the braces IN - n} denote all possible configurations
of the N - n particles whose positions are not specified by
mnl. The second equation defines the n-body correlation
function, g(n)({n}), where p stands for the number density of
(observable) particles. If the particles do not interact, i.e.,
if their positions are not correlated, then the left-hand side
of the equation simply equals pn and the correlation
function, g(n), equals one identically.

In a homogeneous isotropic fluid the pair (n = 2)
correlation function for particles at r, and r2, is termed the
radial distribution function, written simply as g(r12).
Under similar conditions, the triplet correlation function is
written g(3)(r12, r13, r23).

The problem now at hand is to invert this integral equation
to obtain the pair potential, u (rij), as a function of some
correlation function, gl"(r, ... , r.). This so-called "in-
verse problem" has a long history in the physics of fluids
and we limit ourselves to describing three inversion
schemes.

(a) Scheme 1. Obtaining a pair potential from the
observed radial distribution function and angle-integrated
triplet distribution function as the solution of the Born-
Green-Yvon equation.
The radial distribution function can be used to define a

quantity, uM(rl2), through

uM(r12) kTln [g(rl2)]. (8)

As a consequence of this definition and Eq. 5,

fM(rl2) - -vluM(r12)

f (-v7U({N}))e-IU(INI) d{N- (1, 2)}
f e-OU(IN)dIN - (1, 2)1

In other words, -vluM(r12) is the mean force exerted on
particle 1 along the line r12 by the N - 1 other particles
while particle 2 occupies position r12. For this reason,
fM(rl2) is called the mean force and uM(rl2) the potential of
mean force. These quantities are useful because they
represent a reference point for understanding particle-
particle interactions, albeit without distinguishing between
direct interactions of particles 1 and 2 and the indirect
interactions involving all the other particles. That distinc-
tion can be made explicit with the assumption of pair-wise
additivity:

2.2. The Assumption of Pair-Wise
Additivity and Three Schemes for
Estimating a Pair Potential or Force

Further progress is difficult without assuming that the
effective configuration potential, U(rl, ... ., rN), is a sum of
pair potentials, u (rij), which depend on the pair separation
r,j and, in general, on the state of the fluid as well:

U({N}) = E u (ri). (6)
i>j

This has been called the assumption of "pair-wise additivi-
ty." Though a good approximation for simple liquids, its
validity for interacting membrane proteins is less clear.
Our treatment proceeds on the basis of this assumption to
obtain a tentative pair potential, which can then be submit-
ted to a kind of self-consistency test that may vindicate the
assumption of pair-wise additivity in retrospect (see Sec-
tions 2.3 and 5.3).

With this assumption, the defining equation for correla-
tion functions becomes

fm(r12) _ v1g(r12)f=g(rl2)

- -v1u(r1 ) + (-v1u(r3 )gt3)(r12, r13, r23)_vlu(rl3 + f (-,,u(rl3)) g12)(r12) d,-(0

This is the Born-Green-Yvon equation, an integral equa-
tion in the pair potential, u(rij), the radial distribution
function, g(r12), and the triplet distribution function
g(3)(r2, r,3, r23). It identifies the contributions to the mean
force on particle 1 as, first, the force exerted by particle 2
and, second, the forces exerted by other particles at all
positions of the plane. Given particles at r, and r2, the

3

s

1

FIGURE 1 The polar coordi-
nate system used in the BGY
formalism, Eqs. 11 and 12.

rpng(")({}eN!fe,Z u(rq) d{N-nI(nglnl(fnl)=N-n)!fZNli(7)pfl(f)({l} -(N - n)! ZN 2
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average number density of other particles at any r3 is
pg(3)(r12, r13, r23)/g(r12). For a pair-wise additive fluid, Eq.
10 is exact. Note that, as p - 0,fM(r) - vu(r).

For our purposes, the BGY equation can be rewritten in
planar polar coordinates (Fig. 1):

ag(r) - u'(r) + J: u'(s)K(r, s) ds, (11)3g(r) -u

where prime denotes differentiation with respect to argu-
ment and K(r, s) is defined as

K(r,s)2T pg\r, s, 0cos (O)s dO. (12)J(,so g(r)

If the radial distribution function, g(r), and the angle-
integrated triplet distribution function, K(r, s), are known,
this linear integral equation can be solved directly for the
pair force, f(r) = -u'(r). The pair force can then be
integrated to yield a pair potential, u (r).
The BGY equation is fundamental to the theory of

fluids, but our application of it to the inverse problem is, we
believe, novel. Our method is based on the availability of
both pair and triplet distribution functions for membrane
proteins. Only pair distribution functions can be deter-
mined for more familiar three-dimensional fluids (by
diffraction methods); components of these systems cannot
in general be imaged by methods comparable to freeze-
fracture electron microscopy.

(b) Scheme 2. Numerical simulation of particles inter-
acting with pair potentials that are adjusted iteratively
until the computed radial distribution function matches
the one observed in a real fluid.

Using Monte-Carlo or molecular-dynamics techniques
for simulating a system of N particles interacting with a
pair potential, a set of particle positions can be generated
from which correlation functions such as the radial distri-
bution function can be determined. Depending on the
deviation of this simulated distribution function from the
radial distribution function observed in a real fluid, the
pair potential can be modified and the procedure repeated
until the two distribution functions match. On the order of
a dozen iterations are sufficient, since one can predict
roughly how the pair potential must be changed to bring
the two distribution functions into closer agreement (Le-
vesque et al., 1985).

This procedure shares with Scheme 1 the advantage of
yielding a pair potential, that is, in principle at least, as
accurate as the observed radial distribution function. How-
ever, the computational expense of this procedure is consid-
erable. It was devised for fluids in which only the radial
distribution function is known (from scattering experi-
ments) and has been applied to a Lennard-Jones fluid and
on a model potential for aluminum (Levesque et al., 1985).
For fluids where the particle coordinates themselves are
available (such as assemblies of membrane proteins) and
where, in consequence, higher order distribution functions

can be observed, Scheme 1 is more direct and, we believe
more convenient.

(c) Scheme 3. Deduction of a pair potential from the
radial distribution function and the Percus-Yevick approx-
imation.
From the definition of the radial distribution function,

g(r12), it is clear that g(rI2) - 1 is a measure of the total
"influence" of particle 1 on particles at r2. This total
influence, h (rI2) g(r12) - 1, can be thought divided into
a direct and an indirect part. The direct part is given by a
"direct correlation function," c (r12), and the indirect part
is the influence of particle 1 on third particles that is
propagated further to particles at r2. This decomposition of
h (r12) is expressed by the Ornstein-Zernicke equation:

h(r12) e c(r12) + p f c(rl3)h(r23) dr3. (13)

Using Fourier transforms, this equation can be solved
analytically for c(r). Between the direct correlation func-
tion, c(r), and a pair potential, u (r), there exists an
approximate relation, namely the Percus-Yevick (PY)
closure:

c(r) = efuM(r) -e-ft[uM(r)-u(r)j = g(r)(1eI-(e)) (14)

This relation approximates c(r) as the total correlation
between particles 1 and 2, minus that part of the correla-
tion that is not due to the pair potential u (r). A more
complete rationale for this approximation can be found in
McQuarrie (1976). Together, Eqs. 13 and 14 provide an
analytic, if approximate, expression for a pair potential,
u (r), in terms of the radial distribution function, g(r).
The PY approximation should give good results when

the range of strong interactions is much shorter than
typical distances between neighboring particles, p- 1/2.
The results will deteriorate at higher densities; accuracy is
sacrificed for computational simplicity. The PY equation is
only the best known of many approximate integral equa-
tions that can be applied to the inverse problem (McQuar-
rie, 1976; Levesque et al., 1985); others might prove useful
for analyzing membrane proteins but have not yet been
applied in this context.

2.3. Pair Potentials: Computed, Apparent,
and True

Some circumspection is necessary in interpreting a pair
potential obtained through one of the schemes described in
Section 2.2. All three are computed pair potentials that are
the products of algorithms that assume pair-wise additivi-
ty. If that assumption is valid under the conditions for
which the fluid was analyzed, then we say the computed
pair potentials are also apparent pair potentials and that
the fluid is apparently pair-wise additive. Pair potentials
obtained by the BGY and simulation methods (Schemes 1
and 2) will then be identical, and the PY potential will
differ from them only to the extent of the density-
dependent error in the PY approximation.
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A stronger requirement is that the assumption of pair-
wise additivity hold over all conditions, for example, all
densities. If it does, then the computed pair potentials are
not only apparent, but true pair potentials, and the fluid is
truly pair-wise additive. The same pair potential governs
the interactions of two isolated particles and two particles
in the bulk of the liquid at nonzero density. The pair
potentials from the three schemes have the same relation-
ships as described in the previous paragraph.

Fluids can be apparently, but not truly, pair-wise addi-
tive. For example, at high densities, long-range multibody
interactions felt by isolated particles may become hidden;
their contribution to the effective configuration potential
may become independent of the particular configuration
and come to depend on density alone (Pearson et al.,
1984).

If the assumption of pair-wise additivity is violated, then
in general the computed pair potentials from the three
schemes will differ from one another. Each will reach a
different compromise in incorporating some average of the
higher-body potentials. Moreover, correlation functions
generated from the computed potentials by numerical
simulation methods will in general differ from correlation
functions in the real fluids. Specifically, the BGY potential
will reproduce neither the pair nor the triplet correlation
function; the simulation potential, which must succeed on
the pair correlation function, will fail on the triplet func-
tion. These observations can be used to detect the presence
of multibody terms in the configuration potential (see
Section 5.3).

2.4. The Pressure Equation
The pair potential of a pure and pair-wise additive fluid
determines not only microscopic properties of the fluid,
such as correlation functions, but macroscopic properties,
such as the pressure or the free energy, as well. In a fluid
mixture, the effective pair potential of an observable
species determines the osmotic pressure, i.e., the pressure
difference one would observe between the mixture and a
fluid containing all species except the observable one. In
the case of a biological membrane, the osmotic pressure is
the pressure difference between a patch of membrane
containing proteins and adjacent regions devoid of protein.
Since this quantity is of biological interest, we briefly
describe how the osmotic pressure can be calculated from
an effective pair potential and the radial distribution
function.

In an open system, the pressure is conveniently deter-
mined from the grand-canonical partition function. In a
system that is closed with respect to species 1 but open to
all other species, the pressure is determined from the
semi-grand-canonical partition function *N*.

p=kT (c ') . (15)OV T,

The osmotic pressure between a fluid containing N1 mole-
cules of species 1 and a fluid devoid of species 1 (e.g., the
pressure across a partition impermeable to species 1 but
permeable to all species other than species 1) is

I1(NI) (dln ZN,
kT aV /T,z

(16)

From this one may derive the so-called pressure equation
which, for a two-dimensional pair-wise additive fluid,
reads

II p2
kT = + 4kT rf(r)g(r)27rr dr.

(17)

3. METHODS

3.1. Simulation of Fluids with Purely
Repulsive and with Attractive
Intermolecular Forces

The choice of simulation potentials was motivated by the
desire to analyze our technique with a force similar to that
expected for protein-protein interactions in experimental
systems. This stipulated the choice of softer repulsions than
those found in the hard-core or Lennard-Jones potentials
that are commonly used in simulations of simple liquids. In
dense simple fluids, attractions do not affect structural
features much, even though they may be important ther-
modynamically (Widom, 1967). Therefore, we also
wanted to test the ability of the technique to detect
relatively weak attractions.
We report results for simulations based on the 6-4 pair

potential, defined as

27
U&4(r) =- E [(u/r)6 - (a/r)'].4

(18)

The potential crosses zero at r = u; E is the depth of the
potential well at its minimum, attained at r = ro = (3/2)'2a
(see Fig. 2). The 6-4 pair force is found by differentiation.

f6-4(r) = -u64(r) = 27e [(a/r) -3/2(a/r)7]. (19)

This force is repulsive for r < ro and attractive for r > ro.
A fluid with attractions (fluid A) was simulated with

essentially the 6-4 potential. However, for computational
economy the potential was truncated at r = 2.5ro =
3.0619u and shifted up slightly (by u64(2.5r0) 0.07e) to
maintain continuity, so that the actual potential used was

UA(r) = {u64(r) - u4(2.5ro) r < 2.5rO

O r > 2.5rO.

This truncation leaves the force unaltered, except that
f6-4(r) = 0 for r 2 2.5rO.
A purely repulsive fluid (fluid R) was simulated with a

potential created by subtracting from the 6-4 potential its
minimum value, u64(r0) = - c, and setting the potential
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FIGURE 2 Pair force fA(r) (A) and pair potential uA(r) (B) for the
attractive fluid A: analytical functions and results of BGY analysis.
Smooth dotted lines are the analytical functions from Eqs. 20 and 19 (the
latter truncated at r = 2.5ro). Large dots respresent the combined BGY
analysis of six 4,096-particle patches. Vertical error lines are the standard
errors of these estimates. The bin width A for the BGY analysis was

0.075o.

equal to zero beyond r = ro:

u64(r) -U64(ro) r < rO
UR(r) = (21)

O r >-r 0

See Fig. 3. This is the Weeks-Chandler-Andersen decom-
position, which preserves precisely the repulsive component
of the 6-4 potential (Chandler et al., 1983). The force is
zero in the attractive domain of the 6-4 potential, i.e., for r

2 rO.
To generate samples of coordinates for particles inter-

acting with these potentials we used the standard Metropo-
lis et al. (1953) Monte-Carlo algorithm. We simulated
256, 1,024, or 4,096 particles in square domains (patches).
To avoid special treatment of particles close to the
boundary of the domain, we used permeable boundaries
and periodic boundary conditions. In this way, we approxi-
mated a square domain within the bulk of the fluid. The
results of simulations of this type are considered indistin-
guishable from observations on a physical system interact-

FIGURE 3 Pair force fR(r) (A) and pair potential uR(r) (B) for the
purely repulsive fluid R: analytical functions and results of BGY analysis.
Analytical functions are taken from Eqs. 21 and 19 (the latter truncated
at r = ro). Figure organization is the same as that of Fig. 2.

ing with the chosen potential. We simulated liquids R and
A at reduced temperature T* E/k = 1.0, rendering the
depth of the well in uA(r) kT, and at reduced number

density p*_ pa2 = 0.5, rendering the characteristic
particle separation p- 1/2 = 21/2 = (4/3)112rO.
The choice of these values for T* and p* ensured that

(a) the system's attractive well in u(r) was thermally
significant but not overpowering, and (b) the chosen
density and potential very qualitatively reproduced the
situation observed for gap junction particles in mouse liver
(see companion paper by Abney et al. [1987]).

Simulations were begun by equilibrating a crystalline
array of 256 particles for (typically) 1,000 to 5,000
stochastic steps per particle. This economically generated a

representative sample of the fluid but contained too few
particles for our purposes. To form a larger patch we then
used four contiguous duplicates of this configuration to
form the starting configuration for a patch of 1,024
particles, which we equilibrated with another 100 stochas-
tic steps per particle. This was sufficient to move each
particle more than the average particle separation and
assured statistical independence of the four quadrants of
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the configuration. To obtain a configuration for a patch of
4,096 particles, we repeated this procedure.

3.2. Estimation of Correlation Functions
from Patch Configurations

Estimates of two correlation functions, g(r) and K(r, s),
must be obtained from each patch analyzed. Such esti-
mates are in principle a straightforward undertaking for
which a recipe is provided by the definition of the desired
correlation function. In practice, there are two complica-
tions. First, the large number of triplets formed from
0(10O) particles necessitates an efficient counting algo-
rithm. The second arises from the need for special treat-
ment of boundary regions. The boundary of a patch,
whether taken from a simulation or electron micrograph,
is, in general, a convex polygon. Our programs for estimat-
ing correlation functions were designed to handle bounda-
ries of this type and could be applied equally well to
patches of membrane and simulated fluid.

Because of the finite number of points available, it was
necessary to divide particle separations into "bins" of
nonzero width A, typically 0.05 to 0.10 of the mean
separation between neighboring particles. Our results are
histograms representing estimates of averages over the bin
widths. Thus, for (n, -1/2) < r < (n, + 1/2)A, with n, = 1,
2,3, ....

f (n.r+1/2)A g(r)27rr dr
g(r)t (g(n,))., e 1(n.r/2)A (22)

2ixrn,A2 (2

The quantity ( K(r, s) ), is defined similarly. Details of the
numerical methods for counting triplets efficiently and
handling convex polygonal borders of patches correctly are
available from the authors.

3.3. Estimation of Pair Forces and
Potentials from Correlation Functions

3.3.1. Born-Green-Yvon Scheme. The BGY
equation, Eq. 11, is prepared for numerical solution by
averaging all terms over annuli in r and displaying the
integral over s as a sum of integrals over annuli:

K/d\
In (g(n A)) = ff(nrA)).n,dr r

n

- E (C 1/2/v f(S,) (K(nrA, s') )n, ds'. (23)n1/l)(n112)'

Relying on small variations of the functions over the width
of an annulus, we make the following approximations:

In (g(nrA))) d In ((g(n,r))n,) (24)dr ~~/n, dr

f(s) (f(nsA) for (n, - 1/2)A <s - (n, + '/2)A. (25)
The derivative on the right-hand side of Eq. 24 is to be
interpreted in terms of finite differences. We truncate the

infinite sum above at n, = nr,max and below at ns = nr,min.
Contributions to the equation at large separations are
negligible due to the finite range of physical forces. Contri-
butions at very small separations, with n,min corresponding
to physical overlap of the particles, are small because of the
small size of the correlation functions.

These approximations allow us to rewrite the BGY
equation as

drdIn ((g(n) )n, - - (lfn(,lr1)),

ni (13f1(nA)\) fn(n -/2)A(K(nfA,sS'))n ds'. (26)

This is a system of inhomogeneous linear independent
equations for the average force with matrix components
given by the terms involving K and the constant vector
given by the terms involving g. Both of the latter are
computed directly from the patches, from data correspond
to nr, ns = nrmin, nrmin + 1, . . . , nrmax.
The derivative in Eq. 26 was taken numerically by a

five-point Savitzky-Golay (Savitzky and Golay, 1964)
algorithm. The computed force was integrated numerically
by Simpson's rule (Bevington, 1969) to give the pair
potential.

3.3.2. Percus-Yevick Scheme. In computing a
pair force and pair potential through the PY scheme, we
followed the example of Pearson and colleagues (1984)
and used a variant of a three-dimensional algorithm pre-
sented by Lado (1967). Briefly, h(r) (-g(r) - 1) is
Hankel-transformed to give h (q). From h (q) the Hankel
transform, c (q), of the direct correlation function is formed
as c(q) = h(q)/(p + h(q)), which function is then back-
transformed to yield c(r) itself. From c(r), the pair poten-
tial is obtained with the aid of the PY closure relation, Eq.
14. Averaging over bins is used, as in the BGY case. The
pair force can then be found by differentiation.

3.3.3. Mean Force and Potential of Mean
Force. The mean force,fM(r), and potential, uM(r), can
be obtained directly from the pair distribution function
with the help of their defining relations, Eq. 8 and its
derivative. Again, averaging over bins was employed.

4. RESULTS

4.1. Sample Configurations and Correlation
Functions from Simulated Fluids

We simulated six patches of 4,096 particles of fluid R and
six patches of 4,096 particles of fluid A, each patch
representing a small, square domain of particles in the fluid
bulk. Sample configurations are shown in Fig. 4. We
treated the positions of particles in simulated fluids exactly
as we would treat the positions of membrane proteins
obtained from freeze-fracture electron micrographs.
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FIGURE 4 Representative configurations from the Monte-Carlo simu-
lations of the attractive fluid A (A) and purely repulsive fluid R (B).
Circle diameters are a, and only parts of the 4,096-particle configurations
are shown. Note that the attractions in the first panel are manifest as a
slight tendency toward "patchiness."

Our computed estimates of the radial distribution func-
tions for the two fluids, gA(r) and gR(r), are shown in Fig. 5.
The standard errors of the estimates are generally 2 to 5%.
The shapes of the distribution functions are typical of those
for dense fluids. Note that gA(r) and gR(r) are quite
similar, despite the presence of attractions in fluid A that
are absent in fluid R. This conforms to the discussion in
Section 3.1. To recover the correct potentials-purely
repulsive vs. repulsive plus attractive-from such struc-
tural data alone is a stringent test of a method for solving
the inverse problem.

4.2. Pair Forces and Potentials Obtained
through the Born-Green-Yvon Scheme

For each of the six fluid patches for fluid A we obtained a
pair force through the BGY scheme from its angle-
integrated triplet correlation function together with its
radial distribution function as described. The average of
these determinations is shown in Fig. 2 A; integration of

r/a

2.0
r/a

FIGURE 5 Radial distribution functions computed for the attractive
fluid A (A) and purely repulsive fluid R (B). Estimates are based on six
4,096-particle patches for each fluid. The envelopes are the standard
errors of the estimates. The two fluids exhibit quite similar pair correla-
tions. The radial distribution function describes the influence of a
particle's presence on the neighboring fluid. It measures, relative to the
overall particle density, the average particle density on a circle of radius r
around a particle whose presence is assumed (the central particle). For
dense fluids, the average particle density is zero on circles with small r,
since the volume of the central particle excludes other particles from this
domain. On successively larger circles, however, the average particle
density alternates between values above and below the overall density for
a few times. The maxima and minima correspond to a series of concentric
rings around the central particle which are, on the average, alternately
over- and underpopulated with particles. On even larger circles, the
central particle's influence is no longer felt and there the average particle
density equals the overall density.

these results to give the pair potential uA,BGy(r) is shown in
Fig. 2 B. The corresponding results for fluid R are given in
Fig. 3.

Pair forces and potentials obtained through the BGY
scheme agree with the actual pair forces and potentials for
both fluids, within the standard errors of the computed
quantities as shown by the error bars in the figures. The
presence of attractions in fluid A, and their absence in fluid
R, is quite clearly shown. This demonstrates that our
programs are currently written and that the method does
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not suffer from any severe numerical instabilities. Since we
know that the fluids are truly pair-wise additive, self-
consistency checks on correlation functions (see Section
2.3) are not necessary.

The remaining question is, how many particles need be
analyzed to get useful information on forces and poten-
tials? Certainly N- 2.5 104, as in Figs. 2 and 3, is
adequate for most purposes except, perhaps, the fine
details of the poorly sampled highly repulsive region at
particle contact. Error bars in the figures scale as N- 1/2, So
features of the potentials 1kT in size are resolvable from
the positions of a few thousand particles. Some sample
determinations of potentials from patches of 1,024 par-

ticles, drawn from the 4,096-particle patches, are shown in
Fig. 6. These still indicate the grosser features of the
potentials. In most freeze-fracture electron microscopy
studies it should be possible to observe several thousand
particles, in a series of micrographs if not all in one patch.
The computational method should not usually fail for lack
of data.

4.3. Pair Potentials Obtained through the
Percus-Yevick Scheme

The results of applying the PY scheme to the two simu-
lated fluids are shown in Fig. 7. The potentials of mean

force are also shown for reference. The PY analysis
overestimates the position and depth of the attractive well
for fluid A. For fluid R it exhibits an artifactual hump for
rl a -2 and great imprecision at close range. Presumably
the PY method would have performed better at lower
densities, but under these conditions it is clearly inferior to
the BGY scheme.

4.4. Miscellaneous Other Results
Concerning the Born-Green-Yvon Scheme

We also used our simulations of patches of fluids R and A
to investigate a number of technical issues related to the
BGY scheme. In summary, we found that (a) the pair
force is insensitive to the precise "bin width" (width of the
sampling annuli) used for establishing radial distribution
functions and angle-integrated triplet correlation func-
tions, (b) the pair force is insensitive to the precise trunca-
tion (largest annulus sampled) used while establishing
these functions and, (c) that the force obtained as the
average of pair forces, which in turn are obtained from
correlation functions of individual patches, does not differ
significantly from the pair force obtained from correlation
functions that in turn are obtained as the average of
correlation functions of individual patches.

Sometimes there is a preponderance of negative over

positive errors in the calculated small forces in the bins at
long range. Upon integration to get the potential, these
errors can add up to produce a shallow well of doubtful
statistical significance (see Fig. 3, for example). This

fig-
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FIGURE 6 Representative pair potentials computed from 1,024-particle
configurations by the BGY method for the attractive fluid A (A) and
purely repulsive fluid R (B). The analytical potentials are shown as dotted
lines. Results from different configurations are offset vertically for clarity
of presentation.

effect, if real, must be a minor artifact of our numerical
procedures.

In the absence of triplet configurational data, the triplet
correlation function is frequently approximated as a super-

position of three pair correlation functions (McQuarrie,
1976):

(3)(rI2, r13, r23) - g(r,2)g(rl3)g(r23). (27)

We tested the effects of substituting this for the true triplet
data in computing K(r, s) for the BGY analysis. The
results were far inferior, closely resembling the mean

forces and potentials of mean force.
Finally, we established the satisfactory performance of
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FIGURE 7 Potential of mean force UM and Percus-Yevick potential
determined for the attractive fluid A (A and B) and the purely repulsive
fluid R (C and D). The dotted lines are the analytical potentials (Eqs. 20
or 21), and standard errors for the computed results are indicated.
Computed potentials are from six patches of 4,096 particles for each
fluid.

the BGY scheme not only for the "softly" repulsive
potentials UR(r) and UA(r), but also for several tempera-
tures and densities within the liquid domain of the Len-
nard-Jones 12-6 potential and for a hard disk system
(results not shown).

5. DISCUSSION

5.1. Physical Mechanisms for Lateral
Interactions Among Membrane Proteins

Before discussing the theoretical and empirical results
presented above, it may prove helpful to list some conceiv-
able physical mechanisms for lateral interactions among
membrane proteins. The following list is not intended to be
comprehensive.
The first interaction to consider is volume exclusion. It

simply reflects the fact that the relative rigidity of proteins
must prevent them from approaching each other too
closely.
A second is electrostatic. Since identical proteins bear

identical charges, the long-range interaction will be repul-
sive. Shorter-range interactions could be attractive or
repulsive, but one would expect repulsions to dominate the
averaging that leads to a central-force description. All
electrostatic interactions will be screened by counterions to
the extent that the aqueous phase and the head groups of
charged lipids intervene between the interacting proteins.

Third, stereospecific short-range attractions may occur;
a dimerization equilibrium is one example. Although possi-
bly pair-wise additive when described at the level of
interacting chemical groups, such additivity is destroyed
when the system is analyzed in terms of orientationally
averaged central forces.
A fourth, more general, type of protein-protein interac-

tion is indirect, the net effect of degrees of freedom that
have been integrated out to achieve the protein-based
central-force description of the system. One such interac-
tion involves the perturbation of the conformation of
bilayer lipids by the membrane proteins. The details need
not concern us here; we merely note that this mechanism
may provide an interaction among proteins, probably but
not necessarily attractive, which is not pair-wise additive
(reviewed by Abney and Owicki, 1985).

If the effective configuration potential of a fluid of
membrane proteins is dominated by volume exclusion and
electrostatic repulsion, the fluid will be (approximately)
truly pair-wise additive. Even if lipid-mediated attractions
are significant, however, membrane proteins at sufficiently
high densities may still form an apparently pair-wise
additive fluid. If the density is decreased to the point where
interparticle separations are somewhat beyond the range of
the potential, such a fluid will become non-pair-wise
additive. Of course, extremely dilute systems are again
apparently pair-wise additive, since only pair-wise encoun-
ters contribute significantly to the partition function.
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5.2. The Validity of Estimates for Protein
Interactions Based on Freeze-Fracture
Electron Micrographs

The overriding aim of this paper is to convince the reader-
ship that estimates based on freeze fracture electron
micrographs for lateral interactions among membrane
proteins can be valid, i.e., "valid" in the sense of corre-
sponding quantitatively to the forces resulting from physi-
cal mechanisms such as those described above.

Generally, an attempt to infer protein interactions is
warranted for membranes that are in a state of fluid
equilibrium, and that to a very good approximation contain
only one species of membrane protein. Excepting extra-
membranous attachments and two-dimensional protein
crystals, membranes resemble very closely an equilibrated
two-dimensional fluid (Singer and Nicolson, 1972;
McCloskey and Poo, 1984). Equilibration on a short time
scale follows from random-walk considerations. These
dictate that, for a patch of membrane 0.1-1 ,tm in
diameter, the time required for diffusive equilibration is on
the order of seconds; active processes such as the insertion
or removal of membrane components, which would tend to
disrupt equilibrium, typically occur on a time scale of
hours, although receptor recycling can be as fast as 10
min (Brown et al., 1983). The purity of a membrane's
protein component can usually be assessed by biochemical
means. A corollary to the requirement for purity is that
there must be a fixed number of proteins per particle
(preferably one). For a membrane that satisfies these
general conditions, the validity of an estimate for protein
interactions will turn on three claims, which we will now
examine one by one.

(a) Claim 1. Under experimentally realizable condi-
tions, a freeze-fracture electron micrograph can faithfully
represent the essential aspects of the in vivo lateral distri-
bution of membrane proteins.
We judge that freezing rates of 1o6 Ks- ' can be attained

in the superficial few micrometers of sample using the
slamming method of Heuser et al. (1979), and rates above
1O' Ks-' deeper in the sample or by other freezing methods
(see Escaig [1982], Kopstad and Elgsaeter [1982], and
Bald [1985]).
By combining simple random-walk statistics with cool-

ing rates and estimated temperature drops required for
immobilization, we estimate that proteins diffuse <40 nm
when the cooling rate averages 104 Ks-' and <4 nm when
the rate is 106 Ks-' (unpublished results). No large-scale
reorganization of the configuration is possible, but redis-
tributions on the scale of nearest neighbors in a dense patch
can occur. If the intermolecular interactions are not
strongly temperature dependent during the cooling pro-
cess, the redistribution will not affect the distribution
functions beyond the sharpening of features that is charac-
teristic of low-temperature equilibrated fluids. Approxi-
mately correctf/kT of u/kT will be computed, though the

appropriate T will be below the initial sample tempera-
ture.

(b) Claim 2. A rigorous theory exists for inferring
apparent pair forces from observed particle positions.

In Sections 2.1 and 2.2 we outlined a general theory for
recovering from observed particle positions functions
which we termed "computed pair potentials." If the
assumption of pair-wise additivity holds, this theory is
rigorous and an apparent pair potential equals a physically
meaningful apparent pair potential.

Fortunately, an empirical criterion exists for classifying
a fluid pair-wise additive (either "truly" or "apparently")
or not. This criterion, essentially a self-consistency test for
the assumption of pair-wise additivity, is described further
below, in Section 5.3

If, by virtue of passing this test, a fluid is apparently
pair-wise additive, then the computed pair potentials
obtained through the BGY and the Monte-Carlo scheme
equal the apparent pair potential as defined in Section 2.3.
Considering accuracy, precision, and convenience, we
believe that the BGY technique is the method of choice for
analyzing protein interactions from electron micrographs.

Recall that the apparent pair potential may depend on
density as well as on particle separation. This apparent pair
potential is the potential that would be measured for a pair
of particles in the bulk of the fluid. If a fluid can be
observed at more than one density, and if the apparent pair
potentials at different densities are identical, the fluid is
likely to be truly pair-wise additive. In this case, the
apparent pair potential is simply the potential that would
be measured for an isolated pair of particles. In both cases
the apparent pair potential will reflect the physical mecha-
nisms that underlie the effective configuration potential.

If a fluid is non-pair-wise additive, computed pair
potentials are more difficult to interpret. In this case pair
interactions depend on the position of more than two
particles. Computed pair potentials, as functions of only
two particle positions, will represent some average of this
higher-order function.

(c) Claim 3. The positions of a few thousand particles
suffice for computing a pair potential with acceptable
precision.
To support this claim we simulated patches of fluids

whose particles interacted with a weakly attractive and/or
softly repulsive pair potential. These potentials were quali-
tatively those expected to obtain between membrane pro-
teins. A potential retrieved from a patch containing a few
thousand particles was precise to within ;kT for particle
separations of interest. This was sufficient to reveal weak
attractions when these were present, their absence when
they were not, and to give an excellent estimate for
repulsions. For many membranes it seems likely that
rather more particles can be observed and that a corre-
spondingly higher precision can be obtained if necessary.
The number of particles required for a given precision will
vary inversely with particle density, all else being equal. At
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low densities most of the particle separations that are used
to form correlation functions are larger than the range of
the potential, and the correlations themselves tend to be
weaker.
On the strength of the considerations outlined above we

think it possible that, for some membranes at least, the
factors discussed under all three claims will be favorable
and estimated protein interactions will be valid. Of course,
ultimately, this question of validity will turn on whether
estimates for protein interactions based on observed pro-
tein positions will correspond to estimates for protein
interactions based on independently determined molecular
properties of the proteins and membranes in question.

5.3 A Self-Consistency Test for the
Assumption of Pair-Wise Additivity

Conceptually, the test for pair-wise additivity described
below rests on the fact that the observed angle-integrated
triplet correlation function, a function of two variables,
overdetermines the apparent pair potential, a function of
one variable, and that, if the observed angle-integrated
triplet correlation function does not result from a true pair
interaction, a contradiction will result.
Once an apparent pair potential has been obtained

through the BGY scheme, the test consists of simulating a
patch of a fluid of particles interacting with this apparent
pair potential and of determining the radial distribution
function in the patch. In other words, the test inverts the
inference of "potential from correlation function" and
determines whether a computed pair potential would actu-
ally result in a fluid with the observed radial distribution
function. If radial distribution functions in the simulated
patch and the real fluid are identical, the fluid is probably
apparently pair-wise additive and possibly even truly pair-
wise additive. If they differ, the fluid is non-pair-wise
additive. The test can be extended to higher correlation
functions.

5.4 Lateral Osmotic Pressure and
Large-Scale Heterogeneity
in Lateral Distribution

Sometimes a membrane is partitioned into distinct par-
ticle-rich and particle-poor regions. One example is gap
junctions, which are analyzed in the companion paper
(Abney et al., 1987). Such behavior might simply be
lateral phase separation under the influence of attractions
that can be determined by computing the pair potential in
the particle-rich region. Alternatively, the separation
might be maintained by other factors, such as barriers to
diffusion that originate outside the membrane and are not
visible in the micrograph.

Computation of the lateral osmotic pressure, Eq. 17, can
differentiate between these cases. This pressure should be
essentially zero if the computed pair force governs the
large-scale distribution of proteins. A nonzero pressure

indicates that additional factors contribute to maintaining
the protein density in the populated region. Sometimes
computation of the pressure is not necessary for a qualita-
tive result; for example, proteins cannot aggregate solely
under the influence of forces that are everywhere repul-
sive.

5.5 Previous Statistical-Mechanical
Analyses of Membrane-Protein
Distributions

We consider here only those investigations of the distribu-
tion of particles in micrographs that have sought to connect
the distributions to intermolecular potentials and forces.
Most assaults on the problem have been in the spirit of
Scheme 2 (fitting g(r) using numerical simulation), but
more approximate. Functional forms for the potentials
were assumed, and the fitting consisted of adjusting one or
two parameters (e.g., range and strength). The g(r) corre-
sponding to the trial potential was generated by approxi-
mate integral equations or by simpler theories applicable to
low-density gases.

For example, Markovics et al. (1974) used model poten-
tials and the PY approximation to analyze interactions
among pores in nuclear membranes. L. T. Pearson and
colleagues used a similar procedure to study bacteriorho-
dopsin and rhodospin reconstituted into artificial bilayers
(Pearson et al., 1983) and cell membranes of Achole-
plasma laidlawii (Pearson et al., 1984).

Middlehurst and Parker (1986) have considered the
effects of deviation from circular (cylindrical) protein
shape on g(r). They analyzed hard-core pair potentials
without soft repulsions or attractions, e.g., hard rectangles
and ellipses. The most striking effect found was a broaden-
ing of the initial rise of g(r) from zero at close range, a rise
that is discontinuous for hard disks. This is an example of
the effects of integrating over unseen degrees of freedom,
in this case protein rotation about an axis normal to the
bilayer (see Section 2. 1). By using Monte-Carlo simulation
and hard-ellipse potentials they fit satisfactorily g(r) from
erythrocytes (data of R. P. Pearson et al., 1979) and from a
barley mutant. Circularly symmetric soft-core interactions
can, of course, produce similar effects.

5.6 Previous Application of the
Born-Green-Yvon Scheme

We have applied the BGY scheme to gap junction mem-
brane to mouse liver and have obtained an apparent pair
potential for the proteins in this membrane (Braun et al.,
1984; Abney et al., 1987). We have availed ourselves of the
test described in Section 5.3 and have found that the lateral
interactions among gap junction proteins are apparently
pair-wise additive. This allowed us to interpret the appar-
ent pair potential that we had obtained as the apparent pair
potential of gap junction particles at a density of ,104
,um-2. This apparent pair potential explains the observed
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radial distribution function and angle-integrated triplet
correlation function, as well as the lateral osmotic pressure,
which we derived by independent theoretical means. The
apparent pair potential we obtained is consistent with
electrostatic repulsion and volume exclusion.
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