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ABSTRACT The classical Nernst—Planck continuum equation is extended to the case where the channel can be occupied
simultaneously by two ions. A two-dimensional partial differential equation is derived to describe the steady-state
channel. This differential equation is of the form of the generalized Laplace equation, but it has the novel feature that
the boundary conditions are periodic. The finite difference solution takes ~8 s on a large computer. The equations are
solved for the special case of a cylindrical channel with a fixed charge in the center. It is assumed that the forces on the
ions result entirely from the sum of the Born image potential, the fixed charge potential, the interaction potential
between the two ions, and the applied voltage. Approximate simple analytical expressions are derived for these potential
terms, based on the assumption that the electric field perpendicular to the channel wall is zero. The potentials include
the contribution from a diffuse charge (Debye—Huckel) reaction field in the bulk solution. The solution for the
monovalent cation flux was obtained for channels with a radius of 4 A and lengths of 16 and 32 A and a fixed charge
valence of —1 and —1.5. For these channels, a significant fraction (up to 90%) of the total resistance is contributed by
the bulk solution and results were obtained for the case where the “channel” included 8 A of bulk solution at each
channel end. These results for the two-ion channel were compared with the analytical solution for a one-ion channel.
The one-ion channel is a fair approximation to the two-ion channel for a fixed charge of — 1, underestimating the flux at
high concentrations by ~ 30%. However, for a fixed charge of — 1.5, the one-ion model is a poor approximation, with the
two-ion flux about seven times that of the one-ion model at high concentrations. The absolute conductance and
concentration dependence of these channels (with a fixed charge of —1) mimic the behavior of the large conductance
K* channel and the acetylcholine receptor channel.

INTRODUCTION

The Nernst—Planck continuum model provides a simple
and elegant description of the flux of ions through cell
membrane channels in terms of three parameters: the
diffusion coefficient, the cross-sectional area, and the
energy profile of the ion in the channel (Levitt, 1986). Its
main limitation (and the reason it is rarely used to model
biological channels) is that it is only applicable to situa-
tions in which there is a high probability that the channel is
empty. If another ion was already in the channel, it would
alter the energy profile which would now become a compli-
cated function of the position of the two ions. Although a
number of approximate solutions for the multi-ion case
have been developed (Levitt, 1986), there has not, as yet,
been a complete solution for the case in which there is more
than one ion in the channel. The purpose of this paper is to
present a general solution for the case of a channel that can
be occupied by at most two ions.

The most important application of this two-ion con-
tinuum solution is for situations in which the forces are
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dominated by long range electrostatic effects and it should
be particularly useful for modeling the transport up to the
channel mouth in the bulk solution. The use of this solution
will be illustrated by applying it to a uniform cylindrical
channel that contains a fixed charge in its center. It will be
assumed that the energy profile arises entirely from the
sum of the potential from the fixed charge, the Born image
potential, and the interaction between the two ions. Simple
analytical expressions for these potentials are derived using
the assumption that the electric field perpendicular to the
channel wall is zero (Levitt, 1985). This potential includes
the contribution from a diffuse charge (Debye—Huckel)
reaction field in the bulk solution. The inclusion of this
reaction field means that the model is slightly more general
than a “two-ion” channel since it does allow in an approxi-
mate way for the presence of additional ions in the bulk
solution. The “channel” includes the bulk solution regions
that contribute to the overall channel resistance. The first
section describes the derivation of the general partial
differential equation (and boundary conditions) for the
two-ion channel; the second section describes the deriva-
tion of the analytical expressions for the electrostatic
potentials and the restricted cross-sectional area; and the
last section describes the application of the theory to the
cylindrical channel.
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GLOSSARY

a radius of channel

B radius of ion

X position along channel axis

L half length of channel and of channel
plus bulk solution

M,

S(X) electrostatic cross-sectional area
S.(X) restricted cross-sectional area available
to the ion
C(X), C, concentration (number/cm?) at X and in

bulk solution
¢, dielectric constant of water
e electron charge
E electron field
® electric potential
¥, applied voltage
Uy, Ur, Uy, Uy potential energy from Born image, fixed
charge, ion interaction, and total energy
Dimensionless Variables
x =X/a;b=Bla;m = M/a;s = S/a% c = a’C; v =
e*/(e,kTa) = 6.96/a(A); z = q/e; N = (8wyc,)' % ¢ =
2eV kT, ¢ = ®/(e/e,a); { = E/(e/ea®); u = U/(€*/e,a);
w=U/kT = vyu

GENERAL SOLUTION FOR THE ION FLUX
THROUGH A TWO-ION CHANNEL

The derivation consists of five parts: (a) The derivation of
the partial differential equation for P(X, Y'), the probabil-
ity density function for the case that one ion is at X while
the other ion is at Y. (b) Derivation of the boundary
condition for the differential equation. (¢) Since the solu-
tion is first obtained for P(X, Y) normalized by P, (the
probability the channel is empty), it is necessary to derive
an expression for P, to obtain the (unnormalized) P(X, Y).
(d) Derivation of the flux equation in terms of P(X, Y). (e)
Numerical solution.

Differential Equation for P(X, Y)

The fundamental function is P(X,Y), the probability
density function for one ion at X and the other at Y. The
dimension of P is (length)~2 It will be assumed that the
two ions are identical (i.e, only one type of permeable ion is
present) so that the constraint X < Y can be imposed. A
steady state will be assumed:

— =0-=
at

L 0AP) S O4P). )
This is just the continuity equation in the two-dimensional
(X,Y) space where Vy and V, are the phase space
velocities in the X and Y directions. Expressions for these
velocities can be obtained from the following argument.
Define J(X;Y) and C(X;Y) as the number flux and
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concentration (No. of ions per unit vol) at X if an ion is at
Y.
JX; Y) = C(X; Y)S(X)Vy

aIC(X;Y)

= —DX)SX) |— o~

Iw(X,Y)
X

+ C(X; Y) @

’

where S, (X) is the cross-sectional area available to the ion,
D is diffusion coefficient, and w(X, Y') is the total dimen-
sionless energy of the two-ion channel system (normalized
by kT; U = kTw). The first equality is simply the definition
of Vy, whereas the second equality is the classical Nernst—
Planck equation (Levitt, 1986) with the second ion fixed at
Y. Defining P(X; Y') (of dimension 1/length) as the proba-
bility density of finding an ion at X if an ion is at Y-

CX; Y)S(X) = P(X; Y) = P(X, Y)/P\(Y). 3)

Egs. 2 and 3 can then be used to solve for V4P (and a
similar expression for V, P):

9 Pow
VxP(X,Y) = =D(X) [S.(X) 22 (PIS) + ==, (&)

Analogous to the procedure used to solve the Nernst—
Planck equation, an alternative set of derived functions will
be defined:

H(X» Y) = Se(X) Se(y)e_w
F(X,Y) = e"p(X, Y). (5)

Substituting Eq. 4 (in terms of these derived functions)
into Eq. 1, one obtains the final form of the fundamental
differential equation describing the two-ion channel:

oF 9 oF
X D(X)H(X, Y);Y + F1% D(Y)H(X, Y)ﬁ =0. (6)

Boundary Conditions

The boundary conditions for this equation present an
interesting problem. The length of the “channel” (includ-
ing the bulk solution) will be defined as 2L with the
channel ends at X = —L and X = L. (The length of the
physical channel is 2M, with M < L.) Eq. 6 is of the form
of the generalized Laplace equation and usually requires
either that F or its derivative (or a combination of the two)
be prescribed on the boundary (X, L) and (— L, Y'), corre-
sponding to knowing the probability of finding one ion, e.g.,
at X = — L (the channel end) when the other ion is at ¥ (an
arbitrary channel position). However, all that is actually
known is the concentration in the bulk solution, which
corresponds to the value of P (or F) at only one point. The
solution to this problem results from the observation that
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one can derive the following set of periodic boundary
conditions that lead to a unique solution.

The fundamental assumption leading to the derivation
of the boundary condition (and the crucial assumption for
the model) is that the ions at the *“channel” ends are in
equilibrium with the bulk solution. The “channel” includes
the bulk solution regions that limit the flux. This assump-
tion requires that the “channel” be extended far enough
into the bulk solution that the rate that ions exchange
between the “channel” end and the bulk solution is fast
compared with the rate of transport through the channel.
This is equivalent to the requirement that the “channel”
includes all of the bulk solution that limits the rate of
transport. This assumption is the major limitation of the
model. Clearly, this assumption will be satisfied if one
extends the channel region far enough into the bulk
solution. However, if too much bulk solution is included,
the condition that the channel contains at most two ions
will be violated. The actual channel length that is used
must be a compromise between these two competing
requirements.

The first boundary condition arises from the condition
that there is equilibrium binding of the second ion at the
channel end. The binding reaction at the left end can be
written as

G + p(X) < p(-L, X), )

where C, is the concentration in the bulk solution on the
left side and p,(X)S.(X) is the probability of finding only
one ion in the channel (at X) and p, is equivalent to the
concentration at X. Since this reaction is assumed to be at
equilibrium, the equilibrium constant can be written in
terms of the free energy difference:

p(—L, X) = C,py(X)e” LX) -l ®)

where w (X) and w(—L, X) are the energy of the one- and
two-ion channel, respectively, and ze¥, is the energy of the
ion (valence z) in the left bulk solution which has a
dimensionless voltage ¢, = zeV,/kT. One can derive a
similar relation for the right end:

P(X, L) = Cyp, (X) e”tx0—w0), ©)

(The voltage has been defined to be equal to zero for the
bulk solution on the right side.) Taking the ratio of Eqgs. 8
and 9 and using the definition of F (Eq. 5) leads to one
periodic boundary condition:

F(X,L) = (Cy/ C)) e¥F(-L, X). (10)

Binding of the first ion to the right channel end can be
described by

G, + Py <= py(L), (11)

Levitt Exact Continuum Solution

where P, is the probability that the channel is empty. From
the assumption of equilibrium at the channel end:

pi(L) = CPy e D, (12)
Combining Eqgs. 8 and 12,
F(—L,L) = C,Cye"P,
Also, using Eq. 10,

(13a)

F(L L) = C3Py; F(—L, —L) = C2e™P,. (13b,c)

Eqgs. 13 represent the only points at which F(X, Y) has a
definite prescribed value; the rest of the boundary condi-
tions are periodic.

A second periodic boundary condition arises from the
steady-state condition for the one-ion channel, which can
be written in the form

9P (X) _

at 0

= —HIRPOO] - VL P(-LX) + VP, D). (14)

The first term on the right represents the flux at X in a
channel that contains one ion, whereas the last two terms
represent the rate at which the one-ion channel is converted
into a two-ion channel by ions entering or leaving the
channel ends. These three terms can be written as

d
Ji=VP(X) = —D(X)HI(X);\,(PleW')
o 4
= —D(X)H\(X)C;'e™ aF(—L,X)

V_P(~L,a) = —D(—L)H(—L,X)a(—fL—)F(—L,X)

ViP(X,L) = —D(L)H(X, L) %‘ F(Xx, L). (15)

Substituting these expressions into Eq. 14, one obtains
another set of periodic boundary conditions:

d d
(e™/C) 35 [DCOH(X) 7L F(-L, X))
=D(L)H(X, L) aiL F(X,L) — D(—-L)H(-L, X)

)
a(—_L—)-F(—-L,X). (16)

The final boundary condition that needs to be prescribed
is along the line X = Y. It will be assumed that the two ions
cannot pass each other in the channel and therefore, the
potential energy of interaction (U;) must go to infinity
when X = Y. However, such a steep potential at X = ¥
would complicate the numerical solution and, instead, the
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“no pass” condition is imposed as a boundary condition at
X=Y:

‘]

67(F(X’ Y)=0atX=Y. (17)
The two-ion channel is now uniquely described by the
partial differential Eq. 6 along with the boundary condi-
tions of Egs. 10, 13, 16, and 17.

The equations are simplified if they are rewritten in
terms of a set of dimensionless functions normalized by a
(the channel radius) and D, (the bulk diffusion coeffi-
cient). These functions and a complete set of equations
describing the two-ion channel are summarized below:

x=X/a,2=L/a,s, =S./d,
¢=a’C,A=D/Dy,h = H/a" h, = H,/d’,
[ =F[(P,C,Cye*"), B = (c2fc))e™

4 o] o af
o [A(x)h(x,y) 5] + P A(Y)h(x, y) 5}] =0 (18a)
f(x, ) = Bf(—%, x) (18b)
d d
(e™¥/c) P [A(x)h.(x) af(—!l, x)] = AQ)h(x, 2)
9 2) — A(—Qh(-2 9 ? 18
* an(x’ )_ (_ (_ yx) 6(—Q)f(_ wx) ( C)
3-f(xy)=0atx=y (18d)
ox
S, =LA-4, -9 =1/6f,9 =86. (18¢)

Expression for P,

In Eq. 18, F has been normalized by P, (the probability the
channel is empty) so that P, has dropped out of the
boundary condition (see Eq. 13). The solution will first be
obtained for f, from which P, (and then F) will be
determined. The value of P, is determined from the
condition that the channel can hold a maximum of two
ions:

1=Py+ P +P, =P, (1 + M, + M), (19)

where P,, P,, and P, are the probability that the channel
contains zero, one, or two ions. The expressions for M, and
M, can be obtained by integrating over f(x, y) (see Eq. 8
for definition of P,).

P(x,y) = a*h(x, p)Pocice¥f (x, y)
Pi(x) = a”'c;y(X)Po f(—2, X)

M, = [ PeP0AX = ¢ [ hi(x) f(-2, x) dx

M, = c;c,e” ./_.: dy _/::h(x,y)f(x,y) dx. (20)
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Flux Equation

The only theoretical value that can be measured experi-
mentally is the channel flux. The flux at position X [J(X)]
in the channel is the sum of two terms:

J(X) = Ji(X) + Jy(X),

where J, and J, are the flux in a channel that contains one
or two ions. J; is described by Eq. 15 and the expression for
J, is obtained by integrating over all possible positions of
the second ion:

1X) = [P x)Wida + [ P(X, @) Vyda

d
- [ o) Hea, x) Gz Fle. X) da

L d
~ [ p0HX, o) g3 FX @)de.

Although these expressions could be used to determine the
theoretical flux, they have two disadvantages. First, they
require an accurate numerical derivative of the numerical
solution F(x, y), a procedure that is inherently inaccurate.
Second, it only uses the value of F(x, y) at a single point or
set of points, throwing away much of the information
obtained in the solution.

A better approach makes use of the fact that in the
steady state, the flux must be independent of position. That
the above solution does satisfy this condition can be shown
as follows: The derivative of the total flux at X is described
by

dJ(x) d

d
ax =d_‘1\7[V|P|(X)] + ax

d
i TPl X)Vydet + 3x ./; “PX, a)Vyda. (21)
The second term can be expanded as
d
PX X+ [ g P@X)Vilda  (22)

Integrating Eq. 1 froma = —Ltoa = X,
a
V_P(—L, X) — VxP(X, X) = j: an, [VxP(a, X)]de. (23)

Substituting Eq. 23 and Eq. 22 for the second term in Eq.
21 (and similar expressions for the third term) and using
the boundary condition Eq. 14 yields the result that the
derivative of the flux (Eq. 21) is zero, i.e., the flux is
independent of position.

Since the flux does not depend on x, it is equal to the flux
averaged over the length of the channel, now written in
dimensionless form j = a*J/(PyDyc,):

J= @7 [ U +iaoldx. (24)
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The two terms in Eq. 24 can be obtained by integrating the
expressions for J, and J, by parts:

9 d
Wi~ [ (-2, %) g M)A

+ A=~ (=) f(-8, -9 — A ®) (-2, 9
x V]
+ ce? ‘ f— : [ ~/:n f(a, %) o [A(x)h(e, x)] da

4
+ j;ﬁf(x, @) 3~ [A(x)h(x, @)]da

— h(x, DAW®) f(x, Q) + h(—4, x)
- A=) f(-4, x)]dx]. (25)

This expression for the flux is now in terms of an integral
over the numerical solution f{x, y). It is a function of the
partial derivative of the potential energy function A(x, y)
(= s.(x)s.(y)e™™). In the specific example discussed below,
analytical expressions are obtained for s, and w so that the
derivative is known exactly.

This completes the derivation of the general theory. The
differential equation and boundary conditions for the
normalized function f(x, y) is described by Eq. 18. Know-
ing f(x, y), the value of P, can then be determined from
Eqgs. 19 and 20. The absolute probability density function
P(X, Y) can then be determined using the definitions of f
(Eq. 18) and F (Eq. 5). The normalized flux (j) is
determined from Eq. 25 using f(x, y) and the absolute flux
can then be determined from the definition of j (see Eq. 24)
and knowledge of P,.

Numerical Solution

The partial differential equation (Eq. 18) is solved by a
finite difference method which leads to an unsymmetric
large sparse matrix that must be inverted (see Appendix).
This matrix can become quite large. For example, if the
channel is divided into 48 intervals, then the function
S(x,y) must be determined at 48%/2 or 1,152 different
positions (the division by two results from the condition
that x < y). That is, one must invert an 1,152 by 1,152
matrix. There are two fundamentally different approaches
to solving large sparse matrices, iterative and exact. The
iterative approach has the advantage of small memory
requirements, simplicity, and (when it converges rapidly)
speed. A number of iterative techniques (Hageman and
Young, 1981) were tried, including line successive overre-
laxation (LSOR), alternating direction method and two
modified conjugate gradient methods (Young and Jea,
1980; Saad, 1982). Although the LSOR was the best of
those tried, its rate of convergence became hopelessly slow
for some values of the potential function, seriously limiting
its general usefulness. Thus, I have chosen to use an exact
sparse matrix procedure (the Yale Sparse Matrix Program

Levitt Exact Continuum Solution

[YSMP] which is implemented on most large computers).
The computer time is not long (about the same as for the
interative approach when it converges slowly) but it is quite
demanding of memory. For the 48-interval example, the
YSMP solution takes ~8 s on the Cyber 845 and requires a
one-dimensional working array of dimension 72,000.

POTENTIAL ENERGY AND RESTRICTED
AREA FUNCTIONS

This general solution is in terms of the function of w(x, y),
which is the total energy of the two ion system. This
function contains all the information and physics that
uniquely characterizes the channel. One of the advantages
of the Nernst—Planck approach is that it allows a general
solution of this form to be obtained. However, to apply the
solution to a specific channel, the function w(x, y) must be
specified. In this section, it will be assumed that w(x, y) is
due entirely to long range electrostatic effects and an
approximate analytical expression will be obtained. In the
next section, this expression will be used to illustrate a
specific solution to the general equations. In addition to
providing this illustrative example, it is hoped that this
analytical expression summarizes the most important con-
tributions to w(x, y) and will be useful in other problems.

An exact solution for the electrostatic potential energy
function [UXY) = kTw(x,y)] requires an involved
numerical solution to obtain the potential at a single point
(Levitt, 1978). To obtain an accurate value for the deriva-
tive of the energy (as is required in the flux Eq. 25), it
would be necessary to makes these calculations at thou-
sands of points. The purpose of this section is to derive an
analytical approximation for this exact numerical result.

The fundamental assumption (see Levitt [1985] for
details) that allows one to derive simple analytical expres-
sions is the condition that the electric field perpendicular to
the channel wall is zero. This condition results from the
fact that the dielectric constant of water (78) is much
greater than that of the channel wall (=2). This assump-
tion means that the field lines from the ion at X, have the
appearance shown in Fig. 1. At each X, the field lines are
assumed to be perpendicular to the surface S(X) whose
area is equal to

ra O<|X|=M
S(X) ={wl@d+ (X -M)?] M=<|X|=M+a (26)
2r(X — M)? M + a<|X|,

where a is the radius and M is the half length of the
channel. S is the electrostatic surface area and may be
larger than the physical area if, for example, the channel is
lined by polar (high dielectric) groups. Although the
physical length of the channel is 2M, the actual “channel”
region that limits the flux extends out into the bulk solution
and is of length 2L. The channel has axial symmetry and
the potential is characterized by the single variable X,
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FIGURE 1 Schematic diagram showing the assumed form of the field
lines in a channel of half length M and radius a. The dotted lines show the
surface areas described by Eq. 26.

which is the axial position within the channel and the radial
distance from mouth of chennel in the bulk solution.

The channel is divided into three regions (Fig. 1). In
region Il (—a—M = X =a + M) only the discrete ions
are present, whereas in region I (X <= —a—M) and III
(a + M = X) a diffuse charge (Debye—Huckel) reaction
field is included. The potential energy is the sum of four
terms: (@) the potential from the fixed charge of valence z;
[Ug(X)], which is assumed to be in the center of the
channel; (b) the Born image potential [Uy(X)]; (¢) the
potential of interaction between the two ions [Uy(X, Y)];
and (d) the potential from the externally applied voltage,
expressed as the ratio of the voltage at X relative to the
applied voltage ¥, (the voltage in the bulk solution on the
left side [¥,] is defined to be zero). The details of the
derivation of these terms are described in the Appendix
and the final results, expressed in dimensionless variables
(x =X/a; m=MJa, u=U/[e*/e,al; z=zeV/kT,
X\ = Debye length; z;, z,, z, = valence of fixed charge and of
ion one and two) for the condition X < Y are

up(x) = 22z, l(|x|) (27a)

ug(x) = zH{[1 + a(|xD]I(|x]) — K(|x])} (27b)

u(x, ) = 22i7,[1 = a(|xD]1H(y) (27¢)
0.5 1(x)/1(0) x=0

YOI, 0.51(—x)/I(0) x=0  (27d)

a(x) =1 — I(x)/1(0)
_1 .
Wiy atmo?

1
21+ M)

er(x—1-m)
20 +A) (x — m)

I(x) x=0
2I(0) - I(—x) x=<0O

O<sx=<=m

I(x) = +Z4r-+tan"(x—m) m=x=m-+1

m-—1=x

H(x) ={

O<sx=<=m

m=x.

[1
K(x) =

1+x-m)!

The expression for ug (Eq. 27b) differs slightly from that
derived previously (Levitt, 1985). The + and — in Eq. 27¢
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are for the case where x is greater or less than zero,
respectively. These equations take a simple form for the
case there both ions are within the physical channel
(—-m=x,y=<m):

up(x)/2z;z, = I1(0) — |x] (28a)
ug(x)/z} = 1(0) — x*/1(0) — 1 (28b)
u(x,y)/2z,z, = I(0) + x — y — xy/1(0) (28¢c)
Y(x) /¢, = 0.5(1 = x/1(0)) (28d)

I0)=m + w/4 + 0.5/(1 +7).

The approximation for the fixed charge energy (Ug)
assumes that the fixed charge is spread uniformly on a disk
in the center of the channel. This should be a good
approximation to the more physical situation of ring of
charge in the center of the channel. For a discrete fixed
charge, the radius of the fixed charge and the distance of
closest approach of the ion must be specified. This is not
necessary for the diffuse charge approximation used here.

The assumption that the electric field perpendicular to
the wall is zero leads to an overestimate of the potential
because it constrains the field lines to too small an area.
The equations have been empirically adjusted by compar-
ing them with the exact numerical results. The best
argument is found if all the potential functions (Eqgs.
28a-28c) are divided by 1.5. Using this correction, the
expression for the image potential [Ug(x)] is within 10% of
the exact result (Jordan, 1982) for m varying from 1.5 to
S. Fig. 2 shows a comparison of the exact (Levitt, 1978)
and approximate (Eq. 28 using the 1.5 correction factor)
energy profile for a one- and two-ion channel of radius 3 A
and half length 12.5 A (m = 4.17). Since this channel does
not have any fixed charges, the one-ion potential is equal to
the image potential. The two-ion potential is the sum of the
image potential of each ion plus the interaction potential. It
can be seen that the agreement between the modified

)

1
-12.5 0 +12.5
poeition of ion 1

FIGURE 2 Comparison of exact numerical (——) (Levitt, 1978) and
approximate analytical (——-) (Eq. 27 divided by 1.5) potential energy in
a channel with dimensions similar to that of gramicidin (length, 25 A;
radius, 3 A). The total energy is shown for the case in which there is one or
two ions in the channel. For the two-ion case, ion two is at 11.5 A (-—-)
and ion one is at a variable position.
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theory and the exact solution is quite good, especially when
compared with the other uncertainties in the problem (e.g.,
the value of the dielectric constant for the water in the
channel and the “effective” dielectric radius of the chan-
nel). This approximation should be better for the channels
used in this paper which are wider and shorter than the
channel used for the comparison in Fig. 2. This modifica-
tion of Eq. 27 (division of the potentials by 1.5) will be used
in the rest of this paper. (In this comparison, the diffuse
charge was neglected [\ = 0] since that is the assumption
used for the exact calculations).

The area (S.) term that enters the fundamental flux
equation (Eq. 2) is the cross-sectional area of the “chan-
nel” region that is available to the ion. This is less than the
physical area because of the finite size of the ion. This was
determined by finding the area available to the center of
the ion, both within the physical channel and in the bulk
solution at the channel mouth. The final result in dimen-
sionless terms (s, = S./a’) is (see Appendix, Egs. 13A,
16A, and 17A):

(1 — b)?

Se={7[(1 = b)* + (x — m)*(1 = b?)] m=|x|=m+1

0=<|x|=m

27(x — m) (x — m — b) m+1=<|x]| (29)

b=(B+a-a)la,

where B is the ion radius and a, is the physical pore
radius.

Because of the finite size of the ion, the diffusion
coefficient (D) should also vary with position in the
channel. Although continuum expressions have been
derived for this reduction in D for infinitely long cylindrical
channels (Levitt, 1985), these are not applicable to the
short channels considered here (length/radius ratio of 2 to
4). Because of the lack of an exact analytical result and to
simplify the calculations, it will be assumed here that D is
equal to the bulk solution value everywhere in the channel.
Since D enters the equations everywhere as the product
DS., this assumption is equivalent to placing all the
reduction in this product in the term S,, characterized by
the parameter b.

APPLICATION TO CYLINDRICAL
CHANNEL

To illustrate this approach, the equations will be solved for
a uniform cylindrical channel with a fixed charge (valence
z;) in its center. Three different channels will be consid-
ered. For all the channels it will be assumed that the
electrostatic radius (a) is 4 A. If the channel were lined by
high dielectric polar groups, this would correspond to a
physical pore radius of ~3 A (Jordan, 1984). Only mono-
valent cations will be considered and it will be assumed
that their diffusion coefficient is 1 x 107> cm?/s and b is
0.5, corresponding to an ion radius (B) of ~1 A (Eq. 29).
Two of the channels have a length of 16 A (half

LEviTT Exact Continuum Solution

length = M = 8 A; m = M/a = 2), one with z; = —1 and
the other with z; = —1.5. The third channel has a length of
32 A (m =4) and fixed charge of —1. All the solutions
presented here were for the case when the channel was
divided into 48 equidistant points in the difference method
solution (see Appendix). The results were checked by
comparing them with the analytical solutions for both the
one-ion channel in the law concentration limit and the no
interaction solution for the case when U; = 0 (see Appen-
dix). In both cases, the numerical and analytical solutions
agreed to better than 1%.

The first question that must be decided is how much
bulk solution should be included as part of the “channel.”
As discussed above, this decision represents a compromise
between including all the bulk solution that might limit the
conductance, while not making the “channel” so large that
the assumption that it contains a maximum of two ions
becomes seriously violated. The contribution of the bulk
solution to the total channel resistance can be determined
from the conductance in the limit of zero concentration. In
this limit, the channel is nearly always empty and the
solution reduces to that of the classical Nernst—Planck
equation. Table I shows the ratio of the conductance for
three different channel lengths relative to the conductance
when the total channel length (L) is equal to the physical
channel length (M), i.e., no bulk solution. It can be seen
that the bulk solution represents a major component of the
total resistance (determined when there is 16 A of bulk
solution), ranging from 58 to 90% of the total resistance for
the different channels. Most of the resistance lies within
the first 8 A of the bulk solution since increasing the bulk
solution from 8 to 16 A only decreased the resistance by
~10%. For this reason, it is assumed in the following
calculations that the total “channel” consists of the physi-
cal channel plus 8 A of bulk solution at each end.

Fig. 3 shows the potential energy profiles for the three
channels. Shown are the Born image potential (Ug) and the
potential from the fixed charge in the center of the channel
(Up); and the energy of interaction (U;) and the total
energy (Ur) when a second ion is in the center of the
channel. For the case where z; = —1, U, and U are just
equal and opposite to each other. For these channels, the
Born image potential is small compared with the other
forces. Shown in the figures are the potential at low

TABLE 1
DEPENDENCE OF CONDUCTANCE (G) ON LENGTH OF
INCLUDED BULK SOLUTION (L - M)

G(L)/G(L = M)

Channel
L=M L=M+8A L=-M+16A
M=8A,z--1 1.0 0.33 0.30
M=8A,z~-15 1.0 0.12 0.10
M=16A,z- —1 1.0 0.45 0.42

L, total channel half length; M, physical channel half length; C — 0.
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FIGURE 3 Profile for zero concentration (- ) and for C = 2.6 M/L
(——-) of the Born image potential (UB) and fixed charge potential (UF)
when there is one ion in the channel; and of the interaction potential (UI)
and total potential (UT) when there are two ions in the channel (ion two
located at X = 0), shown for three different channels (radius, 4 A): (4)
physical length (2M) = 16 A, total length (2L) = 32 A, fixed charge
(z)=-1(B)2M =16,2L = 32,2, = —1.5;(C) 2M = 32,2L = 48, z; =
—1. The dotted line at 8 or 16 A indicates the end of the physical
channel.

(C = 0) and high (C = 2.6 M/L) concentrations. There is
a small but significant reduction of the potentials at high
concentration due to the Debye-Huckel screening. (By
assumption, Uy is concentration independent.)

As can be seen in Fig. 3, there is a kink in the Born
potential energy (Up) curve at X = M, corresponding to a
discontinuity in the Born force. This arises from the
discontinuity in the derivative of K(x) (Eq. 27). In addi-
tion, there is a discontinuity in the fixed charge force at
X = 0 and in the interaction force at X; = X,. Also, the
derivatives of S and S, are discontinuous at X= M + a.
These discontinuities require some special care in the
numerical solution (see Appendix).
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The flux for the general case (referred to as the “two-
ion” model) will be compared with the results for the case
where the channel can be occupied by at most one ion
(““one-ion” model). The one-ion case, which has a simple
analytical solution (see Appendix), was recently intro-
duced by Levitt (1986) as a useful approximation for
modeling biological channels. Fig. 4 shows the one-ion and
two-ion conductance for an applied voltage of 25 mV as a
function of the concentration along with the probability
that there are zero, one, or two ions in the two-ion channel.
The one-ion model provides a fair approximation (underes-
timating the flux at high concentrations by ~30%) for a
fixed charge (z;) of —1, but a poor approximation (only
14% of the two-ion flux) for a fixed charge of —1.5.

The failure of the one-ion model for a fixed charge of
— 1.5 provides qualitative insight into important features of
the two-ion model. At high concentrations, there is a high
probability that one ion is near the fixed charge in the
center of the channel while the position of the second ion is
determined by the balance between the attractive fixed
charge force and the repulsive interaction and image
forces. For z; = —1, the fixed charge and interaction forces
cancel each other out and the minimum in the total
potential (Ur, Fig. 3 A) and, therefore, the likely position of
the second ion is at the channel ends where it will have only
a small influence on the ion in the channel center. Since the
channel conductance is determined primarily by the rate
the ion in the channel center can climb out of the potential
well, the second ion will have little effect on the conduc-
tance for z; = —1, even at high concentrations. However,
for the case where z; = —1.5, the attractive force from the
fixed charge is greater than the repulsive interaction
potential, and the minimum in the total energy (Fig. 3 B)
occurs when both ions are near the channel center. In this
case there will be a strong interaction between the two ions,
greatly increasing the flux at high concentrations. This
effect is shown more quantitatively in Fig. 5. Here, the
total energy as a function of the position of the ion is shown
for two cases: (a) when there is only one ion in the channel
and (b) when there is a second ion located 2 A to the left of
the center of the channel. This second case corresponds to
what might be expected at high concentrations for z; =
—1.5. The energy profiles in Fig. 5 correspond to the
potential barrier that the ion must pass to leave the
channel. It can be seen that the presence of the second ion
greatly lowers the height of this barrier (from 847 down to
3kT). This reduction in barrier height explains why the
flux for the two-ion model is about seven times that for the
one-ion model at high concentrations for z; = —1.5.

Qualitatively, this difference between a fixed charge of
—1 and —1.5 is expected because a channel with a fixed
charge of —1 should have a low probability of having more
than one ion in the channel (not including the bulk solution
region) and therefore can be approximated by the one-ion
model. One can extrapolate from these results to the
question of the range of validity of the two-ion model
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developed here. One would expect that the two-ion model
should be valid if the channel region has a low probability
of being occupied by more than two ions. This suggests that
the two-ion model should be valid for a fixed charge of two
or less for the channel model used here.

The voltage dependence of the flux for the M = 16 A
channel is shown in Fig. 6. In the limit of low concentra-
tion, the current—voltage relation is sub-ohmic, whereas at
high concentrations (C =2.6 M/L) it becomes supra-
ohmic. The voltage dependence of the one-ion model is
nearly identical to that of the two-ion model.

DISCUSSION

This two-ion continuum solution is completely general and,
in theory, can be applied to any channel, given the energy

Enargy (kT

4
Position of ion 1

12

8 16

FIGURE 5 Energy of ion one as its position varies from X = 0 (center) to
X =16 A (end). The energy when there is just one ion in the channel is
compared with the case when there are two ions, with ion two located at
X=-2A.02M =16,z - —1.5).

LEVITT Exact Continuum Solution

profile (including the interaction between ions), cross-
sectional area, and diffusion coefficient. For example, it
could be used to model the no pass or single file conditions
that occur in narrow channels by introducing a strong
interaction potential that kept the ions at a fixed distance.
However, for both theoretical and practical reasons, it is
best suited for situations where the forces are relatively
long range and slowly varying, such as the electrostatic
forces in this paper. Theoretically, the continuum approach
requires a clear separation between the long range forces
that enter through the potential energy term (w) and the
short range collisional forces that enter through the diffu-
sion coefficient (D) (Levitt, 1986). Practically, an accurate
numerical solution requires that the differential equation
be solved on a mesh that is fine compared with the distance

2.2 L
2 L
~ 1.8
Q
o 1.6 |
S 1.4 |
S 1.2 C=2.6 M/L
l —
\\
0.8 L ~~ _ C=0
0.6 1 1 - r -
o 50 100 150

Voltaga (mv)

FIGURE 6 Conductance at voltage V[G(V)] relative to zero voltage
conductance [G(0)] as a function of applied voltage (millivolt) at low
(C = 0) and high (C = 2.6 M/L) concentrations. (2M = 32, z; = 1).
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over which there are significant changes in the energy.
Steep energy barriers require a much greater number (V)
of grid points, leading to increased computer time and
storage (both of which increase as N?). For example, the
gramicidin channel is thought to have relatively large,
short range barriers (of unknown origin) at the channel
mouth. For such a barrier, the continuum approach has no
theoretical advantage over the much simpler reaction rate
approach. Gramicidin is probably better described by a
hybrid approach in which the reaction-rate theory is used
to model the channel ends and the continuum approach is
used to model the movement of the ion in the slowly
varying (and better characterized) energy barrier in the
center of the channel (Levitt, 1982).

The general continuum approach is ideally suited for
situations where a significant fraction of the total resis-
tance of the channel is contributed by diffusion in the bulk
solution at the channel mouth. For example, in the chan-
nels considered here, up to 90% (see Table I) of the
resistance ( at low concentrations) is in the bulk solution.
In addition the forces in the bulk solution result primarily
from long range, well understood, electrostatic forces, and
the diffusion coefficient should be close to that for bulk
water. For these reasons the continuum solution obviously
represents the best approach to modeling this region.

There is a class of K*-selective channels (Maxi-k*) that
have very high maximum conductances (200-400 pS)
(Latorre and Miller, 1983). These conductances are so
large that the bulk solution must contribute to the total
resistance. Thus, an accurate model of these channels
requires some type of continuum approach. The short
channel (2M =16 A, z; = —1, Fig. 4 A4) discussed above
has an absolute conductance and concentration depen-
dence that is similar to that seen for the Maxi-K* channels,
indicating, at least, that a continuum channel with these
dimensions could be a model for these channels. The long
channel (Fig. 4 D, 2M = 32 A, z; = —1) has dimensions
similar to those of the narrow region of the acetylcholine
receptor channel (Brisson and Unwin, 1985), and the
absolute value and concentration dependence of the con-
ductance (Fig. 4 D) are similar to the experimental values
(Dani and Eisenman, 1987), indicating that this might also
be a useful model for the acetylcholine channel.

Although the mathematical derivation is quite involved,
the solution is basically simple, requiring <10 s on a large
computer (for N = 48). Once the solution has been
obtained for one case, it can be applied to any other case
simply by modifying the energy functions. The major
limitation of this solution is the requirement that the
channel can be occupied by at most two ions. This require-
ment is relaxed somewhat by including the influence of the
Debye—-Huckel reaction field in the bulk solution, which, in
effect allows for the presence of an (unlimited) number of
additional ions that, however, must be at equilibrium. As
discussed above, extrapolation from the results of compar-
ing the one-ion and two-ion models suggests that the
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two-ion model should be satisfactory if the fixed charge
valence is not greater than two. The theoretical approach
developed here for the two-ion model can be extended in an
analogous way to allow for three or more ions.

APPENDIX

Derivation of the Electrostatic Energy and
Restricted Area Functions for a Cylindrical
Channel

Potential Energy of Ion—Ion Interaction. If one knows the
electrical potential ¢(x,, x) at x when another ion is at x, (valance z), then
the interaction potential u;(x,, x) is simply z¢(x,, x). The field lines are
assumed to have the form shown in Fig. 1 with the cross-sectional area
described by Eq. 26. The field at the position of the ion (x,, assumed
to = 0) is defined to be E,. In region II, no other ions are present, so that,
from Gauss’s law, the E field (in dimensionless terms) at any position x is
described by 4

£.(x) = (x) = 27z, [a(x)) = 1]/5(x)

a(x;) = &So/(27z)), (1A)
where the + and — refer to the right and left side of x,, respectively.

In regions I and III, the potential is described by the Debye-Huckel
equation:

(S¥) = —(4me/e.) 2_zCiSe, (2A)

where the summation is over all the ions present and S} is the restricted
area available to the ion and is assumed to be equal to S in these regions,
which are removed from the pore mouth by a distance of at least a. It is
also assumed that only monovalent ions are present (z; = +1). The
concentration of the background ions are assumed to be in equilibrium:

C./Cy = e T o | ze®/KkT. (3A)
The expansion in the second equality of Eq. 3A should be valid because
variations in potential in these regions should be small. Since the surface
area is spherical, these equations are exactly analogous to those used in
the Debye—Huckel treatment (McQuarrie, 1976) and has the solution
(expressed in dimensionless variable):

¢y = B ™ [(x+m); &y = By e 2" /(x—m), (4A)

A\ = 87vye,

where X is the Debye constant. The constants B; and By, are determined
from the condition that E must be continuous at the boundary between
regions I and I1I (obtained from the derivative of Eq. 4A) and region I1

(Eq. 1A):

A(x+1+m) =NMx—1-m)

_z,(a— 1)e _z,(l + a)e
TTa+NE+m) T (L + AN (x —m)

(5A)

Eq. 5A gives the potential in regions I and III. The potential in region Il is
obtained by integrating over the E field (Eq. 1A). Also, the value of « is
obtained from the condition that the potential at x, must be the same
whether approached from the left or right. Carrying out these manipula-
tions, the final expression for u;(x,y) is obtained. It is described by Eq.
27C in the text.
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Fixed Charge Potential Energy (Ug). For the calculations in
this paper it is assumed that the fixed charge (valence z;) is in the center
of the channel (x = 0) so that the potential energy of an ion at x can be
obtained immediately from u; (see Eq. 27):

up(x) = uy(0, x) = 2z;z1(|x|). (6A)

This calculation assumes that the field lines from the fixed charge have
the form shown in Fig. 1, even in the center of the channel where the fixed
charge is located. This is obviously incorrect for a fixed point charge.

However, if the fixed charge resembles a ring of partial charges then this
approximation should be satisfactory.

Born Image Potential Energy (Ug). As is customary in this
calculation the diffuse charge component will be neglected (A = 0). The
image potential is defined as the extra energy required to charge up the
ion when it is in the channel compared with when it is in the bulk solution.
In the homogeneous bulk aqueous solution, the field (£y) is described by

Ey=q/(eX?) &=n/x" n=gqe.

For the ion in the channel, the field far from the ion is described by the
equations derived above (Eq. 1A and the derivative of Eq. 5A) for the ion
interaction energy. This field must be modified as one approaches the ion
and this is approximated by adding to the far field expression a
short-range term defined by

(7A)

0 |x = xo|= ¢
Es(x) =
&(x) — &) c= Ix - xol

{1 |x0| = m

14+ x,—m |xo|=m,

(8A)

where £, is given by Eq. 7A and x, is the position of the ion. This form was
chosen primarily for its simplicity. It has the expected property that as one
approaches close to the ion the field becomes equal to the homogeneous
field, while at a long distance (one pore radius in the channel and a larger
radius outside the channel) it becomes zero. The image potential is
defined as the extra potential at the ion center due to the presence of the
ion channel:

g5 = 2nla(xy) + 1) +  T6(x)

- 5(@dx - " g(vdx

= 2nla(xo) + 1] I(x) — 2n/c. (9A)
The first term in Eq. 9A is the long-range contribution (see Eq. 27c), the
second is the integral of the short-range field and the third is the potential
in the homogeneous bulk solution. The Born image potential energy is
then the energy required to charge up the ion against this potential:

un = [ gumdn = 211 + o (XD — KD}

[1 |x|s m
K(x) = (10A)

(A+x-—m" m=<|x|.

Applied Potential (). This refers to the spatial dependence
of the applied potential. From Gauss’s law, the potential is described by
the differential equation (see Egs. 2A—4A):

0 Ix|=m + 1
(sy'y = (11A)

Nsy m+ 1 =|x|

LEVITT Exact Continuum Solution

The potential profile is then obtained by solving Eq. 11A subject to the
boundary condition that , =yl at x = —cand ¢ = 0 at x = w:

1(x)/21(0) x=0

v = 1 — I(=x)/21(0) x=0.

(12A)

Restricted Area Available to Ion (s.). This is the correction
for the finite size of the ion (radius B) and corresponds to the area
available to the center of the ion. Fig. 7 shows how this area is defined for
the different regions of the cylindrical channel. For —m < x < m, s, is
obtained immediately from the cross-sectional area available to the ion
(s, = S./a’ b = B/a):

S, = m(a—B)% s, = w(1 — b)™. (13A)
In the region m < |x| < m + 1, the total surface area (s) is equal to (see
Fig. 7):
s = 2wr’[1 — cos(0)] = 2nrh
h=x—m; r=(+ h)/2h; cos(0) =1 — h/r. (14A)

The restricted area is the region of spherical surface subtended by the
reduced angle 6":

5o = 2mrt [1 — cos(8")]
6 =0 —¢; sin(¢/2) - b/2r.

Eqgs. 14A and 15A can be solved for 7, 6, and ¢, providing an exact solution
for the restricted area (S,). This exact expression can be approximated by
the following (simpler) expression:

(15A)

se=m[(1=b)* + (1 -b)],h=x — m. (16A)
This approximation is quite good, deviating from the exact result by <5%
for b = 0.5. In the regionm + 1 < |x|, s, will be approximated by

5o = 2wh* — 2whb = 2wh(h—b). (17A)
These expressions for s, (Egs. 13A, 16A, and 17A) are continuous across
the three regions. It has been assumed in this derivation that the physical
radius (a,), which should be used in Eq. 13A, is equal to the electrostatic

pore radius (). If, as seems likely, a, is less than a, then the expression for
b can be modified as follows:

S.=m(a,— B)Y=n(a — B");, B'=B+a-a,

s.=S./a*=m(1 —b), b=(B+a-ay)a (18A)

Using Eq. 18A for b should provide an approximate correction for the
inequality of a and a,,.

FIGURE 7 Diagram illustrating relations used in calculation of
restricted area (S,). The dimensionless pore radius is 1 (normalized by a)
and the dimensionless ion radius is & (=B/a).
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Classical Nernst—Planck, One-Ion and No
Interaction Two-Ion Solution

Simple analytical expressions can be obtained for these three cases which
are given here for reference. The solution to the classical Nernst—Planck
equation is described by (Levitt, 1986):

N = (Cer-C)/ILy: 1) - [ pHax, (18A)
where (see Eq. 5)
H, =S, (X)e™.
Also, the concentration at X, C¥(X)[=p,(X)] can be written as
CNX)/C, = e e" + (C,/C, — e*) I(X)/I(L)]. (19A)

This assumes that the concentration at the channel ends (— L and L) is in
equilibrium with the bulk solution.

For the case where the channel can be occupied by at most one ion, the
flux is described by (Levitt, 1986):

J' = PN, Po=[1+CQ],

o- [ scrcax,

where C, is in units of No./cm’. This is the “one-ion” solution for the flux
that is compared with the general “two-ion” flux in the figures.

The differential equation for the two-ion case can be solved analytically
for the case where there is no interaction between ions (U; = 0; h(x, y) =
hy(x)h,(p)). Then, f(x, y) can be written in the form f,(x)f,(») and Eq.
18a reduces to

(19A)

d/;

1
h(x) i constant. (20A)

This relation also satisfies the boundary condition, Eq. 18c. Writing
S(x,y) in the form:

f(X,y) = Kf(—97 x)ﬂ—Qa ,V)~

The constant K can be determined from the boundary condition Eq. 18b:

(21A)

K=(G/C)e™ =86 (22A)
Integrating Eq. 20A from —2 to x:
S(=2,%) = (C,/CYe* + [1-(C,/Cr)e" 1 (x)/1(®)
=e" C”(x)/Cz. (23A)

From this solution for f; the final expression for the no interaction (NI)
flux can be obtained, written in terms of the classical Nernst flux (Eq.
18A) and concentrations (Eq. 23A):

SN g

IMo PN I - P [ s nctanax,

where P, is the probability the channel is empty and is obtained from the
integral over f (see Egs. 19 and 20).

Details of Numerical Solution

The equations are solved by the conventional finite difference method.
The function f(x, y) is represented by the discrete values of f;; where i goes
fromOton — 1and j goes from i + 1 to n (the term f}; is eliminated by the
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boundary condition, Eq. 18d, f;_, ; = f;;). The differential Eq. 18a then
becomes a difference equation which can be written in the form

Aivifiory + AL Sy + Al S
+ Al‘.j+l./;'.j+l + Aisn.jfmJ =0 (25A)

fori=0ton —1,j=i+ 1ton Thetermsf_, ;and f;,,, (that appear in
the (0, /) and (i, n) equation, respectively) must be eliminated to get a
closed solution. Eq. 18b is used to eliminate f; ,,, = Bf_, . These relations
are then substituted in the second boundary condition (Eq. 18¢c) to
eliminate f_, ;. This leads to a set of equations for i = 0 and j = i+1 to
n—1:

Bi_\foi-1 + Bifo, + B?+lﬁ).i+l + Bif\; + B} in-1=0, (26A)

along with Eqs. 25A for i=1 ton—2, j=i+1 to n—1. In addition, Eqgs. 18¢
provide the only points where definite value of f;; are prescribed:

Joa=1 Joo =1/8;  fan=8.

This then yields a set of N = (n—2)(n+1)/2+1 equations in N unknowns
that is solved by use of the Yale Sparse Matrix Program.

Some of the potential (Eq. 27) and area (Eq. 29) functions have
discontinuities in their first derivative (which enter the coefficients of the
sparse matrix and the expression used to determine the flux [Eq. 25]). To
minimize the influence of these discontinuities the grid points were chosen
so that they fell on the points of discontinuity and the derivative was
assigned the average of the values on each side of the point.

(27A)

Received for publication 6 November 1986 and in final form 10 April
1987.
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