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ABSTRACT The restricted rotational diffusion of an axially symmetric particle is simulated by the Brownian dynamics
technique. In addition to the wobbling-in-a-cone model, several continuous potentials are considered. The particle
studied is particularly simple: a sphere anchored to a point fixed in space. However, presenting the results in a

convenient, reduced form, they are valid for any axially symmetric particle. From simulated rotational trajectories, we
calculate ( P2(cosa) ) as a function of t, where a is the angle between two orientations separated by time t and P2 is the
second Legendre polynomial. This correlation function is closely related to time-resolved electro-optic and spectroscopic
properties. Simulated results for the cone model are in excellent agreement with the quasiexact results of Lipari and
Szabo (1981, J. Chem. Phys., 75:2971-2976). Thus we confirm the good performance of the simulation technique and
the validity of our working conditions. Novel results are presented for continuous restricting potentials, V(O). The (P2 )
results for V = /2K02 and V = Q(1 - cosO) are practically the same if K and Q are chosen so that the long-time ( P2 )
values coincide. Thus, the quadratic potential seems to be a good representation of any monotonically increasing
potential. However, for an uniaxial potential such as V = Csin20, the decay is appreciably faster. The (P2) decays
simulated for the continuous potentials are analyzed by the monoexponential version of the cone model. We found that
such an analysis produces an overestimation of the true rotational diffusion coefficient of -15% only, although for
uniaxial potentials the error may be larger.

INTRODUCTION

The rotational diffusivity of biological macromolecules or
particles freely suspended in a fluid is an excellent source
of information on their size and shape. This information
can be extracted from frequency- or time-resolved electro-
optic and spectroscopic properties using theories that are
now well developed (1-4). However, there are cases of
great relevance in which rotational diffusion is restricted
by the immediate surroundings of the diffusing entity.
Such happens when the rotational diffusion takes place in a
membrane (5, 6). Another example is the rotation of a part
or subunit of a segmentally flexible macromolecule, like
the S 1 subfragment of myosin in free myosin or in
filaments (7, 8), or a quite small residue flexibly attached
to the surface of a globular macromolecule (9, 10).

In a pioneering work, Kinosita et al. (11) presented
numerical results for the wobbling-in-a-cone model, in
which rotational diffusion is assumed to be free within a
cone of semiangle 00 and forbidden on the outside. Lipari
and Szabo (12) obtained a closed-form, approximate result
for the correlation function (P2(cosa)), where P2 is the
second Legendre polynomial and a is the angle between
two successive orientations, separated by time t, of the long
axis of the particle. Their monoexponential approximation
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is particularly useful in practice because of its simplicity.
Later the same authors (13) presented a more accurate,
multiexponential expression for that correlation function.
The wobbling-in-a-cone or, shortly, cone model has been
further developed in recent years (14, 15).

Apart from the accuracy of its solution, the cone model
seems a strong oversimplification of the real potential
energy of the particle in the orienting environment. If, in a
case different from those cited above, the restriction to
rotation were caused by an external field, the cone model is
clearly inappropriate. Szabo (14) has suggested guidelines
to introduce continuous potentials, V(8), but the only
numerical results we are aware of are those reported by
Kinosita et al. ( 16) for a quadratic potential, V(0) = /2K02.
These results are based on monoexponential approximate
solutions, whose validity should be examined.

Previous theoretical works (11-16) were based in the
differential equation for rotational diffusion, whose ana-
lytic or numeric handling presented some problems. Thus,
Kinosita et al. (16) were unable to obtain numerical results
for the '/2K02 potential for high values of K. In this work we
propose the use of an essentially different approach, the
Brownian dynamics simulation technique, which is based
on the statistics of the diffusion process. To our knowledge,
the only antecedents in simulation of rotational diffusion
are the works by Harvey and Cheung, who used a some-
what primitive procedure for the free rotation of rigid (17)
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and segmentally flexible (18) macromolecules. In this
work we use the robust and efficient algorithm of Ermak
and McCammon (19), adapted here for rotational motion
by a suitable model. This algorithm has been proved to be
useful not only for obtaining instantaneous values of the
rotational coefficients (20) but also to calculate rotational
correlation functions of rigid and semiflexible macromole-
cules (21-23; Diaz, F.G., A. Iniesta, and J. Garcia de la
Torre, manuscript in preparation). In this paper we show
that it can be easily extended to simulate rotational
diffusion under continuous or discontinuous potentials.
We first simulate the (P2) function for the wobbling-

in-a-cone model. The comparison of the simulated results
with those from a quasiexact expression gives confidence in
the accuracy of the simulation procedure and the working
conditions. We next study the effect on rotational diffusion
(concretely, in the decay of (P2)) of continuous potentials
of varying strength. Mimicking the usual treatment of
experimental data, the simulated results are analyzed in
terms of the Lipari-Szabo (12) monoexponential version of
the cone model, obtaining an effective decay rate that is
compared with the true one. In this way we can establish
the adequacy of this widely used version of the cone model
to represent more realistic potentials. We wish to antic-
ipate here that the performance of the monoexponential
treatment is rather good.
From another point of view, our work illustrates the

simplicity of the Brownian dynamics simulation techniques
in the study of rotational diffusion under arbitrarily com-
plex conditions.

THEORY AND METHODS

Models

We shall assume that rotational reorientation is restricted
by a potential V(0), where 0 is the angle made by the
particle's axis and certain laboratory-fixed axis, Z. We
have a simple example in the cone model, in which rotation
is free within a cone of semiangle 00 and forbidden outside.
The potential is

0 if 0 @00
V(8) = * (1)

c if 0>00

The cone model is a strong oversimplification of any real
potential. In any case, V(O) can be expanded in Taylor
series,

V(0) = V(O) + (dV/d0)00 + '/2(d2V/d02)002 + O(03). (2)

The laboratory-fixed axis used to measure 0 can be taken
such that it coincides with the equilibrium orientation, so
that (dV/dO)0 = 0. Taking for convenience V(O) = 0, and
neglecting third-order and higher terms, we are left with

V/kBT = '/2K02, (3)

where

K = (1/kBT)(d2V/do2)0, (4)

and kBT is the Boltzmann factor. The quadratic potential
of Eq. 3 may be inadequate for moderate or high 0. It is
advisable to study rotational diffusion under more realistic
potentials. For instance, if the particle has a dipole moment
aligned with its symmetry axis, and an electric field is
applied along Z, the potential is of the form

V/kBT = Q(1 -cos0). (5)

These potentials are not symmetric in the 0 7r - 0
transformation. In contrast, such symmetry is expected in
uniaxial systems (cylindrical probes in bilayers, for
instance). A plausible symmetric potential is

V/kBT = Csin20. (6)

This is also the potential for an apolar particle with a
cylindrically symmetric polarizability in an electric field.
The equilibrium orientational distribution function,

p(O), contains the Boltzmann exponential and a sin0
geometrical weight. In normalized form, it is given by

p(O) = sin 0 exp [-V(0)/kBT]/

Jdosin0exp [-V(0)/kBT]. (7)

Eq. 7 can be used to calculate the equilibrium average of
any orientation-dependent quantity. For instance,

(cos20) = ,4 d 0 cos2 Op(O).

In the cone model, Eqs. 7 and 8 reduce to (12)

.[2w(l -cos00)]-' if 0 0< 0

0 if 0>00

and

(cos20 ) = [I1 + cos 0o( 1 + cos00)] /3.

(8)

(9)

(10)

For other potentials the integrals in Eqs. 7 and 8 can be
evaluated numerically. In Table I we present values for
(cos20) for the cone model with various choices of 00.
Since it is desirable to compare models with the same
(cos20) values, we give in Table I the values of the
constants in Eqs. 3, 5, and 6 that yield the same average.
The four model potentials and the associated p(0) func-
tions are displayed in Fig. 1 for cases having a common
value of (cos2 0) = 0.736 corresponding to the cone model
with 00 = 450.

Besides the obvious difference between the aspect of the
functions for the cone model and that for the other,
continuous potentials, we note the difference between the
quadratic and cosine potentials, on the one hand, and the
symmetric squared-sine potential, on the other. At low
angles, V(0) is nearly the same for all the continuous
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TABLE I
RESULTS FOR (cos20) AND RELATED QUANTITIES FOR
THE CONE MODEL, AND VALUES OF THE CONSTANTS

IN OTHER POTENTIALS THAT GIVE
THE SAME RESULTS

Cone model Constants for other potentials

00 (cos20) S (P2)- K(Eq. 3) Q(Eq. 5) C(Eq. 6)

20 0.941 0.911 0.831 32.2 32.8 17.5
30 0.872 0.808 0.653 13.9 14.5 8.54
45 0.736 0.604 0.365 5.77 6.39 4.49
66.4 0.520 0.280 0.078 2.17 2.62 1.89

hill that increases with decreasing values of C. Apparently,
this should produce an increase in the rotational diffusion
rate.

Rotational Relaxation
We are concerned with the diffusive reorientation of the
symmetry axis of an axially symmetric particle. The
corresponding rotational diffusion coefficient is denoted as

DL. It is evident that if time, t', is expressed in the reduced,
dimensionless form

(11)

models, because, as (dV/dO)0o_ = 0 for all of them, the
potential is always quadratic at 0 close to zero. The
quadratic potential and the cosine potential deviate from
each other at higher 0, but the deviation is unimportant
because the Boltzmann exponential is nearly zero in any
case. Indeed, we see that p(O) is practically the same for
the two potentials, and we therefore hope to obtain very
similar results from them. This will be confirmed later in
our calculations of the orientational correlation function.
Extrapolating this situation, we expect that results for
monotonically increasing potentials with (dV/dO)0o. = 0
will be quite close to those of the quadratic potential.
The squared-sine potential has a hill at 0 = 900,

(V/kT = C). There is a finite probability for crossing the

then the variation of orientation-dependent properties with
t will be independent of D,. In other words, if the theoreti-
cal or simulation results are presented in terms of t, they
will be valid for an arbitrary, axially symmetric particle.
The reorientational relaxation can be expressed in terms

of the correlation function of the second Legendre poly-
nomial of the cosine of the angle subtended by two
orientations at instants separated by time t'

(P2) (P2[U(r) * u(r + t')] )7
rT=lim (1/T) f P2[U(r) * U(T + t')]dT, (12)

where u is a unit vector along the particle's axis and
P2(x) = (3x2 - 1)/2. For unrestricted rotational relaxa-
tion of the axially symmetric particle we have the known
result

= -6Dt' -6t-2t = e (13)

If rotational diffusion is restricted, the decay of (P2) is
no longer a single exponential, and its infinite-time value,
(P2)- is not zero. Instead, we have

(p2). = S2, (14)

where S is the so-called order parameter, given by

S = (P2(cos 0)) = (3(cos20) - 1)/2. (15)

4E
cL

e

FIGURE 1 (a) Potential energy in units of kBT vs. 0 for several models
(-), cone model with 00 = 450; (----) elastic potential (Eq. 3) with K =

5.77; (-) cosine potential (Eq. 5) with Q = 6.39; (---) squared-sine
potential (Eq. 6) with C = 4.49. In all cases (cos2 0@ = 0.736 (see Table
I). (b) Orientational distribution functions at equilibrium, p(O) in the
same cases.

Values of S and (P2) for several values of O0 and the
corresponding constants of the continuous potentials are

given in Table I.

The (P2) function is closely related to the decay of
optical or spectroscopic properties. Thus, if either the
absorption dipole or the emission dipole of the particle are

aligned with its symmetry axis, (P2) coincides with the
decay of fluorescence or phosphorescence anisotropy, r(t),
normalized to the zero-time value, i.e., (P2) = r(t)/r(O),
so that (P2)-. = r(oo)/r(O).
We now summarize previous studies on (P2) for

restricted rotational diffusion. In their pioneering work,
Kinosita et al. (I 1) proposed the cone model and found an

approximate monoexponential solution of the type

(P2) = (1 -(P2))e-t/`ff + (P2)-, (16)

MARTINEZ AND DE LA TORRE Brownian Dynamics Simulation

-1
qO 10

t = Dit',I

305



where Teff is an effective relaxation time, which depends
solely on the parameter 00 (recall that we are expressing
times t and Teff in units of 1/D_). Lipari and Szabo (12)
proposed to obtain reff by requiring that the area under the
approximate (P2) and the exact one must be the same.
The result is Eq. 24 in reference 12. Later, Lipari and
Szabo (13) obtained an improved triexponential function

2

(P2) = EGkexp( -t/rk), (17)
k-0

where the Gk and 1rk are given by Eqs. 2.5 and 2.7 of their
paper. Comparing their results with numerical results of
Kinosita et al. (11), Lipari and Szabo (13) found that Eq.
17 is virtually exact for a 00 as large as 660. Kinosita et al.
(16) have later tackled the case of the quadratic potential
of Eq. 3, assuming an approximate monoexponential solu-
tion of the type of Eq. 16. We finally recall that a
comprehensive formalism for restricted rotational diffu-
sion has been more recently presented by Szabo (14).
Concretely, he derived a multiexponential approximation
for ( P2) in the case of potentials that are symmetric -900.
The complexity of his general formalism and the men-
tioned approximation is remarkable.

The translational diffusion coefficient of the sphere is
Dt = kBT/If whereft is the translational friction coefficient
of the sphere. From elementary hydrodynamics we know
that the rotational friction coefficient for perpendicular
rotation is fr = Q2ft, and therefore the rotational diffusion
coefficient, obtained as D = kBT/lf, is given by

D = Dt/Q2. (19)

Rigorously, (r'2) should appear instead of Q2 in Eq. 19.
However, we use values of 6 small enough so that (r'2) -

Q2. In Eq. 19 we have neglected the so-called volume
correction (24), and it is therefore valid if a is appreciably
smaller than Q. Fortunately, this assumption can be made
without any loss of generality because the results in terms
of the reduced time t do not depend on the actual value
of a.

If there is a potential associated with 0, of the form of
one of the Eqs. 3, 5, or 6, the total potential will be Vtot =
V(O) + k(r'). The total force acting on the sphere, Ftot =
-VV0tO, can be split into two contributions, F'01 F' + F'
given by

Fr= (Q/kBT)F'= [(1 -r)/62]u, ( 20)

Brownian Dynamics Simulation

Since the variation of (P2) with reduced time t does not
depend on the actual value of D1 and is therefore the same
for any cylindrically symmetric particle, we have chosen a
very simple particle for the simulations. It consists of a
single sphere of radius a tethered to a point fixed in space,
which is taken as the origin of a Cartesian axes, by a
frictionless, stiff spring (see Fig. 2). The elastic potential
for the spring is quadratic; in a dimensionless form we can
write

and

F6 = (/kB T)F= F6,.e. + F,,Yey + Fee

with

FoX =- IF, COS 0 Cos4

Fe,y = I-FIcossink
Fe, = |FeI sin 0,

and

(18)

where r' is the instantaneous distance from the origin to the
center of the sphere, Q, is the equilibrium value of r' and 6 is
a spring constant (note that Ar' ((r'2) - (r)2)"2
for low 6).

z

"I

"I
"I

N1

I"

N-

_9

I(kF T)1 dV

In Eq. 20, u = r'/r' and

r = r'/Q.

(23)

(24)

Note that we are using unprimed symbols for reduced,
dimensionless quantities: t is expressed in units of D11, r in
units of Q, and the F is in units of kBT/Q.
The Brownian dynamics of the tethered sphere must

obey a Langevin equation:

dr'
F' (r', 0) + L(t'), (25)

in which the inertial term has been neglected, Ft, is the
already described force due to Vt.t and L(t') is a Langevin
stochastic force. An algorithmic solution of Eq. 25 is

r' r + (At'/kBT)DtF;Ot + R'.
x \4

FIGURE 2 Model particle used in the simulation.

(26)

r' is the position vector of the sphere at some instant t', and
r' is the position vector after a time step At'. R' is a random
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vector with Gaussian-like c
zero mean and variance (R
26 is a particularization for
McCammon equation (19).

It is useful to rewrite
quantities. If R = R'/Q and

r = ro + At

in which F,0, has been writte
cal properties of R are

(Ra) 0 ]

(R2) 2At

In Eq. 28 (or Eq. 26) it is ii
small enough so that the fi
along the resulting displacei

Eqs. 27 and 28 are the ba
simulation procedure. The r
taking the final position of
the next one, gives a time
words, a trajectory of the pa
n, the length of the trajecto
evaluate the forces Fe and J
and 0 are set equal to the
Gaussian-like distributed r
mean and variance 2At are

Ra= V2

RESULTS AND DISCUSSION

a, = 'tV.11V JLC LiiaL LAj. In typical runs trajectories with n = 500,000 steps were
a single sphere of the Ermak- simulated. The values assigned to the time step At were 5 x

Eq. 26intermsofreducd
10-4 6 x 10-4, 8 x 10-4,1 x 103, for00= 200,300,450,

Eq. 26 inAt'wearmsveof reand 66.40, respectively. For other potentials At was the
.at D/At', we arrive at, same as for the equivalent 00 in the cone model. From the
(Fr + F6) + R, (27) recorded trajectories, the correlation function was evalu-

ated according to Eqs. 30-31 for selected values of j =

n more explicitly. The statisti- t/IAt. In some instances, the trajectory was divided into a
moderate number of subtrajectories, and (P2) was com-
puted for each of them. The standard deviation of the
values for a given t obtained for the various subtrajectories

a,f = x,y,z a . A. (28) serves as an estimate of the statistical error of the pro-
cedure. This error is expected (23) to decrease with
t/(T - t), where T is the length of the simulation, which
was always under 0.004. The other possible source of error

rnplicit that the time step At is is the finite value of At. To determine whether the above
'orces do not vary appreciablyorest do notvary appreciably listed values are small enough, calculations for some casesmnent r ouro(19). were repeated with a At smaller by a factor of five to ten,
lSiS for our Brownian dynamics

..petitivapplication of Eq.27 and increasing the n by the same factor so that T remains

a stepeii apeicationpoftE. 27, unchanged. The (P2) values were found to be coincident

serpes of intal osin of within statistical error.

srticles of the aumbes or. i he Before the calculation of the correlation function, a
rt icle IftheAtnumberao steps is statistical analysis of the trajectory was carried out in all
y usis TEns. 2A 23 hstehp w the cases. The distribution of 0 was always in agreement
r. using es.2- in wi. rhe with the theoretical Eqs. 10 or 8. The distribution of + was
initial values ro andwit The uniform, as it should be. The simulated value of (cos2 0)

otainedvals of Ra deviated from the theoretical one (Table I) by less than
0.5% for all the simulations.

12 The simulated correlation functions for the cone model
-6 + E am) (29) are presented in Fig. 3, where they are compared with the

m I

where the am are twelve random numbers with uniform
distribution in (0, 1) (25).

In the specific case of the cone model we set F = 0 for
free diffusion within the cone. Final values of 0 are allowed
if 0 < l0g. If 0 > 00 the values of r and X that resulted in the
step are regarded as valid, but 0 is corrected to a new value
Of because along the 0 displacement, AO = 0 - Oi, the
particle crossed the "wall" of the cone. The first part of the
increment A10 = 00 - Oi is allowed. At 00 the particle
bounces on the wall, and the remaining of the displacement
A20 = 0 - 00 takes place inward, so that the final position is
Of = Oi + AI0- A20, or Of = 200 - 0. With the resulting r, Of,
and 4, the coordinates of the particle are calculated and
used for the next step.
The values of u as a function of t are then used to

compute the correlation function (P2), using a discrete
form of Eq. 12 (22)

n-j

(P2)j = [1/(n -j + 1)] P2(k, j + k),
k-0

(30)

where (P2)j is the value of the correlation function at time
jAt and

P2(k,j + k) P2{u(kAt) * u[(j + k)At]}. (31)

t

FIGURE 3 (P2) vs. t for the cone model and free diffusion. ( ) and
(-) are the theoretical (Eq. 17) and simulation results, respectively. Error
bars are statistical uncertainties determined as described in the text.
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triple-exponential formula of Lipari and Szabo. Also
included are the results for free diffusion. The agreement
between the simulated and the theoretical results is very
good. Indeed, the theoretical result always falls within one
standard deviation of the simulated value. This is a rather
conclusive check of the capability of the Brownian
dynamics technique to simulate rotational diffusion and
confirms the adequacy of the working conditions (values of
6, At, and n).

Results were obtained also for the three continuous
potentials with the values of the constants listed in Table I.
We found that the results for the quadratic potential are
practically identical to those for the cosine potential with
an equivalent constant (equal S or (P2)o; see Table I)
constant. The data in Fig. 1 suggest the reason of this
finding. Although '2K02 and Q(1 - cos 0) are quite dif-
ferent from each other when 0 exceeds a certain value, the
difference is not statistically significant because for both
potentials V >> kT in that region. Thus, the probability
functions p(0) are nearly coincident, as seen in Fig. 1 b.

In Fig. 4 we present some results for the quadratic and
squared-sine potentials compared with the theoretical
results for the cone model. We note first that for high,
equivalent values of the constants (K = 13.9 and C = 8.54,
with the same (P2 ), as 00 = 300) the decays of (P2) for the
two potentials are nearly the same. For high C, in the
squared-sine potential the barrier at 00 = 900 is high and its
crossing is highly improbable. Thus the particle behaves as
if it were confined to one of the two regions, 0 < 0 < 900 or
900 < 0 < 180°. In this region the shape of the p(0)

function is very similar to that for other potentials, and
thus the decays are practically the same. In contrast, the
decay for the sine-squared potential with C = 1.89 is
appreciably faster at long times than that of the quadratic
potential with the equivalent constant K = 2.17, as seen in
Fig. 4. The reason is that by decreasing C height of the
barrier decreases, the crossing frequency increases and the
orientational relaxation is more rapid.

Fig. 4 also shows that the decays for the continuous
potentials are different from those for the cone model. The
difference is magnified if one subtracts (P2 ).,, plotting the
decay as ((P2) - (P2),)/(1 - (P2)) , which goes from 1
for t = 0 to 0 for t -oo in any case. For the sake of
consistency, we use the (P2).- value calculated from Eqs.
14 and 15 with the result of (cos2 0) calculated for the
trajectory. Such plots are presented in Fig. 5, using a
logarithmic scale to check the possible validity of a
monoexponential decay of the form of Eq. 16, for which

((P2) - (P2)c)/(l - (P2).) = e-11, (32)

where ay is the effective relaxation time (in the notation of
references 11-16) and the variation with t in Fig. 5 would
be linear. We see that for rather restricted rotation, as is
the. case for 00 = 300 and the equivalent potentials, the
decay is approximately linear down to (P2) values that are
close to (P2)... ar can be then obtained from the slopes in
Fig. 5.

In contrast, for less restricted rotation, the curvature in
the cases of the cone model, and the quadratic potential

0.5

A

0~~~~~~~
V\

0.4_ °.

0.2 00 0

0 000 00 0

0

I
0 0.2 0.4 0.6 0.8

t

FIGURE 4 Comparison of the decays of (P2 ) for the cone model (-),
the quadratic potential (-), and the squared-sine potential (0), with 00
300, K = 13.9, C = 8.54 ((P2)X = 0.653), and 00 = 66.40, K = 2.17, C
1.89 ((P2)X = 0.078).
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FIGURE 5 Plot of ((P2) - (P2)-)/(1 - (P2)-) vs. t, illustrating the
validity of Eq. 32. Circles, triangles, and squares are values for the cone
model, quadratic potential, and the squared-sine potential. Open symbols
are for 00 = 300, K = 13.9, and C = 8.54, and closed symbols are for 00 =
66.40, K = 2.17, and C = 1.89.
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suggest a multiexponential decay. However the curvature
is not much pronounced. From an experimental point of
view, the instrumental noise could blur the curvature and
the decay could look linear in the semilogarithmic plot.
Therefore, we decided to obtain a a value for these decays
from the straight line that best fits the points in the central
part of the decay, chosen as 0.8 < ((P2) - (P,).)l
(1 - (P2),) ' 0.2. For the squared-sine potential, we find
that the behavior is very linear, i.e., monoexponential,
throughout most of the decay. It is interesting to note that
the monoexponential approximation, which was intro-
duced to simplify the mathematical treatment of the cone
model (12) and the quadratic potential (16), is not rigor-
ously correct for these models, while for the squared-sine
potential, which as far as we know has not been considered
before, that approximation seems to be essentially correct.
The a- values extracted from Fig. 5 are listed in Table II

along with those obtained for the cone model in the
monoexponential approximation (Eq. 24 of Lipari and
Szabo, reference 12) denoted hereafter as CME. Using
these values we can now answer one of the main questions
that motivated this study, namely, the error introduced by
the CME approximation in the analysis of experimental
data.
A practical procedure to analyze experimental data

could be as follows: (P2). could be obtained from the
long-time behavior of the decay curve, or could be calcu-
lated from the order parameter, S (Eq. 14), determined by
measurements of other properties. Then, one would put
(P2) in the form

((P2)- (P2) )/(1 - (P2)-](t') = eS, (33)

where

s = D1/u. (34)

From semilogarithmic plots like those in Fig. 5, one would
obtain the slope, s. Alternatively, the variation of (P2)
with t' could be fitted to a single exponential plus baseline,
by the nonlinear least-squares method, extracting simulta-
neously (P2). and s. Using Eqs. 10 and 15, cos 00 could be
calculated and introduced in the Lipari-Szabo formula to
obtain a-CME. Finally the apparent value of the rotational

diffusion coefficient would be calculated as

(35)DaPP = CMES.

Combining Eqs. 34 and 35 we have

DI'PPID, = a-CME/a- (36)

Thus, the ratio of the apparent diffusion coefficient to the
true one can be estimated from our Brownian dynamics
simulation results. The values of DaLPP/D, are listed in
Table II. We see that if the restriction to rotational
diffusion were really a cone, Dalp would be only a few
percent smaller than the true D1. Although the CME is
particularly erroneous for 00 as high as 66.40, the difference
between DalPp and D1 is only 3% in that case. The reason is
that the error in the CME approximation is compensated
by the error due to the representation of the decay by
straight line plots like Fig. 5.
More realistically, we should assume that the restriction

is governed by a continuous potential. Then, our results in
Table II indicate that D'Pp overestimates D1 by 20% if the
restriction is quite strong. The DaP/DI ratio decreases
with the potential constants, goes through a minimum
of .10 and increases again. This weak dependence of
DappID, on the potential constant can be reasonably
averaged out, taking DOPP/D,~ 1.115.
As a rule of thumb, we propose that the CME treatment

of experimental data produces an overestimation of 15%
in the rotational diffusion coefficient. Perhaps the only
exception is for uniaxial systems with a small potential
barrier (like the squared-sine potential with low C) for
which the overestimation can reach 40%.
A 15% error in D1 has little practical significance. Thus,

the Lipari-Szabo monoexponential approximation for the
cone model can be safely used in the analysis of the
experimental decay of fluorescence anisotropy or related
properties. This is so despite the fact that the cone model is
a strong simplification of any real system, and the monoex-
ponential formula is not its rigorous solution. We have
arrived at this conclusion using a Brownian dynamics
algorithm to simulate rotational relaxation restricted by
different continuous potentials. We have shown that this
simulation technique is effective but very simple. If the
results reported in this paper for four types of restriction
are not sufficient in the interpretation of a particular

TABLE II
u (IN UNITS OF D-') OBTAINED FROM PLOTS OF ((P2) - (P2))1/(1 - (P2)-,) VS. t, AND THE RATIO OF THE

APPARENT DIFFUSION COEFFICIENT TO THE TRUE ONE

Cone model V- /2K12 V= Csin20

A,. S2
00

c OCME D"'P/D, K CDappID, C DaPP/D

0.830 0.91 200 0.034 0.0342 1.00 32.2 0.029 1.18 17.5 0.029 1.18
0.653 0.81 300 0.076 0.0735 0.97 13.9 0.061 1.20 8.54 0.064 1.15
0.364 0.60 450 0.16 0.146 0.91 5.7 0.13 1.12 4.49 0.13 1.12
0.081 0.28 66.40 0.24 0.234 0.97 2.17 0.20 1.17 1.89 0.17 1.38
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system, the Brownian dynamics technique can be straight-
forwardly applied to any other complex potential.
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