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ABSTRACT A. L. Blatz and K. L. Magleby (1986a. J. Physiol. [Lond.]. 378:141-174) have demonstrated the
usefulness of plotting histograms with a logarithmic time axis to display the distributions of dwell times from recordings
of single ionic channels. We derive here the probability density function (pdf) corresponding to logarithmically binned
histograms. Plotted on a logarithmic time scale the pdf is a peaked function with an invariant width; this and other
properties of the pdf, coupled with a variance-stabilizing (square root) transformation for the ordinate, greatly simplify
the interpretation and manual fitting of distributions containing multiple exponential components. We have also
examined the statistical errors in estimation, by the maximum-likelihood method, of kinetic parameters from
logarithmically binned data. Using binned data greatly accelerates the fitting procedure and introduces significant
errors only for bins spaced more widely than 8—16 per decade.

INTRODUCTION

The rates of known conformational transitions in proteins
span many orders of magnitude, from picoseconds to hours,
reflecting the fact that transition rates depend exponen-
tially on underlying energy differences. It is therefore
natural to plot relaxation data on a logarithmic time scale,
as was done by Austin et al. (1975) in their study of optical
absorbance changes in myoglobin over a time scale of 2 us
to 1 ks. Blatz and Magleby (19864, b) have recently shown
the utility of a similar log-log representation for dwell-time
distributions from single-channel recordings where the
time constants are spread over several orders of magnitude.
McManus et al. (1987) have also considered the bias
introduced into estimates of fitted parameters by finite
sampling intervals and binning. We present here an alter-
native, direct display method for histograms of constant
logarithmic bin width and derive the corresponding proba-
bility density function (pdf). We also present an improved
procedure for maximum-likelihood estimation of kinetic
parameters from binned data, and we report the results of
simulations to test the performance of this procedure.

Fig. 1 A illustrates the limitations of the traditional
linear histogram in displaying a dwell-time distribution
having two exponential components. One component is
well resolved on the time scale chosen for this plot; it
comprises 70% of the events and has a time constant of 10
ms. The remaining 30% of the events belong to a compo-
nent with a 100-ms time constant which is hardly visible on
this time scale. The other parts of Fig. 1 show the same
simulated data (5,120 events) and corresponding theoreti-
cal curves plotted on logarithmic time scales. Part B shows
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the representation introduced by Blatz and Magleby
(1986a). Here the probability density, estimated by divid-
ing the number of events in each bin by the bin width, is
plotted on a log-log scale along with a log-log plot of the
theoretical pdf. Parts C and D show the new representa-
tions to be considered in this paper, where the number of
events in each bin (there are 10 equally spaced bins per
decade) is plotted on a linear (C) or square-root ordinate
(D). Superimposed on the histograms are the appropriately
transformed, theoretical pdfs. Under the transformation to
a logarithmic abscissa, the pdf corresponding to each
exponential component of the distribution is not monotonic
but has a peak at the value of the time constant. The
unusual shape of the pdf can be understood from the fact
that the bins at very short times are narrow and so collect
few events, whereas at long times the frequency of events
decreases exponentially, much more quickly than the
increase in bin width. Thus a maximum is to be expected in
the vicinity of the time constant of the distribution.

DISPLAY OF DISTRIBUTIONS

Linear Histograms

For comparison with the theory for the logarithmic histo-
grams, we first review the theory of the traditional linear
histogram (see for example Colquhoun and Hawkes,
1983). A set of bins is defined as having a width é¢ and
starting values belonging to a sequence of times ¢;. Entries
are made in the bins according to the dwell times observed,
such that the number of entries #; in the ith bin is the
number of events having durations ¢ that satisfy

L=<t<t + ot
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Four representations of a dwell-time distribution with two exponential components. 5,120 random numbers were generated

according to a distribution with time constants of 10 ms (70% of the events) and 100 ms (30%) and binned for display as histograms in the
lower panel of each part of the figure. Superimposed are the theoretical probability density functions for each component (dashed curves) and
their sum (continuous curve). In each part of the figure the upper panel plots the absolute value of the deviation of the height of each bin from
the theoretical curve, with dashed curves showing the expectation value of the standard deviation for each bin. The upper panels were plotted
with vertical expansion factors of 2.1, 5.4, 3.1, and 4.9, respectively. (4) Linear histogram. Events are collected into bins of 1 ms width and
plotted on a linear scale. The 100-ms component has a very small amplitude in this plot. (B) Log-log display with variable-width (logarithmic)
binning. The number of entries in each bin is divided by the bin width to obtain a probability density in events/s which is plotted on the
ordinate. (C) Direct display of a logarithmic histogram. Events are collected into bins of width éx = 0.2, and superimposed on the histogram is
the sum of two functions as in Eq. 11. (D) Square-root ordinate display of a logarithmic histogram as in C. Note that the scatter about the

theoretical curve is constant throughout the display.

In order to compare the histogram values #; with a kinetic
theory, a pdf is computed from the theory. The pdf is
defined as a limit of the probability that the random open
time t falls in a range centered on ¢,

Prob(t — h/2 <t <t + h/2)

f(2) = lim ;

Thus if the bin width 6t is made sufficiently small, the
expected values of n; become proportional to the value of f
at the center of the bin,

n; = Notf(t, + 6t/2), (1
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where N is the total number of events entered into the
histogram.

Single Exponential Distribution. The probabil-
ity distribution function is defined as the probability that a
random dwell time t falls below a given value ¢,

F(t) = Prob (t < 1).

A kinetic process involving a single transition step gives rise
to dwell times having an exponential distribution. The
probability distribution function for such a process with a
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mean dwell time 7 is
F(t) =1 —exp (—t/7), (2)

The probability density function (pdf) is the derivative of
the distribution function,

d
£U6) = 5 F(O) =~ exp (~1/7) @)

Logarithmic Histograms

Histograms can also be constructed by choosing bins to
have constant widths on the logarithmic time axis, as
shown in Fig. 1 C. Such bins have constant relative width;
for example, one bin in this figure ranges from 1.0 to 1.26
ms, while another bin ranges from 100 to 126 ms. We
assume that the logarithmic x-axis arises from the trans-
formation

x=Int 4)

Let the bin width on the x-axis have the (dimensionless)
value 6x, and let the lower limit of the leftmost bin be x,.
Then the ith bin will have the lower limit

X; = X, + ibx
which corresponds to the actual dwell time
t; = t, exp (idx),

where ¢, = exp (x,). The ith bin therefore corresponds to
the range of time values

t; <t <t exp(6x). (5)

Blatz and Magleby (1986a) accumulated their data into
such bins, however for displaying the data they corrected
for the variable bin width by dividing each n; by the width
dt; of each bin. By Eq. 1 this result is seen to be proportional
to the pdf,

2 NF (4 + 0,/2). ©)
ot;

These values were plotted on log-log coordinates along with
the theoretical pdf, which in Fig. 1 B is the sum of two
exponentials.

The pdf for Logarithmic Histograms

Our approach is to display the logarithmic histograms
directly, without the variable-binwidth correction of Eq. 6.
Such a histogram is shown in Fig. 1 C, where the ordinate
is simply the number of events in each bin. For comparison
with theory, we compute the appropriate pdf for the
logarithmic time axis by first transforming the probability
distribution function and then differentiating it to obtain
the new pdf. Starting with the exponential distribution
function (Eq. 2) and transforming according to Eq. 4 we

obtain the distribution G(x),
G(x) = Flexp (x)]=1 —exp [—exp (x — x0)],  (7)
where
xo = In(7),

the logarithm of the time constant.

The corresponding probability density function g(x) is
obtained by differentiating G with respect to x,

g(x) =exp [x — xo — exp (x — x)]. 8)
If we define the “generic” pdf as
80(z) = exp [z — exp (2)]
then we can write g(x) simply as

g(x) = go(x — xo). )

The function g(x) has three properties that are useful for
our purposes. First, from Eq. 9 it is clear that a change in
the underlying time constant 7 results only in a shift of the
function along the x-axis, rather than a change of scale.
Second, the maximum value of g(x) occurs when x = x,,
i.e., at the logarithm of the time constant, where the value
of g is e~'. Third, this maximum value is independent of
the time constant, unlike the pdf in the linear histogram
(Eq. 3) where the maximum value varies as 1/7.

For comparison of the histogram with a theoretical
distribution, we find analogously to Eq. 1 that if the grand
total number of events is /V, the expectation for the number
of events in the ith bin is, in the limit of small éx,

n; =~ Noxg(x; + dx/2). (10)

If the distribution consists of a sum of m exponential
components, the pdf takes the form

glx) = Z ajgo(x - sj)’ (11)
Jj=1

where s is the logarithm of the jth time constant, and a; is
the fraction of the total events represented by that compo-
nent. The smooth curve in Fig. 1 C was computed as in Eq.
11 as the sum of two terms, and the resulting g(x) was
scaled according to Eq. 10 to allow direct comparison with
the histogram values.

Square-Root Ordinate

For the evaluation of fits to experimental data it is useful to
know the characteristics of the expected scatter of the
experimental points. Let the number of entries n in a bin
have the mean value n, and variance o2 Assuming that n
follows Poisson statistics, the variance is equal to the
mean,

Gn =Ny
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Thus when a histogram is plotted with a linear ordinate,
the scatter is larger in the higher bins, as demonstrated by
the upper panels in Fig. 1, 4 and C where the deviations
between the theoretical and experimental bin heights are
compared. On the other hand, plotting the histogram with
a logarithmic ordinate, as in Fig. 1 B, results in the largest
apparent scatter from the bins containing few entries. For
Poisson-distributed bin heights the scatter takes on a
constant size with the following transformation:

y=n'? (12)

where y is the plotted value, and » is the number of entries
in a bin.

To demonstrate this property, consider an error bar
corresponding to one standard deviation for a bin having
expectation value n,. The error bar would extend from n,
to n, + ny'’?, which by the transformation of Eq. 12 is
plotted as a bar of length

8y = nyl*> — (no + ny'*)'"?
Yoll = (1 + 1/}’0)”2]-

Expanding the term in brackets as a Taylor series in y;'
and reaining the first-order term we obtain

1 1
5}’=J’o(2—y0)=5- (13)
This transformation therefore yields error bars that have a
constant length, independent of n,. This property is demon-
strated in Fig. 1 D, where the upper panel shows the
magnitude of the scatter along with the constant estimate
for the standard deviation throughout the width of the
histogram.

FITTING OF DISTRIBUTIONS

Maximum Likelihood Methods

The fitting of experimental sets of dwell-time measure-
ments is typically done by maximizing the logarithm of the
likelihood with respect to the set of fitting parameters,
denoted here by ©. The fit is based on assuming a
particular form of the probability distribution of the ¢,
usually a sum of exponential terms: in this case © repre-
sents the set of time constants and coefficients of the
exponential components.

The likelihood is equal to the probability of obtaining a
particular set of observed dwell times ¢;, given the form of
the distribution and the parameters, and is proportional to
the product over the /V observations

N
Lik = I1 s,
j=1

where f(1;|0) is the probability density function evaluated
at ¢; with the particular set of parameters ©. Because the
likelihood typically takes on very small values, numerical

1050

evaluation of its logarithm is preferable. In practice the log
likelihood is also corrected for the absence of very short and
very long intervals that are missed due to experimental
limitations. With this correction the log likelihood is given,
within a fixed constant, by (Colquhoun and Sigworth,
1983)

L(e) = 2 ln [f(tjle)/p(tmlm tmx'e)]’ (14)

where the ¢; are the NV experimentally observed dwell times,
and

p(trnim tmxle) = Prob (tmin =l< tmxle)' (15)

is the probability that dwell times fall within the range of
experimentally measurable times characterized by ¢, and
tmax» computed from the probability distribution with
parameters ©.

Binned Maximum Likelihood

The likelihood for binned data is the probability that a set
of data results in a particular set of bin occupancies n,. The
log likelihood from binned data can be calculated as

- F(t,,,|0) — F(1]©)
mm=2m4 2(t, 116)

i=1
where F(1]0) is the probability distribution evaluated at
the lower bound ¢; of the i th bin using the parameter values
0, and p(t, t;) is, as before, the probability that the
experimental dwell times fall within the range of the k bins
in the histogram (Eq. 15),

) (16)

p(t, 10) = F(1,|0) — F(1,/6)

Notice that for the binned data we use the probability
distribution function F(t) in the calculations, rather than
the probability density (pdf) as in Eq. 14. We evaluate F(f)
at each bin edge and take the difference; this gives the
probability that an event falls in the bin. Taking this
difference is equivalent to integrating the pdf over the
width of the bin.

Maximum likelihood estimation from binned data is
equivalent to the unbinned estimation as in Eq. 15 in the
limit of small bin width. From Eqgs. 1, 14, and 16 it can be
shown that:

k
u@=um;mmmm 17
-1

where 6¢; is the width of the ith bin; equality holds in the
limit of small 6¢;. Since in the fitting problem the #; and ¢,
are constants and only the parameters @ are varied, the
particular © that maximizes L will also maximize L.

For a sum of m exponential components the probability
distribution function takes the form

F(il®) =1 — i a;exp (—t/1)), (18)
j=1
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where © consists of the entire set of the coefficients a; and
time constants 7;. Each a; represents the fraction of the
total number of events contained in the jth component, and
these coefficients sum to unity,

Z a; =1

j=1
so that the set of parameters © has 2m-1" independent
elements. Maximum-likelihood fitting of the binned data
then consists of finding the set of parameters © that
maximizes Ly(0).

STATISTICAL ERRORS
IN FITTING BINNED DATA

Sine and Steinbach (1986) and McManus et al. (1987)
have considered two kinds of systematic error in estimating
kinetic parameters that arise from discrete sampling and
binning of data. First, there is an error in the estimates of
brief exponential components when the event durations are
measured as discrete multiples of a sampling interval. In
our laboratory we use the 50%-threshold-crossing tech-
nique for estimating event durations, but we interpolate the
experimental current trace data in the vicinity of threshold
crossings (Colquhoun and Sigworth, 1983). The resulting
dwell-time estimates are not quantized, so that this source
of systematic error does not arise. (It should however be
noted that there remains a more subtle problem of random
errors in dwell-time estimates that arise from noise in the
current trace. This sort of error was considered in Colqu-
houn and Sigworth, 1983, and is expected to be small.)

Second, McManus et al. (1987) have pointed out a
“binning error” that occurs when bin heights are compared
with theoretical probability density values. This systematic
error can be understood from the approximations (Egs. 1
and 10) that relate the bin heights to the pdf values at the
bin centers: the approximations become poor when the bin
width increases to become comparable to the time con-
stants in the pdf. We have presented here a simple solution
to this problem, namely to use the probability distribution
function, rather than the probability density, in the maxi-
mum likelihood evaluation (Eq. 16).

Having dealt with these two sources of error, we wanted
to see how wide the bins could be made without introducing
other errors into the estimation of parameters by the
binned maximum likelihood method. The process of col-
lecting events into bins inevitably removes some informa-
tion from the data. One therefore expects that at larger bin
widths the parameters should show additional scatter that
reflects the loss of information. To characterize these
errors we used the maximum likelihood technique to
estimate parameters from groups of 100 synthetic data
sets. Each data set was created using the same values of
time constants and numbers of events but were generated
with different random numbers. From the 100 sets of
estimated parameters so obtained, we computed the stan-
dard deviation and mean values for comparison with the

starting parameters used in constructing the data sets. The
process of maximum-likelihood estimation was repeated
using densities of bins ranging from 2 to 64 bins per decade
(corresponding to 6x = 1.15 to 0.036). In some cases we
also subjected the data sets to the direct log-likelihood
evaluation (involving no binning; Eq. 14), to test the
dependence of the errors on the binning procedure. In these
simulations we used a variety of starting parameters and
different numbers of events ranging from N = 1,024 to
25,600 in order to pose both well-conditioned and ill-
conditioned fitting problems.

METHODS

Synthetic data in the form of exponentially distributed random numbers
were obtained by taking the logarithm of the output of the FORTRAN-
77 RND function on our PDP-11/73 computer (Digital Equipment
Corp., Marlboro, MA). This RND function uses a 32-bit algorithm and
has a period much longer than the size of our data sets. The resulting
random numbers were scaled and pooled according to the time constants
and amplitudes of the distribution to be simulated, and synthetic dwell
times smaller than 7, = 10~°s were eliminated from the data set to
simulate a detection limit. The events were collected into bins with widths
given by Eq. (4) with t, = 10~%s and éx = 2.303/m, where m is the
number of bins per decade. The log likelihood was computed according to
Eq. 16 for binned data, or according to Eq. 14 for the unbinned
maximum-likelihood (ML) estimation. The computations used 32-bit
floating-point arithmetic and the floating-point buffer operations of
BASIC-23. A simplex search procedure (Caceci and Cacheris, 1984) was
used to maximize the log likelihood; for a typical three-component fit (five
parameters) the roughly 200 iterations required 30 min for the unbinned
ML estimation from 2,048 data points, but only 2 min when binning was
used (16 bins/decade).

In each group of 100 fitting operations the mean y; and standard
deviation o, was computed for each of the fitted parameters. As an overall
measure of the fitting errors, root-mean-square values of the normalized

~ standard deviation ¢’and bias 4’ were computed from the n, parameters

as

R
Sr ik

where v, is the theoretical value of the ith parameter, i.e., the value that
was used in generating the synthetic data.

RESULTS

Effect of Bin Density on the Precision
of Fitting.

We performed binned and unbinned maximum-likelihood
fitting on data sets from eight different distributions
containing two or three exponential components. For each
of these underlying distributions we used two different
numbers of events V. The greatest sensitivity to the effects
of binning appeared, as might be expected, in the “ill-
conditioned” problems where N was relatively small, and
where the time constants were closely spaced or the
amplitudes of components were small. Three distributions
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of this kind are illustrated in the upper panels of Fig. 2, and
the dependence of the rms errors on bin width is shown in
the lower panels.

The fitting problem illustrated in Fig. 2 4 was the most
difficult one we tried. The distribution had time constants
of 0.02, 1, and 10 ms and amplitudes of 0.2, 0.1, and 0.7,
respectively. This problem exemplifies a common situation
in which a component of intermediate time constant is
“buried” between larger components; here the 1-ms com-
ponent represented only 10% of the events, and is hardly
visible in a plot of the composite distribution (Fig. 2 A4, top
panel). This component was also very difficult to fit: in the
100 data sets of 2,560 events, even the best binned fitting
operation (at 16 bins/decade) yielded estimates of this
time constant with a scatter (SD) of +0.58 ms, and the 100
amplitude estimates had the mean and SD of 0.12 + 0.041.
The normalized, overall errors in fitting this distribution at
a bin density of 16/decade were ¢’ = 0.31 and ¢’ = 0.13.

In this distribution, and in general, the quality of fitting
was surprisingly insensitive to the density of bins used. The
scatter ¢’ (plotted as squares with solid lines in the lower
panel of Fig. 2 A) declined with increasing bin density up
to 8-16 bins/decade, beyond which it remained essentially
constant. The bias parameter u' (squares with dashed
lines) continued to decrease as the bin density increased to

64 bins/decade; however, since the bias values were
usually small compared with ¢', changes in these values
reflect only small effects on the quality of fits. This is
because the expected standard error ¢ of the parameters in
a single fit depends on the sum of the squares of ¢’ and u’,

€ = (””2 + 0,!2)1/2'

When the number of events was increased 10-fold to V =
25,600, the precision of the fitted parameters improved by
roughly a factor of 3. The same general trends were
apparent in the dependence of o' ( triangles with solid
lines) and u' (triangles with dashed lines) in Fig. 2 A,
except that the bias effects due to binning were more
prominent in this case because the large number of events
makes the statistical errors smaller.

Fig. 2 B shows the corresponding results for another
three-component distribution that posed better-condi-
tioned fitting problems. The components had time con-
stants of 1, 3, and 10 ms and relative amplitudes 0.3, 0.4,
and 0.3, respectively. Again, the quality of fitting was only
weakly dependent on bin density with no significant
increase in the precision of fitting occurring beyond 16
bins/decade.

Fig. 2 C shows the results for two fitting problems
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FIGURE 2 Dependence of fitting errors on the density of bins, as estimated from fitting groups of 100 synthetic data sets. The rms scatter o’
(symbols with solid lines) and bias u’ (symbols with dashed lines) are plotted as a function of bin density, given as bins per decade; ML
indicates the results of unbinned maximume-likelihood estimation. The upper panels illustrate the distributions, plotted as in Fig. 1 C and Eq.
11. In A, the distribution consisted of three exponential components with time constants 0.02, 1.0, and 10 ms and amplitudes (i.e., fractions of
total events) 0.2, 0.1, and 0.7, respectively. The squares represent parameters from fits to 2,560 data points, while the triangles were from fits
to 25,600 data points. (Only 10, rather than 100, unbinned ML fits were performed for 25,600 points.) (B) Fits to a distribution with time
constants of 1, 5, and 25 ms and amplitudes 0.3, 0.4, and 0.3. The squares are from 2,560 data points, the triangles from a total of 25,600 data
points. (C) Fits to distributions with two components of equal amplitude. Squares, 1,024 points with time constants of 1 and 3 ms. Triangles,

1,024 points with time constants of 1 and 10 ms.
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involving 1,024 events consisting of two exponential com-
ponents. The squares represent errors in fitting a distribu-
tion having the two time constants separated by only a
factor of 3 (shown in the top panel of Fig. 3 C); the
triangles are from a distribution with time constants
separated by a factor of 10. In each case there is remark-
ably little difference in the fitting errors between a bin
density of 2/decade and the highest density used, 64/
decade.

Comparison with Classical
Maximum-Likelihood Fitting

The binned maximum-likelihood fitting, which required
one to two orders of magnitude less computer time,
nevertheless gave comparable results to the classical,
unbinned maximum likelihood technique (indicated by
ML in each part of Fig. 2). Asymptotically the binned and
unbinned techniques are equivalent (Eq. 17) but they have
different sensitivities to roundoff errors and therefore are
expected to behave differently in practice. The largest
difference between binned and unbinned fitting was seen in
the runs of Fig. 2 A. The ¢’ and y’ values for the ML run
with N = 25,600 are less precise because we performed
only 10 of the 3-h fitting runs to compute them; however,
both ML runs appeared to have slightly lower ¢’ values. In
the other fitting problems tested, as in Fig. 2, B and C,
essentially no difference was seen between unbinned fits
and binned fits with densities of 16/decade or greater, and
in some cases the ML fitting actually showed higher bias
values, which is to be expected from the possible roundoff
errors in accumulating the large sum (Eq. 14) that runs
over the total number of events.

We conclude from these and other simulations that the
binned fitting performs comparably to the unbinned maxi-
mum-likelihood estimation, and that relatively coarse bin-
ning can be used without introducing substantial errors.
Little improvement in performance is seen from bin densi-
ties above 16/decade, and acceptable behavior is obtained
at 8 bins/decade. Indeed, for two-component distributions
as in Fig. 2 C the very coarse binning of 2/decade may be
acceptable. We have standardized on a density of 10
bins/decade, which is the density shown in the logarithmic
histograms of Figs. 1 and 3.

DISCUSSION

We have presented here a comparison of methods for
displaying dwell-time histograms and have derived the
form of the corresponding theoretical functions for the
comparison of the histograms with exponential distribu-
tions. As the most useful representation of dwell-time data
we suggest the display of histograms with a logarithmic
time axis and a square-root vertical axis, as in Fig. 1 D.
This display has a number of advantages over the tradi-
tional linear histogram display, including the properties
that (a) exponential components appear as peaked func-

U S N N
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FIGURE 3 Histograms and fitted probability density functions from the
data of Sine and Steinbach (1987). Recordings from cell-attached
patches on BC3H-1 cells were made at 11°C and —70 mV patch
membrane potential. (4) Open time distribution with 60 um acetylcho-
line in the pipette, from 2,009 observed events. The fit predicts a total of
2,120 events, 9% of which are contained in a 160-us component, and 91%
in a component with a time constant of 15 ms. (B) Closed-time histogram
at 20 uM ACh, from 4,065 observed events; same data as in Fig. 4 of Sine
and Steinbach. Highlighted as solid curves, the equal sized components
with time constants of 15.6 and 2.1 ms are associated with the effective
channel opening rate and the agonist dissociation rate of the singly
liganded receptor, respectively. The estimated time constants and frac-
tions of events are: 1.32 s, 0.009; 113 ms, 0.036; 15.6 ms, 0.08; 2.1 ms,
0.08; 250 us, 0.13; 33 us, 0.66. (C) Closed-time histogram at 60 uM ACh,
from the same recording as in 4. The activation closures which were seen
as two components at 20 uM ACh appear here as a single component
(solid curve). The shift of the component is interpreted as resulting from
an increase of the effective channel opening rate, in which the time
constant decreases from 15.6 to 2.9 ms. The other component, associated
with agonist dissociation, is predicted to take on a much smaller ampli-
tude at 60 uM, and is apparently not visible here. The estimated number
of events is 5,951; time constants and relative fractions of events are: 3.7 s,
0.007; 380 ms, 0.017; 38 ms, 0.033; 2.6 ms, 0.17; 290 us, 0.12; 31 us,
0.66. For a detailed description of the interpretation of the various
components in the histograms, see Sine and Steinbach (1987).
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tions in the display; (b) the position of the peak in each
component corresponds directly to its time constant; (c) the
height of each peak corresponds to the total number of
events in that component; and (d) the expected statistical
scatter in the data is of constant magnitude throughout this
type of display.

We have also considered some issues in the fitting of
distributions to logarithmically binned data. As Blatz and
Magleby (1986a) and McManus et al. (1987) have
pointed out, the binning of data can greatly accelerate the
estimation of parameters using the maximum-likelihood
method. McManus et al. (1987) found that bin densities as
low as 25/decade are acceptable, but we conclude from
simulations and from using an improved likelihood evalua-
tion method that even lower bin densities (i.e., wider bins)
can be used with little degradation in the quality of
parameter estimation.

It should be noted that our concern here has been to
optimally display and fit distributions of observed dwell
times. We have not considered here the corrections neces-
sary for interpreting these distributions and comparing
them with theory in cases where a significant number of
events are not resolved. Strategies for making such correc-
tions have been discussed in the literature (Roux and
Sauvé, 1985; Blatz and Magleby, 1986a).

Fig. 3 demonstrates the logarithmic display and the bin
fitting techniques applied to dwell times recorded from
acetylcholine receptor channels in BC3H-1 cells. The data
are taken from the study of the agonist concentration
dependence of closed and open durations described by Sine
and Steinbach (1987). Simply plotting the dwell times on
the logarithmic time scale reveals qualitative features of
the distributions. The open time histogram (Fig. 3 A)
consists of a major component with a peak near 15 ms plus
a small component with a much briefer mean duration.
The closed time distributions (parts B and C of the figure)
span five decades of time. Raising the agonist concentra-
tion from 20 to 60 uM causes a general shift in the closed
time distribution toward shorter durations. The logarith-
mic and square-root transformations combine to show the
number of components required to fit each histogram. In
both histograms a partially resolved shoulder is seen at
short durations, and five more peaks are visible spaced
about a decade apart. Thus the logarithmic abscissa and
the square root ordinate make qualitative features of the
data immediately apparent.

This kind of display also serves as a starting point for
quantitative analysis of the dwell-time histograms. A rea-
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sonable description of the histogram can be obtained from
a manual fit to the sum of exponentials. The resulting areas
and time constants then become seed values for maximum
likelihood fitting. Because the histogram entries are col-
lected into only about 60 bins, the maximum likelihood
estimation of parameters requires little computer time.
Starting from a manual fit of the six components, the fits in
Fig. 3, B and C, converged in <10 min using our BASIC-
23 program. A further advantage of this display method is
that the quality of the fit can be readily judged because the
scatter is expected to have a constant amplitude across the
histogram. For example, deletion of one of the six closed
duration components would leave undefined a highly sig-
nificant population of dwells.
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