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ABSTRACr We present a general mathematical framework for analyzing the dynamic aspects of single channel kinetics
incorporating time interval omission. An algorithm for computing model autocorrelation functions, incorporating time
interval omission, is described. We show, under quite general conditions, that the form of these autocorrelations is
identical to that which would be obtained if time interval omission was absent. We also show, again under quite general
conditions, that zero correlations are necessarily a consequence of the underlying gating mechanism and not an artefact
of time interval omission. The theory is illustrated by a numerical study of an allosteric model for the gating mechanism
of the locust muscle glutamate receptor-channel.

INTRODUCTION
Single-channel recording is now established as the method
of choice for investigating the kinetics of receptor gating of
ion channels (Auerbach and Sachs, 1984; Horn, 1984).
The principal aim of such studies is to obtain a complete
kinetic description of the channel-gating process, with a
view to being able to relate such a description to the
underlying molecular events. The later stages of such
investigations involve objective estimation of the kinetic
parameters of a particular gating mechanism (Horn and
Lange, 1983). However, before such an analysis is possible,
it is necessary to establish the overall form of the gating
mechanism. That is, one must determine the number of
open states and the number of closed states accessible to
the channel, and also the number of isomerisation path-
ways which link the open states with the closed.

Methods for determining the number of channel states
via analysis of channel sojourn time pdfs (Colquhoun and
Sigworth, 1983) have been applied to a variety of systems.
However, it is only recently that the theoretical back-
ground to methods for determining the number of channel
isomerisation pathways has been developed. These meth-
ods (Jackson et al., 1983; Fredkin et al., 1985; McManus
et al., 1985) all rely on some form of analysis of correla-
tions between successive channel sojourn times. The use of
sojourn time autocorrelation functions (Fredkin et al.,
1985; Colquhoun and Hawkes, 1987) is particularly
attractive as it allows for the possibility of establishing a
lower bound to the number of isomerisation pathways (m).
Briefly, if there is only a single pathway linking the open
states with the closed states (m = 1), then a null autocorre-
lation function is observed. If m > 1, as in branched or
cyclic gating mechanisms, then the observed autocorrela-

BIOPHYS. J.© Biophysical Society * 0006-3495/88/05/819/14 $2.00
Volume 53 May 1988 819-832

tion function is made up of cm - 1 geometrically decaying
terms. Analysis of channel sojourn time autocorrelation
functions has been applied to the nicotinic acetylcholine
receptor by Labarca et al. (1985), and to the locust muscle
glutamate receptor by Kerry et al. (1987a, b). In both
cases significant autocorrelations were seen, indicative of
branched or cyclic gating mechanisms for these receptor
channels.

There is, however, a complication when attempting to
relate observed channel kinetics to those predicted on the
basis of these simple stochastic models. There is a deficit of
brief (<0.2 ms) channel sojourn times in experimentally
derived data. Such time interval omission arises from the
filtering of the data during recording combined with the
use of threshold crossing algorithms for event detection
during subsequent processing of the raw data. Several
authors have analyzed the effect of time interval omission
on channel sojourn time pdfs (Roux and Sauve, 1985;
Blatz and Magleby, 1986), and hence on the use of pdfs to
estimate the number of kinetic states of a channel. How-
ever, there remains a need for a general theory which will
also permit analysis of the effects of time interval omission
on sojourn time autocorrelation functions. Clearly this is a
matter of some importance if analysis of autocorrelation
functions is to be used to draw inferences about the number
of channel isomerisation pathways.

Here we present a general theory for predicting the
effect of time interval omission on single channel kinetics,
with particular emphasis on the effects on sojourn time
autocorrelation functions. We examine in some detail this
approach as applied to a gating model which has proved
useful in understanding the kinetics of the glutamate
receptor channel (Kerry et al., 1987a, b).
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METHODS

Calculation of predicted autocorrelations were performed on a Vax
11/780. Simulations and all other calculations were carried out on a
Masscomp 5500. All programs were written in Fortran 77, and employed
the NAG library of numerical subroutines. The simulation algorithm was
that described by Clay and DeFelice (1983), modified for event omis-
sion.

GENERAL THEORY

A single channel gating mechanism is modeled by a finite
state space, continuous time, Markov chain. Label the
states 1, 2, ...,n. Let O= 1, 2, ...,noand C= no + 1,
no + 2, . . ., n be the open and closed states respectively.
Let nc be the number of closed states, so that no + nc = n.
Denote the above Markov chain by {X(t); t 2 01, where
X(t) is the state that the channel is in at time t. The process
{X(t); t 2 01 will be time reversible (Colquhoun and
Hawkes, 1983), time homogeneous and irreducible.

For i 1j let qij be the transition rate of {X(t); t . 01 from
state i to state j. Let Q be the n x n matrix with
off-diagonal elements q,j and diagonal elements q,, =
-2;,i qij. Partition the matrix Q into

!QOO QOC
Q= .

QCO Q]O
where, for example, Q., corresponds to transitions that
remain within the open states. Also, following Roux and
Sauve (1985), it is convenient to define the n x n matrices
Q0 and Q, by

Qoo 0
Qo=

O Q¢c

and

Q QOC
Ql=

_QC0 0

Thus Qo is the matrix of transition rates for transitions
within the open or closed states, and Q, is the matrix of
transition rates for transitions between the open and closed
states.
The process {X(t); t 2 01 will possess an equilibrium

distribution, ir = (irl, i2, ... T, say, where T denotes
transpose. For i = 1, 2, ..., n, 7ri is the (nonzero)
equilibrium probability that the channel is in state i. A
consequence of reversibility is that the detailed balance
conditions

7irq1= 7 qji (i, j =,2. ) (1)

are satisfied (see e.g., Kelly, 1979).

Time Interval Omission
In practice short sojourns in either the open or closed states
may not be detected. We shall assume that a sojourn in the

open (closed) states is detected if and only if it is greater
than some critical length ro. A mathematical framework
for analyzing the effects of the above form of time interval
omission on a single observed sojourn was formalized by
Roux and Sauve (1985). Here we outline a mathematical
framework for analysing the effects of the above form of
time interval omission on the dynamic stochastic properties
of a sequence of observed sojourns comprising a single
channel record. This framework enables us to derive
expressions for the autocorrelation functions of Fredkin et
al. (1985) but now incorporating time interval omission.
The above form of time interval omission is assumed for
ease of exposition, although it should be noted that it
corresponds to the imposition of a consistent minimum
sojourn time, as suggested by e.g., Colquhoun and Sig-
worth (1983). The following may be readily modified to
incorporate (a) different values of r0 for open and closed
sojourns, and (b) a specified distribution for r0, as in Kerry
et al. (1987a). The mathematical details for the more
general case may be found in Ball and Sansom (1988),
where formal proofs are provided.

Suppose that the channel, described by the process
{X(t); t . 01, is detected as being in an open state at time
t = 0 and that X(0) = i, where i e 0. We assume that the
channel continues to be detected as being in an open state
until there has been a sojourn of length ro in the closed
states, at which point the channel becomes detected as
being in a closed state. Let T' be the time at which this
happens. Thus T' is the minimum value of t for which the
channel is in the closed states throughout the interval from
t - ro to t. The channel is now detected as being in a closed
state and will remain as such until there has been a sojourn
of length r0 in the open states, at which point the channel is
detected again as being in an open state. Let T'be the time
at which this happens, so that T'is the minimum value of t
greater than T' for which the channel is in the open states
throughout the interval from t - ro to t. Continue the
process ad infinitum to obtain a sequence of times T', T'2,
... at which channel openings or closings are detected. Set
To= 0 and let

Jk = X(Tk) (k = 0, 1, ...)

and

Thus Jk is the state that the channel is in when the kth
opening/closing is detected and Tk is the length of the kth
observed sojourn.
The process 1.k; k = 0, 1, . . .1 is a Markov chain, with

period 2, on the state space I1, 2, . . ., nI. Set To = 0. The
process {(Jk, Tk); k = 0, 1, .. .1 is also Markov. It is
intimately connected to Markov Renewal and semi-
Markov processes (see e.g., Pyke, 1961; (inlar, 1969). The
Markov nature of the processes {Jk; k = 0, 1, . . .1 and {(J,,
Tk); k = 0, 1, .. .1 is a consequence of the underlying
process IX(t); t . 01 being Markov.
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The various processes referred to in the previous para-
graph are illustrated in Fig 1. All that can be observed
experimentally is the sequence of observed sojourns T,,
T2, .... Thus the process I(Jk, Tk); k = 0, 1,.. .1 more than
describes the observed single channel kinetics incorporat-
ing time interval omission. Its mathematical properties are
completely determined by the matrix function F(t) (t > 0),
defined elementwise by

Fjj(t) = Pr(Tk c< t and Jk = jlJk-lI= i) (i, j -1, 2,. . .,. n).-

Note that the transition matrix, PJ say, of the Markov
chain {Jk; k = 0, 1, .. .1 is given by PJ = F(o).
We are unable to provide a closed form expression for

F(t). However, we can obtain its Laplace transform, cI(O),
from which several important properties concerning single
channel records incorporating time interval omission,
including moments and autocorrelation functions, can be
derived.

open 2

states I

c losed 71
states 9

-LI n 71, l+7
ULKi

closed ~FFLLLTJF
open

c Iosed

open

clIosed

For 0 2 0 let 4)(0) be the n x n matrix with elements

(2)

Then it follows from Ball and Sansom (1988) that

4(O) = -{Q0(0) - Q,QO(O)-'
- (I - exp [ToQo(O)J)QI-' Q1 exp [r0Qo(0)] (0 2 0) (3)

where

Qo(0) = -(0i - QO)

exp [rOQO(0)] = E kTQo()k/k!
k-O

is the usual matrix exponential (see e.g., Bellman, 1960)
and, lest there be any confusion,

Qo()k = [-(Of - Qo)]k (k = -1, 0, 1, .
Eq. 3 can also be derived by appropriate use of Eq. 1 6c of
Roux and Sauve (1985). Their matrix function F(r, Tm) iS
comparable with our dF(t) (with T and Tm broadly corre-
sponding to t and To respectively), though they describe
slightly different events. However, it must be stressed that
Roux and Sauve (1985) only considered F(r, Tm) within the
context of a single observed sojourn, whereas our F(t) is a
cornerstone of a mathematical framework describing an
observed single channel record. Roux and Sauve (1985)
derived F(r, Tm) by summing the probability densities of all
paths of the underlying process {X(t); t 2 01 which yield an
observed sojourn of length r. They introduced a Dirac delta
function to take account of an inequality constraint, which
resulted in their obtaining a complex integral expression
for F(T, Tm). Their expression may be viewed as an inverse
Fourier transform. Ball and Sansom (1988) derived 4)(0)
directly, exploiting the conditional independence property
of the sample paths of {X(t); t 2 01 and a regenerative
phenomenon of sample paths of {X(t); t > 01 comprising an
observed sojourn. Ball and Sansom's method carries over,

T, T2 T3 T4 TS T6

J, = 6
J2 = 3 J4 = 4

J3 = 10 J5 = 6
J6 = 4

minimum T

detectable I-
sojourn

FIGURE I Diagram depicting the processes involved in modeling single
channel data with time interval omission. The top graph shows the
underlying process {X[t]; t 2 01. States 1 to 5 are open and 6 to 10 closed.
The second graph shows the process that is in principle observable.
However short sojourns remain undetected so the observed process is as
shown in the third graph. The bottom graph shows how the observed
process is modeled, in that sojourns become detected after a time lag r0;
Tk is the length of the kth observed sojourn and Jk is the state the
underlying process is in when the (k + 1 )st sojourn is detected.

To .

0

C

duratIon oF observed closIng

start of obs rved c1osi0ng

[X]

end of observed closing

[Y]
FIGURE 2 A diagram of the dynamic events comprising an observed
closed sojourn, as described by Eq. 3: 'I(O) = [X] [Y], where

[X] = [Qo(0) - QIQO(0)-l'I - exp [TOQo()]I}QI] 'Ql
[Y] = exp [roQo(0)]

and r0 is the minimum detectable sojourn.
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Oii(O) =
OD

exp ( Ot) dFij(t) (i, j = 1, 21 . . . , n) -

To
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with no real modification, to the Fourier transform of
dF(t). The difference between the two derivations then
becomes very clear; Roux and Sauve (1985) operate in the
time domain throughout, whereas Ball and Sansom (1988)
operate in the frequency domain throughout.
The components comprising Eq. 3 for 4b(O) correspond to

dynamic events as illustrated in Fig. 2.
Note that from Eq. 2,

ij(0) = f dFij(t) = Fij(oo) (i, j = 1, 2, . ., n)

so

P' = -Qo QO'[I-exp (roQo)]Ql-' Ql exp (roQo). (4)

It will be useful for the sequel to partition PJ into

pj
O Poc

PJ=[ O~
Equilibrium Probabilities

In order to determine unconditional moments and autocor-
relations for the observed process incorporating time inter-
val omission we need to derive appropriate equilibrium
probabilities. The Markov chain {Jk; k = 0, 1, .. .1 will not
possess an equilibrium distribution, since it has period 2,
i.e., the channel alternates between closed (k odd) and
open (k even) states. Consider the Markov chain IJ2k; k =

0, 1, .. .1, which we term the open entry process as it
records the state that the underlying process {X(t); t 2 01 is
in whenever a channel opening is detected. The open entry
process has a transition matrix, PO say, given by the top left
no x no submatrix of (PJ)2. It will also possess an equilib-
rium distribution, ir0 = ( 2r',T2,... ro)T say, which can be
obtained either from the eigenvector of Pj corresponding
to the eigenvalue one, or as follows.

Let R = (rij) be the n x n matrix given by

R = exp (roQo)Qi{I - [Qo-'{I - exp (rOQO )1QI]21 ' exp (rOQO)
(5)

and
n

vi = r,j .
j_-

Then
7r = ari 1i (ie O), (6)

where a is a normalising constant, chosen so that the
equilibrium probabilities ir? (i e 0) sum to unity. Recall
that ir1 is the equilibrium probability that the underlying
process IX(t); t > 01 is in state i.
The above expression for the equilibrium distribution ir0

is proved formally, in a more general setting, in Ball and
Sansom (1988). We now outline an informal proof. The
equilibrium distribution 7ro will be identical to the equilib-
rium distribution of the reversed process of the Markov
chain IJ2k; k = 0, 1, . . 1. The reversed process of the open

entry process {J2k; k = 0, 1, .. .1 can be viewed as the open
exit process of the reversed process of {X(t); t 2 01.
However, the underlying process {X(t); t 2 01 is time
reversible, so the equilibrium distribution iro will be identi-
cal to the equilibrium distribution of the open exit process
of {X(t); t 2 01. The equilibrium probability that {X(t); t 2
01 is in open state i is 7ri, thus the equilibrium probability
that the open exit process is in state i, and hence ir?, is
directly proportional to the product of ri1 and the rate (or
probability density) of exiting from state i. An exiting path
from open state i will consist of an initial sojourn of length
ro in the open states, whence the underlying process {X(t);
t 2 01 enters the closed states and thereafter the first
sojourn of {X(t); t 2 01 of length at least r0 is in the closed
states. (If the first such sojourn was in the open states then
state i in the above would not be an exit state.) Letj be the
closed state that the underlying process {X(t); t 2 01 is in
when entry into the closed states is detected. For i e 0 andj
e C let rij be the rate of exiting from open state i to closed
state j. Similarly define rij for ie C andjeO, set rij =O for i,
j]e 0 and i,je C and let R be the n x n matrix with elements
rij. Then the rate of exiting from state i is 2j', rij and all that
is required to complete the proof of Eq. 6 is to show that R
is given by Eq. 5. For i e 0 and je C, rij may be found by
summing the probability density of all paths that exit from
open state i to closed state j. It is simpler to partition R
into

O Roc
R=

and compute Roc and R,o directly. The details are given in
Ball and Sansom (1988). For an exit from the open to the
closed states, the components comprising the formula (5)
for R correspond to dynamic events as follows. The term
exp (TOQO)Q, corresponds to the initial sojourn of length ro
in the open states followed by transition into the closed
states. The final term exp (rOQO) corresponds to the final
detected sojourn of length r0 in the closed states. The
middle term {I - [Q '{I - exp (rOQO)IQI]2'-l corresponds
to the possible sequence of pairs of undetected sojourns in
the closed and open states. A similar decomposition holds
for an exit from the closed to the open states.
When there is no time interval omission (i.e., T0 = 0) the

above informal proof is similar to one given in Colquhoun
and Hawkes (1977).

Similarly, the equilibrium probabilities irc (i e C) of the
closed entry process (J2k+1; k = 0, 1, . . .) are given by

7rI = 37ri,i (iE C),

where , is another normalising constant. Alternatively, the
equilibrium distribution of the closed entry process can be
derived using the equation

XC
= (P )r70r.

Note that when there is no time interval omission, i.e., r0 =
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0, the above formula for entry process equilibrium proba-
bilities reduce to equivalent results given in Colquhoun and
Hawkes (1977).

Moments

It is important to be able to evaluate the effect of time
interval omission on the observed mean sojourn times,
particularly if they are to be used in evaluating single
channel dose-response curves (see e.g., Kerry et al.,
1987b). Furthermore, first and second moments are
required for calculation of autocorrelation functions. The
moments of observed sojourns in the open and closed states
can be obtained from the Laplace transform 4'(O) in the
usual way (e.g., Mood et al., 1974). Let Mr) (r = 1, 2,...)
be the n x n matrix with elements

,,(r) =(ftrdF1j(t) (i,j = 1,2,..., n).

Then

AS(r) = (-l)(r)4+(r) (0) (r = 1, 2, . .

where 4b(r)(o) is the matrix function obtained by differen-
tiating cI(0) elementwise r times with respect to 0. For r = 1
and 2 we obtain

M(') = U-IRQ-2 - roQ - )Qi exp (ToQo) - VQ1P'I

and

M(2) = U-'{-(2Q-3 - 2roQo2 + ToQo )Q
* exp (ToQo) - 2VQ1M(')

+ [2Q(3) - ToQ(') - 2(Q(3) - TOQ(2 ) exp (ToQo)]QIP I,

where

Q(l) = Qo,Qo-
Q(2) = Q-2QQoQl + Q-QIQ -2

Q(3) = Q-3QIQ-' + Q-2Q1Qi72 + Q-QIQ°3
U = I - Q(')[I - exp (ToQo)]Q1

and

v = (roQ(') _ Q(2) ) exp (roQo) + Q(2).
For i e 0 let ,Ar) be the rth moment of observed sojourns in
the open state with entry state i. Similarly, define A4r) for i e
C, and let (r) = (4A(r) 2) ,..(r (r))T Then by summing over
possible entry states for the succeeding sojourn we have

,A(r) == M(r)| (r = 1, 2, . * .), (7)
where 1 is the n x 1 column vector of ones.

Finally, let ,(r) and ,4r) be the unconditional rth moments
of observed sojourns in the open and closed states, respec-
tively. Then

nO
AO E r) (8)

f-l

and
n

(r)= c7r¢ (r)
i-no+ I

Covariance Functions
Let mo be the number of open gateway states, i.e., open
states from which direct transition into the closed states is
possible, m, the number of closed gatewav states, and m =
min(m., mj). For example:

CI-OC2 m=I1

II
Cl C2\0/ m=1

III
Cl 4 C2

t m=2

Let S1, S2, . . . be the lengths of successive sojourns in the
open states. Thus, in our earlier notation, Sk = T2k-l (k =
1, 2, .. .). Fredkin et al. (1985) showed that when there is
no time interval omission (r0 = 0) and the process is in
equilibrium.

m-i

Cov (Si, Si+k) = E vaWl (k # 0),
j-1

(9)

whereO--aj< 1 (j= 1,2,...,m -1), withasimilar
result holding for the closed sojourns. The aj's in Eq. 9 are
the eigenvalues, that are not zero or one, of the transition
matrix, PJ, of the open entry process when time interval
omission is absent (r0 = 0). Fredkin et al. (1985) showed
that there are at most m - 1 such eigenvalues and indicate
that there will usually be exactly m - 1 such eigenvalues.
For j = 1, 2, . . ., m-1, vj of Eq. 9 is associated with the
component of the spectral decomposition of P' correspond-
ing to the eigenvalue aj. Expressions for v; (j = 1, 2, ....
m - 1) are given in Fredkin et al. (1985). The values of
vj (j = 1, 2, .. ., m - 1) may also be obtained by implicitly
setting To = 0 in the formula after Eq. 15 below.
When m = 1, as in mechanisms I and II above, all the

covariances are zero. Thus by fitting functions of the form
of Eq. 9 to autocovariance functions estimated from exper-
imental records an estimate of the degree of connectivity of
the open and closed states can, at least in principle, be
obtained (Fredkin et al., 1985). However, in deriving Eq. 9,
it is assumed that T0 = 0. It is of crucial importance to
understand the effect of time interval omission on the form
of the autocovariance functions if the latter are to be
reliably interpreted in terms of underlying channel gating
mechanisms. We now provide expressions for the autoco-
variance functions when time interval omission is incorpo-
rated. Their interpretation will be discussed later in the
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paper, and a particular example will be studied in some
detail.

LetM = M(1) be the matrix pertaining to mean observed
sojourns and partition M into

M Mo
M=.

Then, provided the observed process is in equilibrium, Ball
and Sansom (1988) show that

COV (Si, Si+k) = 7rMoP' (Pj)-'k -(lll))2 (k . 0). (10)

Similarly, if we let S;, S'2, . . . be the lengths of successive
observed closed sojourns, so that Sk= T2k (k = 1, 2,.. .) in
our earlier notation, then

CoV (Si, Si+k) = 7rcMcPo(Pj)wklA1 -(,41))2 (k . 0). (11)

Now suppose that the transition matrix PO of the open
entry process is diagonalisable. Let XI, X2, . . ., X0, by the
eigenvalues of PO, with corresponding right eigenvectors b1,
b2, .. , bn.. Let B be the no x no matrix, whose ith column
is b,, and C = B-'. It follows that PO admits the spectral
representation

(12)pJ =
i-1

where

Ei = bici,

c, being the ith row of c.
The matrices El, E2, . . , E0O satisfy

E,Ej=O (i :Aj),

E = Ei,

and

El + E2 + .+ E, = .

Furthermore, one of the eigenvalues, XI say, is unity and
the remainder have modulus strictly less than one (Cox and
Miller, 1965). Also, all the rows of E1 will be 4rT. Moreover,
it can be shown (Ball and Sansom, 1988) that P' has rank
at most m, so at most m of the Xi's will be nonzero. Thus Eq.
12 may be written

m

PI=El +ZXEi, (13)
i-2

where the summation is omitted ifm = 1.
Substituting Eq. 13 into Eq. 10 yields

CoV (Si, Si+k) = 7rMP.O (: Xj Ej)

Ml-(A(1))2 (k : 0). (14)

As noted above, El = 17r'. Hence, Pj El = 17r', since the

rows ofPo each sum to unity. Thus the term corresponding
to El in Eq. 14 reduces to (ir;M01)2, which equals (,go.))2,
using Eqs. 7 and 8. Thus

Cov (Si, Si+k) = 7rMoP ( AJ) MO (15)

which may be expressed in the form of Eq. 9, with aj = Xj, I

and vj =i rOM.P' Ej,+ M.1 (1= 1, 2,. . ., m -1).
Let ro(k) = corr(Si, Si+k) be the autocorrelation func-

tion for successive observations in the open states and
similarly define rc(k) for closed sojourns. Then rF(k) =
CoV (Si, Si,+k)/Var (Si) and it follows from Eq. 15 that
ro(k) may be expressed in the form

m-1

ro(k) = Ej3Fjv (k # 0),
j,-

(16)

where aj = Xj,l and vj = Ar0PEj+j1M0l/(Var (Si)Xj+,)
(j = 1, 2, ..., m - 1). Thus ljl < 1 (j = 1, 2, ..., m -
1).

Similarly, if the transition matrix P' of the closed entry
process is diagonalisable, with eigenvalues g,u = 1, #2, . . .,
A, of which at most m are nonzero, and spectral represen-
tation

m

Pc = F1 + E jiFi,
i-2

(17)

then

COV (Si, Si+k) = 7rcMcPoc (2E l-'Fj) Mcl (k = O), (18)

and thus rc(k) = Cov (Si, S,+k)/Var (S;) may be expressed
in the form

m-i

I'(k) = E vUKjkl (k . 0),
j,-

(19)

where Kj = gj, and vj = 7r,MPj, Fj+,M,1/(Var(S)Xj+,1)
(j = 1,2, ..., m - 1). Thus lKjl < 1 (j = 1, 2,..., m -
1).
Note that representations (16) and (19) for the autocor-

relation functions ro(k) and rc(k) have assumed that the
transition matrices P' and Pj are diagonalisable. When
there is no time interval omission, i.e. ro = 0, Pj and Pj are
necessarily diagonalisable, with real positive eigenvalues
(Fredkin et al., 1985). When time interval omission is
incorporated it no longer seems straightforward to show
that Pj and PJ are diagonalisable with positive real eigen-
values. However, in all of our numerical studies these
matrices have been diagonalisable with positive real eigen-
values, and we strongly conjecture that this will generally
be the case.

COMPUTATIONAL CONSIDERATIONS

Numerical calculation of the formula of the previous
section is straightforward to implement on a computer. We
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now outline the salient points in performing such a numer-
ical study. Our starting point is the infinitesimal transition
matrix Q of the underlying process {X(t); t 2 01. Firstly, we
calculate the equilibrium distribution ir of the underlying
process {X(t); t > 01, using the detailed balance conditions
(1) as follows. Set ir1 = 1, calculate iri (i = 2, 3, ..., n)
from Eq. 1 and then normalize the resulting iri's so that
they sum to unity. Now form the n x n diagonal matrix W
with elements wii = iri (i = 1, 2, . . . , n). It follows from the
detailed balance conditions (1) that the matrices

= W1/2Qo W-112 (20)

and

= W112Q1 W-1/2 (21)

are symmetric and hence diagonalisable (see Fredkin et al.,
1985).
Note that

co

exp (ToQo) = E TdQo/k!
k-O

W1 (E kQk/k!)W 1/2
k-O

= w112exp (TrQo)W'-129

and

exp (roQo) = exp (ToQo) W'2. (22)

Further, using Eqs. 20 and 21, it is straightforward to show
that many of the formula of the previous section can be
expressed in a similar form to Eq. 22; e.g.,

pJ = W-1w/2 Io - QAlQI
[I-exp (roQo)]QI Q1 exp (roQ0) W12.

The advantage of doing calculations in terms of Q0 and Ql
is that many of the matrices encountered are symmetric,
permitting accurate and efficient calculations of eigen-
values, eigenvectors and inverses.

There are many ways of calculating exp (rOQo), (Moler
and Van Loan, 1978). The simplest for our purposes is to
use the spectral representation of Qo. Specifically let yI, 72,
. . . , y, be the (strictly negative real) eigenvalues of Qo with
a corresponding set of orthonormal right eigenvectors xl,
x2,... , xn. Let HI, H2, . .. , Hn be n x n matrices defined
by

Hi = xixi' (i =1, 2, * ,n)-

Then
_n

Qo = Z y1Hi
i-i,

and the matrices HI, H2,... , Hn satisfy

Hi if i=j
Hij

0 if i :6j,

and

Hi + H2 + ...+ H, = I.

It then follows from the definition of exp (TOQO) that
n

exp (roQo) = exp ('yT0)Hi.
i-i1

All the formula of the previous section are now straightfor-
ward to compute. The autocovariance functions can be
computed directly from Eqs. 10 and 1 1. However, it is also
worthwhile diagonalising the matrices PO and P', and
using Eqs. 13 and 17 to express the autocorrelation func-
tions in the forms Eqs. 16 and 19, thus allowing compari-
son with the case of no time interval omission, ro = 0. In
doing this one should bear in mind that currently there is
no theoretical proof that PO and P' are diagonalisable, nor
that their eigenvalues and eigenvectors are real.

APPLICATIONS

Interpreting Autocorrelation Functions

As we have already noted, when no time interval omission
is present a lower bound for m = min (mo, mc) can, in
principle, be obtained by fitting expressions of the form of
Eqs. 16 and 19 to estimated autocorrelation functions for
observed open and closed sojourns. A lower bound on m is
an important constraint when considering possible gating
mechanisms to explain observed channel kinetics. A natu-
ral question to ask is can a similar inference be made when
time interval omission is present? Clearly, if not then
analysis of observed autocorrelation functions would be of
limited value. We have shown that, provided the transition
matrices PO and P' are diagonalisable with positive real
eigenvalues, then expressions of the form of Eqs. 16 and 19
still hold when time interval omission is incorporated,
though the correlations themselves may be different, and
thus inferences of the above type can still be made. So, even
in the presence of time interval omission, a lower bound on
m may be obtained.
The problem of fitting expressions of the form (16) to

estimated autocorrelation functions is briefly considered
later.

Time Interval Omission and Zero
Correlations

A second question of considerable importance is whether
time interval omission may give rise to nonzero correlations
which otherwise would not be present. For example, the
mechanism shown below

O 0 C C C

1 2 3 4 5

has m = 1, so when there is no time interval omission
successive open sojourns will have zero correlation, indeed
they are independent. Will this still be the case when time
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interval omission is introduced, i.e., To > 0? Firstly note
that since rank (Ps) s m , we must have rank (Pt) = 1. We
show in the appendix that P' also admits the spectral
representation (13), with m = 1, so it follows that succes-
sive observed open sojourns are uncorrelated. Alternatively
we may argue as follows. For the above linear scheme each
detected open sojourn must have commenced with a transi-
tion from state 3 to state 2 so, since the underlying process
{X(t); t > 01 is Markov, successive observed open sojourns
are independent and hence uncorrelated. Similar argu-
ments hold for closed sojourns.
We have demonstrated this using simulations for the

above mechanism. The results (Fig. 3) clearly indicate that
no autocorrelation is seen, either in the presence (ro = 0.2
ms) or absence (X0 = 0.0 ms) of time interval omission.
More generally, in the absence of time interval omission,

zero correlations for open sojourns will occur if either P0
has rank 1 or the parameters of the underlying process are
such that

m-i
uv,Ul = 0 for all k . 0.

j-1

We concentrate here on the former case, indeed it is far
from clear that the latter is possible unless Pj has rank 1.
Write Pj and Pj as Pj(ro) and Pj(7ro) to show their
dependence on ro. We show in the appendix that PJ(O) has
rank 1 if and only if PJ(O) has rank 1. Moreover, we show
further that either of these conditions imply that, for all
rO > 0, the matrices Pj(ro) and Pj(ro) both have rank 1 and
admit appropriate spectral representations. It follows that
both observed open and closed sojourns will still have zero
correlations. Thus in this quite general setting the presence
of time interval omission will not give rise to spurious
correlations, provided of course that the underlying Mar-
kov model is correct.

FIGURE 3
anism:

0.2 open tlme acfs

0. 1

o° 0.00+**e.*4*.eC *e,.e

-0. 1

-0.2
0 5 10 15 20 25

0.2

0.

L_. 0.0

-0. 1

-0.2

closed time acfs

I4m4**e.4e4§*ffff*. +

0 5 10 15 20 25

k

Sample autocorrelation functions for the linear gating mech-

0 0 C C C

1 2 3 4 5

for which the transition matrix was

-0.1 0.1 0 0 0

10 -20 10 0 0

Q= 0 1,000 -2,000 1,000 0

0 0 1,000 -2,000 1,000

0 0 0 1,000 -1,000

where the units are s-'. The autocorrelations are derived from simulations
of 106 channel openings, both without (ro - 0.0 ms; +) and with (To - 0.2
ms; x) time interval omission. In both cases, a null autocorrelation
function is seen.

An Allosteric Model for Channel Gating
Several studies (Karlin, 1967; Colquhoun and Hawkes,
1977) have suggested the use of allosteric models for
channel gating mechanisms. The following mechanism,
with four agonist binding sites, has proved useful in
understanding the gating kinetics of the locust muscle
glutamate receptor-channel (Kerry et al., 1987a, b):-

4k' a 3k',,a

where An represents n molecules of agonist bound to the
receptor channel, C the channel being closed, and 0 the
channel being open. The transition rates for the underlying
continuous time Markov chain are also shown, where a is
the agonist concentration.

Current estimates of the parameters of the above model,

2k ,,a k' a

C ' CA, ', CA2 IN v CA3 I , CA4

1 onk./k* 1 2kcn/k* 1 3kon/k* 1 4kc,/k 1

hl/L hi h2/aL h2 h3/a2L h3 h4/a3L h4 h5/a 5L h5

4kon.3Oi konAL 2kon3 | kona1A
O1v OA,s OA2 I OA3 I OA4

k' /k*a 2kon/k*a 3kon/k*a 4kn/k*a
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together with their appropriate units, are as follows:
kcn= 10 ms- M-' kn = 1 ms' M-' k* = 2,000 M-
L = 6 x 10-4 a=10 hl,= 10-2 Ms-

h2 = 1.5 x 10-2 ms-' h2 = 2.6 x 10-2 Ms-'

h4 = 6.7 x 10- ms-' h5 = 1.7 x 10- ms-'.

These estimates are based on those in Kerry et al. (1987b)
and form a working hypothesis which explains some of the
observed kinetics of the glutamate receptor-channel. More
systematic methods of parameter estimation are currently
under investigation.

Details of Calculations for a = 10-4M and
ro= 0.2 ms

We will examine in some detail the situation where a =
10-4 M and rO = 0.2 ms. This corresponds to the experi-
mental work of Kerry et al. (1987a).
We label 1, 2, 3, 4, 5 the open states 0, OA, OA2, OA3,

OA4, and 6, 7, 8, 9, 10 the closed states C, CA, CA2, CA3,
CA4. For the above cyclic model the equilibrium distribu-
tion 7r is given by

4\
(ak*as)f-c i =1, 2,.. 5

w= (i4 \=12
(ak*)i-6c/L i = 6,7, 10

where c = [(1 + ak*a)4 + (1 + ak*)4/L]-' (Ball and
Sansom, 1987). For the above parameter values we find

,xl = 0.0003 'K2 = 0.0023 7r3 = 0.0068 7r4 = 0.0090

7r5 = 0.0045 7r6 = 0.4712 r7 = 0.3770

8 = 0.1131 79= 0.0151 lro= 0.0008.

Note that the channel is predominantly closed with few, if
any, molecules of agonist bound to it. The equilibrium
probability of the channel being open is therefore 0.0229.
The transition matrix of the embedded Markov chain

IJ,; n = O, 1, . . .is

pJ =

from which the transition matrix of the open entry process
is found to be

0.1140 0.7158 0.1573

0.0352 0.7791 0.1717

P= 10.0099 0.2189 0.7122
0.0003 0.0066 0.0218

0.0000 0.0007 0.0023

0.0128 0.0000

0.0140 0.0000

0.0589 0.00011.
0.9694 0.0019

0.1127 0.8843

The diagonal elements of P' are generally quite large,
except for the first one, which corresponds to no molecules
of agonist being bound to the channel. An explanation for
this small value can be obtained from the matrix P'. The
probability of the entry process going from state 1 to state 6
is very close to one, however that for going from state 6 to
state 1 is quite small. This is because an entry state is by
definition the state that the underlying process is in when a
sojourn is detected and the underlying process has a high
transition rate out of state 1, as suggested by the low value
of 7r1. When there is no time interval omission the diagonal
elements of P' are 0.7634, 0.7217, 0.7106, 0.9778, and
0.8886. The element corresponding to state 1 is no longer
small since when there is no time interval omission an entry
state is the state the corresponding sojourn commenced in.
The equilibrium distribution of the open entry process

iS

el = 0.0123(0.2002)

02= 0.2508(0.2402)
7r = 0.1966(0.1249)

r4= 0.53 12(0.4292)

r5= 0.0090(0.0054),

where the figures in brackets are the corresponding values
when there is no time interval omission (r0 = 0). Note that
the principle difference between the two distributions is in
the value of irl, an explanation for which follows similar
lines to that given above.

0.0000 0.0000 0.0000 0.0000 0.0000 0.9992 0.0008 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.9983 0.0007 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0022 0.9969 0.0009 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0034 0.9963 0.0003

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0112 0.9887

0.1141 0.7158 0.1573 0.0128 0.0000 0.0000 0.0000 0.0000 0.0000 0.00001I
0.0351 0.7796 0.1713 0.0140 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0098 0.2179 0.7140 0.0582 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

0.0003

0.0000

0.0059 0.0194 0.9727 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000

0.0006 0.0021 0.1029 0.8943 0.0000 0.0000 0.0000 0.0000 0.0000
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The matrix M0 pertaining to
sojourns is

0.2601 0.0002 0.0000

0.0006 0.6004 0.0007

m, = 0.0000 0.0057 2.5108

0.0000 0.0000 0.0045

0.0000 0.0000 0.0012

mean observed open

0.0000 0.0000

0.0000 0.0000

0.0027 0.0000

1.2329 0.0042

0.4178 36.0399

Summing the rows of M., we find that the mean observed
open sojourns, given the open entry state, in units of ms,
are

,A'I = 0.2603 A'2 = 0.6017 -"'= 2.5192
p41) = 1.2416 ,A'5 = 36.4589.

Taking expectations of the above values with respect to the
open entry equilibrium distribution ir0, we find that the
unconditional mean observed open sojourn is 1.6385 ms.
The corresponding variance is found by similar arguments
to be 25.1827 mis2. The corresponding figures in the
absence of time interval omission are 0.9729 ms and
14.6259 ms2.
The transition matrices P' and P' of the open and closed

entry processes are diagonalisable with positive real eigen-
values. For cyclic models P' and P' necessarily have the
same set of eigenvalues, indeed we conjecture that this will
be generally true. As they are also both diagonalisable it
follows that a, = Ki (i = 1, 2,.. ., 5) in Eqs. 16 and 19, and
thus the autocorrelation functions rJ7(k) and rc(k) depend
on the same set of geometrically decaying components. The
parameters of ro(k) and rc(k), when given by Eqs. 16 and
19, are shown below.

Ui (Ki Pi Vi

1 0.9413 0.0107 0.1737

2 0.8816 0.4416 0.0013

intended to mirror the approach adopted to the experimen-
tal data by Kerry et al. (1987a, b). The autocorrelation
functions for the simulated data were fitted for k values of
1 to 25, using a standard optimization procedure. The
closed time autocorrelation function is adequately
described by two components, with parameters v, = 0.176,
KI = 0.941, v2 = 0.114, and K2 = 0.414. The open time
autocorrelation function is described by a single compo-
nent, vP = 0.450, and al = 0.881. Comparison with the
results of the previous section reveals that these estimates
correspond quite closely with the dominant terms in the
calculated autocorrelation functions. It would therefore
seem that it is reasonable to fit such functions to experi-
mentally derived autocorrelations in an attempt to arrive at
a lower bound for m. For example, on the basis of the case
just discussed, one would conclude that m 2 3.

Effect of Varying the Minimum Detectable
Sojourn and the Agonist Concentration

Autocorrelation functions for different values of r0, with
a = 10-4 M, are shown in Fig. 5. In this particular case
there is little effect of varying TO on the open time
autocorrelation function. The effect on the closed time
autocorrelation function is more pronounced. The overall
effect of increasing the minimum detectable sojourn is to
decrease the autocorrelation. Calculations over a range of
a values suggest that this is generally the case. This

open time acfs

0.5

0.4

0.3

L2 0.2

0.

0
0 5 10 15 20 25

closed time acfs

0.5

0.4

^ 0.3

Li 0.2

0. 1

0

3 0.5581 0.0172 0.0613

4 0.0781 0.0000 0.1904

Comparison Between Calculations and
Simulations

The results of the calculations discussed in the preceding
section are presented alongside the results of simulation
studies in Fig. 4. The autocorrelations are derived from
simulated datasets of 3 x 106 observed channel openings.
The agreement between the two approaches can be seen to
be very good. This holds for a variety of To and a values (see
below).
We have used the simulated data to tentatively explore

the problem of fitting sums of geometrically decaying
functions to observed autocorrelation functions. This is

L.c
-S

-1

-2

-3

-4

c
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k

0 5 10 15
k

20 25

0

- 1

-2

-3
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FIGURE 4 Comparison of the calculated autocorrelation functions
(solid lines) with those derived from simulated data (points). The
simulations were carried out for the allosteric gating mechanism
described in the text, employing an agonist concentration a = 10-4M.
Each simulation was of 3 x 106 observed channel openings. In each graph
the upper line corresponds to ro = 0.0 ms (i.e., no time interval omission)
and the lower line to T0 = 0.2 ms. The lower two graphs are constructed
using log-linear scales.
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FIGURE 5 Autocorrelation functions for increasing values of ro. The
graphs are comparable with those in Fig. 4. In each case the four lines (in
descending order) correspond to r0 = 0.0, 0.05, 0.10, and 0.20 ms. The
simulations were carried out as described for Fig. 4.

reinforces our earlier statement that time interval omission
does not generate spurious correlations.
We have also examined the behavior of the autocorrela-

tion functions for the model presented above over a range

of agonist concentrations. Positive correlations are seen for
all four values of a -10- M, 10-4 M, 10-3M, and lo-2M
- with the same general effect of increasing the minimum
detectable sojour as was discussed above. Using an upper

value of k of 25, and a value of r0 = 0.2 ms, the simulated
autocorrelation functions have been fitted with sums of
geometrically decaying functions, again to obtain "experi-
mental" estimates of the lower bound of m. As one might
expect, different lower bounds to m are obtained for
different agonist concentrations: a = 10-5 M; m = 4; a =

10-4M;m= 3;a= 10-3M;m=4;anda= 10-2M,m= 2.
Thus one can see that, for such a mechanism, it is
worthwhile to explore the channel kinetics over as wide a

range of agonist concentrations as possible in order to
obtain a good estimate of the lower bound on m. It is
encouraging that a lower bound of 4 is obtained for an m =

5 model, given that correlations were only fitted out to k =

25.

DISCUSSION

The main objectives of the paper were twofold. First, to
describe a method for calculating theoretical observed
sojourn time autocorrelation functions in the presence of
time interval omission. Second, to determine whether or

not the presence of time interval omission invalidates
inferences, concerning the degree of connectivity of the

channel gating mechanism, made from the form of such
autocorrelation functions.

Considering the first of the above two objectives, the
method that we have described provides a general mathe-
matical framework, that is amenable to numerical imple-
mentation, for analyzing both the dynamic and equilib-
rium aspects of single channel kinetics incorporating time
interval omission. For example, Ball and Sansom (1987)
used this framework to examine the effect of time interval
omission on the temporal clustering of observed channel
openings. Roux and Sauve (1985) have provided a method
of determining the pdf of observed open (closed) sojourn
times, incorporating time interval omission. Before discuss-
ing the connection between their results and ours, it is
convenient to consider more fully the form of time interval
omission that we have used.
We have assumed that transfer into say the open states

is detected after there has been a sojourn of length r0 in the
open states. An alternative assumption is that transfer is
detected immediately, with the provision that only sojourns
of length at least To are detected. An analogous framework
to ours can be constructed if the above alternative assump-
tion is appropriate. The only difference is that Jk now
corresponds to the state that the channel is in at the start of
the (k + 1)st detected sojourn, rather than after a time
lapse of r0. Corresponding expressions for 4b(O) can be
derived but they tend to be slightly more complicated than
before. The unconditional moments and autocorrelation
functions will be the same for the two forms of time
interval omission. However, this would not be the case if To
was different for open and closed sojourns, though the
differences can easily be determined by elementary meth-
ods. When To = 0 the two forms of time interval omission
obviously become identical. The resulting embedded pro-
cess I(Jk, Tk); k = 0, 1, . . 1 provides an illuminating way of
analyzing model channel gating kinetics when time inter-
val omission is absent. Initially, our form for time interval
omission was chosen for mathematical convenience. How-
ever, it also corresponds closely to what happens in the
physical situation. For example, Colquhoun and Sigworth
(1983) have suggested that a consistent minimum sojourn
time (ro) be imposed on the idealized data after the latter
has been derived from the experimental record.
Roux and Sauve (1985) derived a complex integral

expression for the unconditional pdf of observed open
(closed) sojourn times incorporating time interval omis-
sion. We can derive a similar expression from our results as
follows. Let fo(t) (t > 0) be the pdf of observed open
sojourn times, with Laplace transform

0.0) = fI exp(-0t)f0(t) dt (0 2 0).

Then it is readily shown that

no n

om) = w'40iij(0) (0 > 0).
i-I j-no+1

(23)
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Setting 0 = - iu in Eqs. 23 and 3 we obtain the characteris-
tic function of observed open sojourn times (Fourier trans-
form off0(t)). Application of the Fourier inversion theorem
(see, e.g., Grimmett and Stirzaker, 1982) yields

fS(t) =
I
- exp (iut)qO5(iu) du (t > 0), (24)

and similarly for closed sojourns.
The Eq. 24, after substitution from Eqs. 23 and 3, differs

from the equivalent formula in Roux and Sauve (1985),
owing to the equilibrium behavior of the observed process
being modeled differently. Roux and Sauve (1985) do not
explicitly model the observed dynamic process, but rather
consider an observed sojourn in isolation. For example,
they assume that an observed open sojourn is immediately
preceded by an actual closed sojourn of length at least To
and condition on the equilibrium behavior of the initial
state of such a closed sojourn. However, their assumption is
not precisely correct, since observed open sojourns can be
preceded by actual closed sojourns of length <r0, for
example, the final observed open sojourn in Fig. 1. Thus
Roux and Sauve's results differ from ours, but in most
practical situations the difference is likely to be very
small.

In practice, numerical methods will be required to invert
the matrix Laplace transform 4)(0) to obtain the matrix
function F(t). This can in principle be achieved by use of a
fast Fourier transform, but convergence problems may
arise. Further research is required to find a numerical
method of inverting 4X(O), that is computationally feasible
for a wide class of models (Roux and Sauve, 1985; Ball and
Sansom, 1988). The lack of a closed form expression for
F(t) is no great hinderance from a mathematical view-
point, since knowing 4(0) for all 0 2 0 is formally
equivalent to knowing F(t) for all t > 0. Also, as we have
seen, several important properties of observed channel
kinetics, such as moments and autocorrelation functions,
can be derived directly from 4(O). However, an efficient
numerical inversion of 4(O) would undoubtedly be useful.
It would enable us to display model pdf's of observed
sojourn times. More importantly, it would also enable a
closer examination of the effects of time interval omission
on current methods for determining the numbers of open
and closed states from the forms of such sojourns time
pdf's.
We turn now to the analysis of sojourn time autocorrela-

tion functions in the presence of time interval omission. We
have shown that, provided the entry process transition
matrices, P' and P', are diagonalisable with positive real
eigenvalues, the autocorrelation functions, PO(k) and rc(k),
are still each made up of cm - 1 geometrically decaying
terms when time interval omission is incorporated. Thus
inferences made in the absence of time interval omission
will still be valid. We reiterate that, as yet, we are unable to
provide a proof that the matrices Pj and Pj necessarily
possess the above mentioned properties, though they have

in all of our numerical studies. If, as seems unlikely, for a
particular model the matrices P' or P' do not possess the
above properties then it is also unlikely that the autocorre-
lation functions 170(k) and F,(k) may be expressed as
weighted sums of geometrically decaying terms. Thus, if
estimated autocorrelation functions from observed single
channel kinetics are well approximated by weighted sums
of geometrically decaying terms, then it suggests that the
matrices P' and P' do indeed possess the required proper-
ties, so appropriate inferences will be made.

Further research is required into methods of estimating
the number of geometrically decaying components, m' say,
from observed autocorrelation functions. It is perhaps
worth noting that, in our preliminary investigation using
simulated data described earlier, m' was always underesti-
mated. This is not too serious since, in any case, m' is a
lower bound for m. This would not be the case if m' was
being overestimated, as that might lead to more compli-
cated models than necessary being used.

Finally, we re-emphasize that we have shown theoreti-
cally that successive observed sojourns are necessarily
uncorrelated if m = 1, even in the presence of time interval
omission. Thus, in the situation when a model with m = 1 is
hypothesized, experimentally observed nonzero correla-
tions are indicative of the model being too simple. They are
not an artifact of time interval omission, and hence one
may interpret the results of autocorrelation analysis with
some degree of confidence.

APPENDIX

In the appendix we show that if in the absence of time
interval omission the lengths of successive observed open
sojourns are uncorrelated, owing to the transition matrix
P'(O) having rank one, then they remain uncorrelated
when time interval omission is incorporated. We shall
require the following lemma.
Lemma: Let A be an m x n matrix. Then rank (AAT) =

1 implies rank (A) = 1.
Proof: The result is trivial if A = 0 so suppose that A #

0. Let (xI, x2,.. . , xJ) and (yI, Y2, . . , yn) be the first two
rows of A. We can assume without loss of generality that
Jn I xi2 = 0. The top left 2 x 2 submatrix of AA' is

n n

i-lI-

n n .
E7 xiyi E yl2
i-I i-

The above matrix has zero determinant, since rank
(AA') = 1, so

n nd n f

It follows from the condition for equality in Cauchy's
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inequality that there exists a real number, 0 say, such that

yi = Ox, (i = 1, 2,. . , n).

Thus the second row of A is a multiple of the first row. A
similar argument shows that all the rows of A are a
multiple of the first row, so A has rank one as required.

It follows from Eq. 4 and the definition of PJ(ro) that

Po(ro) = [Qoo - QocQc' {I - exp(,roQc)1Qol 'Qoc exp (roQcc)
*[Qcc - QcoQo' {I - exp(ToQoo)Qoc 'QcOO exp(roQoo). (Al)

Setting ro = 0 in Eq. Al we obtain

Po(0) = Qoo QocQcc Qco

A standard result from linear algebra states that if A is a
nonsingular square matrix then

rank (AB) = rank (BA) = rank (B), (A2)

provided the products are defined.
Partition the diagonal matrix Wof equilibrium probabil-

ities for the underlying process {X(t); t 2 0} into

o 0c

Then, by repeated application of Eq. A2, it follows that

rank [P'(0)] = rank (Q-'QocQ-'Q.)
= rank (QocQc'Qoo)
= rank (W1'2Q.WJ12 WWC2Q-1 wc 1/2

*Wc/2QoWo- 1/2)
= rank (WV/2Q.WC- 1/2WC/2(-Q- ')

*W-1/2WY/2Q 1W-/2) (A3)

It follows from Eq. 20 that Wl12(_-QCI)W-112 is symmet-
ric and hence can be written in the form

WC/2(_Q-Qc)Wl/2 =- HDH',

where H is orthogonal and D is a diagonal matrix contain-
ing the eigenvalues of -Q -', which are all strictly positive
(Ball and Sansom, 1988). Thus W'/2(-Q4c') WC 1/2 may be
written as

WC/l2(_-Qc) Wc1/2 = HDI121 D /2Hr'

rank [P'(0)] = rank (AAT),

where

A = WO12QOCWC 112HD12H'.

Thus, by the Lemma, rank [P'(O)] = 1 implies rank (A) =
1 and repeated application of Eq. (A2) yields

rank [P'(O)] = 1 rank (Qoc) = 1.

Now from Eq. A4

Qoc = wOIQcOWc

so, using Eq. A2,

rank (Qoc) = rank (Qco)
= rank (Qco)

Another result from linear algebra states that

rank (AB) C min [rank (A), rank (B)].

Repeated application of this to Eq. Al yields

rank [PJ(To)] C min [rank (Qoc), rank (Qo)].
Thus

rank [P'(0)] = 1 -- rank [P(rTo)] = 1 for all ro > 0,

since the rank of any matrix must be at least one.
It is straightforward to deduce from Eq. Al that

PR(O) = Qcc'QcoQoo'Qoc,

and a similar argument to the above shows that rank
[P'(0)] = 1 if and only if rank [P'(0)] = 1.
Now suppose that rank [P(0)] = 1 and ro > 0. Clearly

each element of P'(r0) will be strictly positive so, since the
rows of P'(r0) are proportional to each other and each sum
to unity, they must be identical and necessarily equal to the
equilibrium distribution 7rr of the open entry process. It
follows that PJ(rO) admits the spectral representation (9),
with m = 1, so successive observed open sojourns are
uncorrelated. A similar argument holds for closed sojurns,
and also for the case ro = 0 provided we restrict attention to
gateway states.

so GLOSSARY

rank [P'(0)] = rank (WV/2QOCWC '12HD'12

* H'HD'/2H7W'W2Q W-W12).

Now it follows from Eq. 21 that

w'/22Q0cWC 1/2 = (W, /2QJW- 1/2)y (A4)

n number of states in the continuous time Markov
chain, {X(t); t > 01, describing single channel
gating kinetics

no number of open states
nc number of closed states
Q infinitesimal transition rate matrix for underlying
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continuous time Markov chain, {X(t); t > 01. Q is
partitioned into

[Q: Q.]

Q [Q ;°$
[QOQ T]

7r equilibrium distribution of {X(t); t 2 01
ro minimum detectable sojourn
Pi transition matrix of embedded Markov chain {Jk;

k = 0,1, ...Jk= state{X(t); t >O 01 is in when the
kth sojourn is detected.

P' transition matrix of open entry process, {J2k; k = 0,

Pj transition matrix of closed entry process, IJ2k+l; k =
09 1,)... I

ir0 equilibrium distribution of open entry process
7rc equilibrium distribution of closed entry process

M(r) matrix pertaining to rth moments of observed
sojourns

(r) (r) = trans-(r
I. ,° (IU4) ,4r n. (r))T where T denotes trans-

pose. For i = 1, 2, . .. , no, ,ur) is the rth moment of
observed open sojourns with entry state i. For i =
no + 1, no + 2,.. .,n,,ur) is the rth moment of
observed closed sojourns with entry state i.

0A(r) unconditional rth moment of observed open
sojourns

,A(r) unconditional rth moment of observed closed
sojourns

mO number of open gateway states
mc number of closed gateway states
m mintmo, mCI

ro(k) autocorrelation function for observed open sojourns
Fc(k) autocorrelation function for observed closed

sojourns

Our thanks to Professor P. N. R. Usherwood for his interest in this work,
and for stimulating discussions concerning the gating mechanism of the
glutamate receptor.
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