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ABSTRACT The intracellular and interstitial potentials associated with each cell or fiber in multicellular preparations
carrying a uniformly propagating wave are important for characterizing the electrophysiological behavior of the
preparation and in particular, for evaluating the source contributed by each fiber. The aforementioned potentials
depend on a number of factors including the conductivities characterizing the intracellular, interstitial, and
extracellular domains, the thickness of the tissue, and the distance (depth) of the field point from the surface of the
tissue. A model study is presented describing the extracellular and interstitial potential distribution and current flow in a
cylindrical bundle of cardiac muscle arising from a planar wavefront. For simplicity, the bundle is considered as a
bidomain. Using typical values of conductivity, the results show that the intracellular and interstitial potential of fibers
near the center of a very large bundle (>10 mm) may be approximated by the potentials of a single fiber surrounded by
a limited extracellular space (a fiber in oil), hence justifying a core-conductor model. For smaller bundles, the peak
interstitial potential is less than that predicted by the core-conductor model but still large enough to affect the overall
source strength. The magnitude of the source strength is greatest for fibers lying near the center of the bundle and

diminishes sharply for fibers within 50 um of the surface.

INTRODUCTION

The electric field arising from activity in a bundle of fibers
(either skeletal or cardiac muscle or even nerve) has often
been described using the elementary model of a single
isolated fiber (1-5). Typically in these descriptions, the
transmembrane current is viewed as a source for the
extracellular fields. The assumption that the behavior of a
single fiber in isolation is the same as when associated with
a large number of fibers in a closely packed array is,
however, not correct. This paper presents the results of a
model study of the extracellular fields arising from excita-
tion of a multicellular preparation of cardiac muscle.

A bundle of cardiac muscle comprises tightly packed
cells that are extensively coupled both longitudinally and
laterally. Each cell is surrounded by an envelope of extra-
cellular fluid (6). Deep within the preparation, the effec-
tive axial interstitial resistance is significant and will affect
the electrical source strength associated with the cellular
activity. The structure also helps to constrain both the
intracellular and interstitial current to flow axially.

Here we describe the formulation and evaluation of the
potential distribution and current flow in a cylindrical
bundle of cardiac tissue surrounded by an extensive volume
conductor. For simplicity, the bundle is described as a
cylindrical bidomain, a model originally developed by Roth
and Wikswo (7) to aid in interpreting magnetic field
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measurements of cardiac muscle. In a related study to ours,
Plonsey and Barr (8) used the bidomain approximation to
examine the interstitial potential in a less realistic geome-
try of a semi-infinite block.

CYLINDRICAL BUNDLE MODEL

Bidomain Approximation

The bidomain model (9) is a macroscopic representation of
cardiac tissue that considers the structure to consist of two
continuous domains, intracellular and interstitial, superim-
posed in space and separated by a membrane distributed
throughout the volume. Consistent with a continuum
description, the effect of the discrete cellular nature on
propagation is ignored. The results from Henriquez and
Plonsey (10) and Rudy and Quan (11) support this
approximation since it is shown that the influence of the
intercellular junctions (apart from the contribution of the
junctional resistance to the total intracellular resistance)
on waveshape and velocity is small for normal myocar-
dium. The two domains are linked through the transmem-
brane current; the outflow from one region must equal the
inflow to the other. At any point the transmembrane
potential, V,, is the difference between the intracellular
and interstitial potentials. The parameters characterizing
each continuous domain are averaged values over a volume
of many cells. Because of the geometry of the interconnec-
tions and the structure of the cells, both the intracellular
and interstitial bidomain conductivities are anisotropic.
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Geometry

We consider a cylindrical bundle of cardiac tissue, infinite
in extent and with a radius a (Fig. 1), surrounded by an
unbounded, isotropic volume conductor. Because of this
geometry, we use a cylindrical coordinate system p, z, 6.
The activation wavefront is assumed to be planar and
propagating with uniform velocity.

The assumption that V,, is constant throughout any
cross-section is the same as that used by Roth and Wikswo
(7) and Plonsey and Barr (8). We have adopted this
assumption since it leads to a mathematical simplification.
Due to the cylindrical symmetry, the potentials and cur-
rents are independent of 0. As in Plonsey and Barr (8), the
extracellular potential is denoted by &, the interstitial
potential by ®., and the intracellular potential by ¥;.

Conductivities

We assume that the individual fibers are parallel to the
axis of the cylindrical bidomain and that the intracellular
conductivity, o;, is greater in the axial, z, direction than in
the radial, p, direction (i.e., g, > 0;,; for skeletal muscle or
nerve, g;, = 0). In addition, because of the physical struc-
ture we assumed that the interstitial conductivity, o, is
greater in the axial direction (ie., o., > 0.,). Using data
from Clerc (12) and assuming 80% of the total tissue
volume is intracellular, the axial and radial conductivities
expressed in bidomain format are given below:

& = 0ufi - 1.94 x 10-'S/m
8= 00 fo =417 x107'S/m (1)

To |‘JIP 19ep

9iz19ez

FIGURE 1 Schematic representation of the geometry of the cylindrical
bidomain of a bundle of cardiac fibers surrounded by an extensive volume
conductor of conductivity a,. The intracellular domain is denoted by the
subscript i, the interstitial domain (extracellular space within the tissue)
is denoted by the subscript e, the extracellular domain is denoted by the
subscript 0. Due to the cylindrical symmetry, the potentials and currents
are functions of only p and z. The fiber is assumed to have infinite length
and a radius, a. The interstitial and intracellular conductivity values are
scaled into bidomain conductivities (g’s) to reflect the fact that each
domain is assumed to occupy the entire volume of the bundle. The actual
bundle (which the bidomain model approximates) is assumed to be
composed of multiple and similar fibers lying parallel to the axis of the
cylinder. A cross-section of the bundle, revealing the latter structure, is
shown in the inset.
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g, =0, fi =221 x1072S/m
8o = 0o fe =157 x 107'S/m, (2)

where f; and £, are the fractions of the total cross-sectional
area occupied by the intracellular and interstitial domains,
respectively. The introduction of f; and £, is necessary since
both the intracellular and interstitial domains are defined
to occupy the total tissue volumes.! The extracellular
medium is assumed to have a conductivity o, = 2.0 S/m,
similar to that of Tyrode’s solution. The values of conduc-
tivity were chosen to be consistent with those used by
Plonsey and Barr, to more easily compare results.

Interstitial and Extracellular Potentials

The extracellular potential &, satisfies Laplace’s equation.
v, =0, 3)

and will be described in a cylindrical coordinate system (p,
z, 0), while the interstitial potential &, satisfies Poisson’s
equation (8)

8iz

vZ
8iz + 8z

v, = — Vo 4)

in the transformed cylindrical coordinate system (R, Z, 6)
where

R=gqp )
Z=z (6)
and
, 12
‘- (“_g«) _ o
8ip + &ep

The classical solution for Eq. 3 is
&, = f * A(k)Ko(klo)e ™ dk (8)

for p > a, where a is the radius of the cylinder, and K is the
modified Bessel function of the second kind and zero order
(arising from axial symmetry).

The solution of Eq. 4 is a sum of the general solution of
the Laplace’s equation, v’®, = 0, and the particular
solution of Eq. 4:

— ® —Jjkz _ 8iz
o= [ T BRI(KRM dk — 2 Vo2 )
for p < a (inside the cylinder). Here [, is the modified
Bessel functions of zero order and first kind.

Applying the boundary conditions of continuity of

'The effective area for current flow in the transverse intracellular vs.
transverse interstitial regions is difficult to estimate and we have simply
taken this to be given by f; : f., the same as for longitudinal flow where the
aforementioned ratio corresponds to the relative cross-sectional areas.
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potential,
Qe([\” Z) = <bo(pv Z) (10)
and continuity of the radial current

o 0% _ 3%
8ip ap 8ep ap =0, ap

1)

at any point on the surface of the tissue (p = a), the
coefficients A(k) and B(k) can be found. As noted by Roth
and Wikswo (7), the boundary condition given in Eq. 11
differs from that given by Tung (9) and used by Plonsey
and Barr (8), namely,

9. 9%,

—=0,—. 12
8eo o O, o (12)

The two are compatible only if the contribution of the
radial component of the intracellular current density to the
total extracellular current density is negligible at the
surface. Rewriting Eq. 11 in terms of &,

A

%, a9,
% + (8p + 8p) T— = 00— (13)

8o ap o ap

reveals that the actual difference between the conditions
stated in Eqs. 11 and 12 is small provided that dV,,/dp is
zero (as is the case here) and g;, <« g, (typically true for
cardiac muscle).

Using the more exact boundary conditions, Egs. 10 and
11, the solutions for &, and &, have the following forms:?
8iz

®o(p, 2) = 7 F [Vl H(K)] (14)

®.(p, z) =

Va(2), (15)

iz ez iz ez

00— F1[Y (k) Hy(K)] — i

where the operator F denotes a Fourier transformation and
F-!its inverse, i.e.,

FValD)] = Valk) = [ “Va@e®dz  (16)
TV 0] = Val®) = 5= [TV ak. (1)

The “filter” functions H,(k) and H,(k) are defined as

I,(|klga) Ko(|k|p)
loo1,(Iklga) K, (| k|a)
+ q(g., + g,) 11 (|klga) K, (|k|a)]

Hy(k) =

(18)

The expressions for potentials are equivalent to those given by Roth and
Wikswo (7), but the form is different. The equation for ®, emphasizes the
deviation of the interstitial potential from the limiting value it would have
in a bundle of infinite radius. This limiting expression (second term in Eq.
15) corresponds to the (one-dimensional) linear core-conductor solution
(to be discussed).
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K (|k|a) Io(|k|gp)
loo1,(|k|ga) K, (|K|a)
+ q(g., + &)1 (|klga)Ky(|k|a)]

Hik) =

(19)

Current Densities

The interstitial and extracellular current densities can be
calculated from the gradient of the potentials ®, and ®.. In
the extracellular space, the transverse and longitudinal
current densities have the following form:

9% :
Iupr2) = —0, 702 = o, e (YA (OHI] (20
and
Jolp,2) = =0, 22 ~o B :7(%) H.(k)]. @1)

For the “filter” function Hj(k) introduced in Eq. 20 we
have

I,(|k|ga) K, (||p)
lo.L,(|k|ga) K, (|k|a)
+ q(g., + g,) 11 (|klga)Ko(|k|a)]

Inside the cylinder the transverse and longitudinal intersti-
tial current densities can be expressed as follows:

Hi(k) = (22)

99,(2)
oo, 2) = — g4 %

gqgu -1 ’
R F kY ayH ()] (23)

iz ez

”e(z) {22:1:4
Jez(p9 Z) = —8e 9z == ogg_:_gg
av, 828 OVa(2)
e &t _m __‘_’_2?__“‘_’ 24
F :7(82)H2(k)]+gh+ga - (249

where the “filter” function H is the following:

K (|kla)1,(|klgp)
[o.1.(|k|ga) K, (|k|a)
+ q(g., + g,) 11 (|klga) Ko(|K|a)]

The second term in the equation for J, is the “core-
conductor term,” the longitudinal current density accord-
ing to the core-conductor model.

H;(k) = (25)

Asymptotic Expressions for the Interstitial
Potential

In general, the filter function H,(k) (Eq. 18) is bell-
shaped. As the bundle radius increases, H,(k) becomes
narrower in extent (see Appendix) and in the limit (@ —
), the filter function at the axis (p = 0) is

0 k#0; (26)
H(k) =11 -0
%o
909



For an infinitely thick bundle, the first term of Eq. 15 goes
to zero and the interstitial potential at the axis of the
bundle is exactly equal to the potential given by the
core-conductor expression,

gy (). @7)

$,0,2) = —
«0.2) 8 + 8

At the surface (p = a) of the infinitely thick bundle, the
function H,(k) is given by

+ q(:' Ty O
a, :
Hi(k) = v (28)

- k=0.

O,

Thus the surface potential for a bundle with @ — o
approaches:
iz l

<I’o(a’z) = -

—_—— V.. 29
q 05+ q(gsp + &) «(2) (29)

Asymptotic Expressions for the
Longitudinal Interstital Current Density

Using an analogous approach to that used above for the
interstitial potentials, the interstitial longitudinal current
density at the axis (p = 0) of an infinitely thick bundle can
be obtained. Using Egs. 24 and 26,

8e:8iz IVul(2)

J(0,2) =
( Z) 8iz + &ez 9z

(30)
The longitudinal current density is equal to the “ideal”
core-conductor current density.

From Eq. 28, the asymptotic interstitial longitudinal
current density at the surface (a — ) is given by

1 : v,
Jfaz) =1 828z m(2)
qo,+ q9(8p + &) 0z

(31)

We expect the surface longitudinal current density to have
the same shape as that at the axis, but with a smaller
amplitude.

Current Flow Lines

The current flow lines are tangential to the vector of the
current density at any point in the conducting medium. In
accordance with this definition

dz dp

Z_2_a, 32

7.7 (32)
where J, and J, are the longitudinal and radial current
densities either in the interstitial or in the extracellular
space, and / is the parameter in the parametric representa-
tion of the current flow line:

z=z() , p=p0). (33)
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The following system of differential equations is used to
calculate the current flow lines in the interstitial domain

dz dp
d—l = Ja(p, z) , d—I = ep(pa 2), (34)

and in the extracellular domain

dz dp

a = oz(p’ Z) s —d—i ( 35)

= op(p’ Z).

SINGLE FIBER MODEL

Single Fiber in Unbounded Volume
Conductor

A common approach to modeling an entire bundle of fibers
is to replace the bundle by a large single fiber with a
diameter equal to that of the bundle but assign a spatial
transmembrane distribution to be that of a typical compo-
nent fiber inside the bundle (4). Viewing the bundle as a
large single fiber in an unbounded volume conductor is
equivalent to viewing the bundle as a bidomain, provided
that certain conditions are satisfied. In a single fiber (13),

(0. 2) = —at F [(Val(OH' (K] (36)
(o, 2) - & F- [Va(OH(K)), 37)
where
1,(kla)Ko(1klp)
Hi(k) = 38
0 = DK, (kla) + ot LD Ko (k) O
H;(k) _ K1(|k|a)lo(|klﬁ) (39)

alo(kla) K, ([kla) + ot1,(kla)Ko(|kla)’

where the superscript s refers to a single fiber parameter.?

If ¢ = 1.0 (Eq. 7), then the field of a single fiber can be
converted to the field of a cylindrical bidomain by replac-
ing a; by o,, and o} by (g, + &) in Egs. 38 and 39 and by
multiplying the result by the scaling factor, g../(g, + £.)-

For the special case of a bidomain with no interstitial
area, ( f, = 0.0), and an isotropic intracellular domain (i.e.,
8 = 8- = 0.0,and g, = g, = o}), the equations for &, (Eq.
14) and &; (¥, = ®, + V,,) are identical to those of a single
isolated fiber given above. Note that an equivalence also
exists for g# 1.0 if o} is replaced by q(g;, + g.,) and o} is
replaced by ,[/o(Iklga) I, (|kl@)]/[1,(|kIga) I,(|kla)] in the
single fiber expressions and, as before, the result is multi-
plied by the scaling factor, g;,/(g;, + g..)- A more detailed
examination of this equivalence is the subject of a subse-
quent paper.

The extracellular single fiber potential has also been

3Note that the equations given in Plonsey (13) have been rewritten here to
more easily compare with the equations corresponding to the cylindrical
bidomain.
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calculated by assuming that the transmembrane current
per unit length, i, acts as a source and sets up a field such
that (14)

1 w indz

¢
¢4:~ = s
4no, J-o r

(40)

where r is the distance from the source element to the field
point. If the surface potential is small compared with the
intracellular potential ®}(a, z) « ®i(a, z), then

*V,
a2’

i, ~ wa’o;

(41)

Ideal Core-Conductor Behavior

If a bundle of fibers of equal radius is surrounded by an
insulating fluid such as oil, then all the currents, intracellu-
lar, interstitial, and extracellular, are constrained to flow
axially. A typical fiber in such a preparation can be
represented by a linear core-conductor model. One conse-
quence of this condition is that the intracellular and
extracellular potentials are proportional to the transmem-
brane potential (15),

. f.
i=a'iﬁ+0'e_fg m (42)
—aif; (43)

= ——V,.
° Uif;+aef; "

In contrast, the intracellular and interstitial current flow
in a bundle lying in an extensive volume conductor is not
constrained to be uniform and axial. Hence the aforemen-
tioned relationships between &; and ®, and V, are not valid
for any fiber in the preparation except possibly for fibers
near the center of a very large bundle.

NUMERICAL METHODS

The Fourier transformations are accomplished using a
Fast Fourier Transform (FFT) algorithm given by Press et
al. (16). Because we use a discrete Fourier transform, we
were unable to use an expression for ¥, that describes only
the upstroke (as did Plonsey and Barr [8]), since trunca-
tion would introduce additional frequency components.
Instead, we used the following analytic expression for
Va(z), which represents the entire spatial extent (in
meters) of an idealized cardiac action potential.

Va(z) = gtanh [%tg (z+ 0Td)] - gtanh [50—:2 (2)], (44)
f r

where K is the peak amplitude in millivolts, 8 is the
conduction velocity in meters per second, ¢; and ¢4 are the
durations of the falling and rising phases, respectively, in
seconds, and Ty is the total duration in seconds. The first
term in Eq. 44 describes the repolarization phase, while the
second term describes depolarization, the region of inter-
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est. We assume the following constants: K = 90 mV, 6 =

¥0.50 m/s, t, = 0.001 s, #; = 0.0125s,and T; = 0.320s.* The
number 5.0 in Eq. 44 is required to produce a typical rising
extent of ~0.5 mm. The function ¥, (z) is approximated by
32,768 samples spaced 0.01 mm apart. The spatial extent
of the rising phase is shown in Fig. 2. It is important to note
that for large bundle radii, the total number of samples for
a given dz (total axial extent to be sampled) needed to
compute the interstitial potential is not determined by the
non-zero extent of V,,(z), but rather by the non-zero extent
of F~'[H,(k)] in the z-domain (see Appendix).

The current flow lines are generated using a three-part
process. First, the longitudinal and transverse current
densities are computed at discrete points within the intra-
cellular and extracellular regions of interest forming a
regular two-dimensional grid. Next, bicubic spline interpo-
lation is used to compute the coefficients for an approxi-
mating function for both the transverse and longitudinal
current densities. Finally, once these functions are defined,
the system of differential equations (Egs. 34, 35) is solved
using a fourth order Runge Kutta algorithm. All simula-
tions were performed on a 32-bit Micro-Vax II (Digital
Equipment Corp., Maynard, MA).

RESULTS

We have evaluated the expressions for the extracellular
and interstitial potentials and currents for bundles of small
and large radius and we have selected examples that
illustrate their behavior.

Fig. 3a and b are plots of interstitial potential at
different depths in bundles with radii of 0.5 and 10.0 mm,
respectively. With increasing depth in both bundles, the
interstitial potential increases to a maximal value at the
axis. The most dramatic change in peak potential occurs
between the surface and a depth of 0.5 mm below the
surface. Both the peak amplitude and axial extent of the
potential are greater for the large diameter bidomain than
for the small. The interstitial potential of the 0.5-mm
bundle deviates everywhere from the ideal core-conductor
potential in both shape and magnitude. In contrast, the
interstitial potential at the axis of the 10-mm bidomain is
approximately the core-conductor potential (see Eq. 27).
This behavior is nearly maintained over the bulk of the
cross-section. As predicted by Eq. 29, the shape of the
surface potential of the 10-mm bundle resembles the
core-conductor potential with a considerably smaller
amplitude. This result is consistent with the result obtained
by Plonsey and Barr (8) for a semi-infinite block of cardiac
tissue. Note that because ®, is symmetric about 0 mV (see
Appendix), the core-conductor potential was displaced by
a constant (half its peak magnitude) to more easily com-
pare waveshapes.

“Since repolarization is outside our region of interest, we made no attempt
to accurately represent the plateau and the falling phase of the cardiac
action potential analytically.
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FIGURE 2 Plot of the spatial extent of the rising phase of transmem-
brane potential, V,(z).

The interstitial transverse current densities associated
with the radial variation in potential for the 0.5 and 10.0
mm bundles are shown in Fig. 4. Because of the symmetry,
the transverse current density is zero at the axis. In
general, the current is small over the bulk of the cross-
section and increases dramatically near the surface.

The longitudinal current densities at different depths in
bundles with radii 0.5 and 10 mm are shown in Fig. 5. The
longitudinal current density varies significantly in the
region spanning the spatial extent of the upstroke of the
transmembrane potential. The magnitude of this current is
greatest at the axis and is relatively constant over the bulk
of the cross-section. Near the surface, the longitudinal
current diminishes sharply. The two small positive peaks,
seen in the spatial variation of the current density at all
depths of the small bundle and only near the surface of the
large bundle, reflect the difference from the ideal core-
conductor current density (second term of Eq. 24). Since
the current density is proportional to d%./dz, the peak
amplitude of the longitudinal current at the axis is greater
for the large bidomain and is approximately equal to the
peak value predicted by Eq. 30.

The previous figures correspond to the extremes of the
range of bundle radii investigated. In Fig. 6, the variation
in peak interstitial potential, transverse and longitudinal
current density with depth is plotted for a series of bundle
radii. This figure illustrates that for bundles with radii >4
mm, the magnitudes of the potential and currents remain
relatively constant over the bulk of the cross-section and
decrease sharply near the surface. The radial extent over
which the potential changes most (within 0.5 mm below
the surface) is nearly independent of bundle size. Hence for
small bidomains (a < 2 mm), the bulk of the cross-section
cannot be characterized by a constant peak interstitial
potential. The changes near the surface are sharper for the
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FIGURE 3 Plot of interstitial potential vs. axial distance, z, at different
depths in a cylindrical biodomain with a radius of (a) 0.5 mm and (b)
10.0 mm.

current densities than the potentials since the current are
proportional to the radial and axial derivatives of the
potential. In addition, the magnitudes of the peak surface
potential and current densities are nearly independent of
bundle radius for bundles with radii >6.0 mm.

An equipotential plot of the interstitial potential and a
plot of the interstitial current flow lines for bundles with
radii 0.5 and 10 mm are shown in Figs. 7 and 8,
respectively. The interstitial equipotential field plot of a
bundle surrounded by oil would consist entirely of parallel
lines perpendicular to the axis. For a bundle in an extensive
volume conductor, this ideal core-conductor behavior is
seen only near the axis (0 mm) of the large bundle. A crest
in the potential is clearly visible just outside the active
region corresponding to rapid rising phase of V(z). The
directional nature of the electric field is evident in the plot
of the current flow lines. The current flow lines, as plotted
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FIGURE 4 Plot of interstitial transverse current density vs. axial dis-
tance, z, at different depths in a cylindrical bidomain with a radius of (a)
0.5 mm and (b) 10.0 mm.

here, indicate the direction (denoted by arrows) but not the
magnitude of the total current density at each field point.
Note that because the current density in the interstitial
space, J,, is not solenoidal (V . J, # 0), the number of the
flow lines per unit area cannot be interpreted as propor-
tional to the magnitude of J,, and therefore no attempt was
made to indicate the magnitude in Figs. 75 and 8 b.
Within the active region, the field is primarily axial with
some fringing near the surface. In the 0.5-mm bundle,
there is a large radial component to the field outside the
active region. The interstitial current throughout the cross-
section flow directly into the extracellular conducting
medium. In contrast, only interstitial current from the
region <1 mm below the surface of the large bundle flow
into the extracellular space. Near the center of the large
bundle, the interstitial current flow is primarily axial. The
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a

surface

0.49mm

0.45mm

’10;,l,A/mm2

0.5mm

b

surface

9.95mm

U 4_|1 OpA/mm?

0.5mm

FIGURE 5 Plot of longitudinal current density vs. axial distance, z, at
different depths in a cylindrical bidomain with a radius of (@) 0.5 mm and
(b) 10.0 mm. Note that the ends of each curve can be taken to be the
origin of the ordinate axis. The origin of the z-axis is at the peak negative
deflection.
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FIGURE 7 (a) Equipotential plot of the interstitial and extracellular
potential and (b) a plot of the interstitial and extracellular current flow
lines in and near the region of the rising phase of V,, from activity in a
cylindrical bidomain of radius 0.5 mm. The current flow lines indicate the
direction (arrows) but not the magnitude of the total current density at
each field point.

direction of the currents inside and outside the active
region corresponds to the triphasic shape of the longitudi-
nal current density. The radial current corresponding to
the crest in the equipotential lines is consistent with the
biphasic shape of the transverse current density. The
magnitude of this current increases as it approaches the
surface. In both bundles, the notch in the current flow lines
at the surface reflects the discontinuity in the longitudinal
current density. Note that because of the anisotropy, the
equipotential lines and current flow lines are not ortho-
gonal inside the bundle.

Finally, in Fig. 9 the surface potential of a 0.5-mm
bundle modeled as a cylindrical bidomain is compared with
the surface potential of a bundle modeled as a single fiber
with o; = g;,/f.. For completeness, the field from the single
fiber is evaluated in two ways: from the expressions (Eq.
36) derived from solving Laplace’s equation in cylindrical
coordinates (curve 1), and from expressions (Eq. 40)
assuming the source is concentrated on the axis (curve 2).
For the given set of parameters, the potentials predicted by
the single fiber are clearly different from that predicted
from the cylindrical bidomain (curve 3). The difference of
the line source solution from the rigorous single fiber
solution (magnitude and axial extent) reflects a fundamen-
tal limitation of the line source for describing fields
generated by large fibers when V(z) is that of a smaller
component fiber.
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bundle, only interstitial current from the more
superficial tissue flows directly into the extra-

cellular volume conductor. The tissue near the
center of the bundle appears to contribute only

an axial current in accordance with linear core-
conductor behavior.
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FIGURE 9 Comparison of the surface potential in a 0.5 mm bundle
modeled as an equivalent single fiber (curves I and 2) with o; = g;,/f; and
as a cylindrical bidomain (curve 3). The surface potential for the single
fiber is calculated using two methods: from expressions derived from
solving Laplace’s equation in cylindrical coordinates (curve 1) and from
the line source expression (curve 2).
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DISCUSSION

A simple view of a multicellular preparation is to assign
each fiber an axial source density given by (17)

56;22 (JGQG - Ui®i)~ (45)
Since &, and ¥, are functions of p and z, the source density
is not uniform throughout any cross-section. The evalua-
tion of the space averaged potential distribution from the
bidomain equations indicates that source density is
greatest near the axis and smallest near surface. The
magnitude and radial variation depend on the radius of
bundle, the conductivity values of both domains, and
Va(p, 2). For a very large bundle, an ideal central fiber can
be approximated by a core-conductor fiber, while an ideal
surface fiber can be approximated by an isolated fiber. By.

substituting Eqs. 42 and 43 for &, and ®, in Eq. 45 above,
the source density of an ideal central fiber can be shown to

be proportional to
o f. + 0. f;] 92%° (46)
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while the source density of an ideal surface fiber is
proportional to
FV,
Ui*E;'z—. (47)
Hence for typical values of conductivity (i.e., g;/0, < 1.0),
the source strength of a central fiber is greater by a factor
of 1/(1 — af}), wherea = 1 — 0;/0..

If the rising phase of the action potential is approxi-
mated to be linear, then the source actually consists of a
positive disk at the site where depolarization begins and a
negative disk at the site where depolarization ends (begin-
ning of plateau). In the bidomain model, each of these
single source surfaces extends across the fiber bundle
forming a circular source lamina. Since ®, and ®,; depend
on the distance from the axis, the circular lamina sources
have a strength that depends on the distance from the axis,
as discussed earlier. The gross behavior of the field gener-
ated by the positive and negative source lamina described
above corresponds to that seen in the figures here. The field
is greatest between the lamina, since the two sources set up
a field in the same direction, and is primarily axial. Outside
the lamina, but within the bundle, the field is also axial but
with lower intensity. In these regions the positive and
negative sources set up opposing fields. This field is
directed away from the positive lamina, accounting for the
ridge for current flow seen in Figs. 7 and 8.

In Figs. 7b and 8 b it appears as if the central fibers
contribute only an interstitial current. However, the elec-
tric field set up by each fiber in the preparation affects the
currents throughout the interstitial and extracellular
space. The total field due to activity in the bundle is a
superposition of the individual fields of the component
fibers. The direction of that field and currents depends on
the site of evaluation. Near the axis the electric fields
superimpose to produce a field and total current density
with a direction predominantly parallel to the axis. The
magnitude of field is greatest at the axis because the
partial fields from each source element tends to add in the
same direction. Approaching the surface the radial compo-
nent of the total field and current density increases and the
magnitude of the field decreases.

As noted above, the field of a bundle modeled as a
bidomain can be treated as a superposition of the fields
generated by separate fibers. This treatment has been used
by a number of electrophysiologists in their investigations
of the behavior of nerve and muscle bundles (2, 3, 5).
However, in most of these bundle representations the
interstitial potential is ignored, and the field is modeled as
a linear summation of the fields of independent single
fibers in an unbounded volume conductor with some
spatial distribution. This failure to include the interstitial
potential as part of the overall source density may lead to
erroneous conclusions about the preparation such as the
effect of variation in the number of fibers in a bundle or the
magnitude of the extracellular potential.
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An alternative and equivalent source model for the
bundle is the single fiber described by Eqgs. 36 and 37. The
equivalent single fiber has the same radius as the bundle
but requires intracellular and extracellular conductivities
that depend on the four conductivity values characterizing
the three domains. In addition, an amplitude factor, involv-
ing the axial bidomain conductivities, must be applied to
the single equivalent fiber solution. Clearly, the common
approach (4) of assigning a value to the intracellular
conductivity equal to the axial intracellular conductivity of
the preparation (i.e., o; = g;,/f,) does not necessarily lead to
a valid equivalent single fiber, as shown in Fig. 9. One
advantage to using an equivalent single fiber model rather
than the equivalent fiber sources of a cylindrical bidomain
to model an entire bundle is that the single fiber behavior is
relatively familiar and more simply described. For exam-
ple, the field can be thought of as arising from stacks of
uniform single layer disks with a strength proportional to
3*/32* (6B, — o:®;) evaluated at the surface only. A more
detailed examination of the difference between these two
models is the subject of a subsequent study.

The bidomain model enables the analytic evaluation of
the potential distribution in the bundle because the intra-
cellular and extracellular spaces are considered as con-
tinua. For the arbitrary but reasonable choice of conductiv-
ity values used here, we find that the core-conductor
approximation is adequate only in the region of the rising
phase of V,, for fibers near the center of a bundle with a
radius greater than 10 times the axial extent of V,,. If the
wavefront were propagating with a velocity of 0.25 m/s
(rather than the assumed 0.50 m/s), then we would expect
to see core-conductor behavior near the center of a bundle
with a radius of 5 mm (vs. 10 mm). In fact, core-conductor
behavior characterizes 90% of the cross-section. For
smaller bundles, the peak potential is smaller than that
predicted by a core-conductor model but still large enough
to affect the overall source density. The simulations also
demonstrate that the results from the semi-infinite block
studied by Plonsey and Barr (8) cannot be easily extrapo-
lated to a radially finite cylindrical bidomain. In principle,
their results apply only when the radius approaches infini-
ty. Although the greatest change in potential occurs
between the surface and a depth of 0.5 mm, the shape and
magnitude depend on the bundle size.

Finally, we assumed that the propagating wavefront was
planar and traveling with uniform velocity. In real prepa-
rations, particularly striated muscle or nerve bundles, this
assumption may not always be justified since the variation
in the behavior of the interstitial potentials with depth
influences the velocity and can cause dispersion. There is
some evidence (18) that suggests that the activation profile
in a cardiac fiber bundle is curved, with activity at the
surface leading in phase that at the center. This curved
phase front is likely to propagate at a uniform velocity that
is determined by the electrical properties characterizing
the bulk of the cross-section (19). The radial potential
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FIGURE 10 (a) Plot of the filter function H,(k) and (b) its Fourier
transform, #£,(z), at the axes of three bundles with radii 0.5, 2.0, and 10
mm.

gradient set up by such a wavefront will lead to a redistrib-
ution of currents from the periphery to the center of the
bundle, resulting in fields different from those generated
by planar activation. Unfortunately, the exact details of
the phase variation are not known, so the effect of the
deviation from planar behavior cannot be fully elucidated.

APPENDIX

The behavior of the interstitial potential at the axis (p = 0) depends on a
number of factors including the extent of the rising phase, the conductivi-
ties, the total duration of the action potential, and the radius of the
bundle. We can examine the effect of the latter two parameters on the
potentials through application of the convolution theorem. This permits
rewriting Eq. 15 as

®(p, z) = C(z) — D(2), (A1)
where
C@) =052 [ Vi) Hoz — )47 (AD)
giz ez —%
and
D(z) = —52— ¥, (2), (A3)

and #,(z) is the filter response in the z-domain.

As shown in Fig. 10 a, the filter H,(k)|,,_o acts as a low pass filter with a
constant peak amplitude, 1/q,. As the radius of the bundle increases, the
cut-off frequency decreases. Correspondingly in the z-domain (Fig. 10 b),
7£,(z) becomes broader, as the bundle radius increases, but reduced in
amplitude such that the total area remains constant and equal to 1/g,.

Fig. 11 graphically illustrates the evaluation of Eq. Al. Each vertical
column (panel) plots the same functions under the different conditions
established in rows a—c. The relative magnitudes and extents of the
functions to be convolved, V,,(z) and # ,(z) (shaded curve), are shown in
A. C(z), the result of the convolution multiplied by the constant o,g;,/
(8. + &) (solid curve), and the negative of the core-conductor potential,

FIGURE 11 Graphical evaluation of Eq. Al.
Each vertical column (panel) plots the same
functions under the different conditions estab-
lished in rows a—c (see text for details). The
abscissa of each plot is in the units of millime-
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ters. The relative magnitudes and extents of the
functions V,(z) (mV) and #,(z) (mm/S)
(shaded curve) are shown in 4. C(z) (mV), the
result of the convolution multiplied by the con-
stant o,g;,/(g. + &) (solid curve), and the
negative of the core-conductor potential, D(z)
g A 4 (mV) (dashed curve), are shown in B. C is a

reproduction of B in the region of the rising
phase (symmetric about 0 mm). Finally, the
interstitial potential, $.(0, z) (mV), computed
from Eq. A1l is shown in D. Note that the units
have been deliberately left off the axes to
simplify the figure.
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D(z) (dashed curve), are shown in B C is a reproduction of B in the
region of the rising phase (symmetric about 0 mm). Finally, the intersti-
tial potential, (0, z), computed from Eq. A1 is shown in D.

For the case of a bundle with a small radius (Fig. 11 a), the function
F£,(2) is very sharp. As shown in B, C(z) is a smoothed version of the
negative of the core-conductor potential, D(z).

Over most of the plateau of the cardiac action potential (z, to z,),
where V,(z) has a nearly constant peak amplitude of V¥,

V.. (A4)

C(z) =0, i Vo (%2 — r)dr - —22

iz ez 2l 8iz ez

In the region just outside the rising phase, the difference between C(z)
and D(z) is zero. The resulting potential, &, is biphasic, symmetric, and
centered about 0 mV.

As the radius increases, the axial interstitial potential in the region of
the rising phase approaches the ideal core-conductor potential (Eq. 27) in
both shape and magnitude but with some “offset.” (The term offset refers
to the amount needed to shift the ideal core-conductor potential so that
the shape and magnitude can be compared with &, in the region of the
rising phase.) The offset is determined by the relative extents of V,(z)
and #,(z).

In Fig. 115 the radius is large enough to produce approximate
core-conductor behavior, however, the potential is still centered about 0
mV. This offset results because the extent of #,(z) is smaller than the
extent of the plateau of V,(z) and, as is the case for the small bundle, the
peak amplitude of C(z) is equal to the peak amplitude of D(z).

In Fig. 11 ¢ the radius is increased such that the extent of the filter in
the z-domain is larger than the extent of V,(z). In the plateau phase,

Iz 1
f Hy(z — 1) dr < —.
2y (1)

o

(AS5)

Therefore, the peak amplitude of C(z) is smaller than D(z), and &, is
no longer centered about 0 mV. In the limit (@ — «), C(z) is zero, and ¥,
is exactly equal to the core-conductor potential (Eq. 27).
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