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ABSTRACT The gating kinetics of single ion channels have been well described by models which assume that channels
exist in a number of discrete kinetic states, with the rate constants for transitions among the states remaining constant in
time. In contrast to such discrete Markov models, it has recently been considered whether gating might arise from
transitions among a continuum of states, with the effective rate constants for leaving the collections of states given by a
fractal scaling equation (Liebovitch, L. S., J. Fischbarg, J. P. Koniarek, I. Todorova, and M. Wang. 1987. Biochim.
Biophys. Acta. 896:173-180; Liebovitch, L. S., and J. M. Sullivan. 1987. Biophys. J. 52:979-988). The present study
compares discrete Markov with fractal continuum models to determine which best describes the gating kinetics of four
different ion channels: GABA-activated Cl channels, ACh-activated end-plate channels, large conductance Ca-
activated K (BK) channels, and fast Cl channels. Discrete Markov models always gave excellent descriptions of the
distributions of open and shut times for all four channels. Fractal continuum models typically gave very poor
descriptions of the shut times for all four channels, and also of the open times from end-plate and BK channels. The
descriptions of the open times from GABA-activated and fast Cl channels by the fractal and Markov models were
usually not significantly different. If the same model accounts for gating motions in proteins for both the open and shut
states, then the Markov model ranked above the fractal model in 35 of 36 data sets of combined open and shut intervals,
with the Markov model being tens to thousands of orders of magnitude more probable. We suggest that the examined

fractal continuum model is unlikely to serve as a general mechanism for the gating of these four ion channels.

INTRODUCTION

Ion channels are large integral membrane proteins which
allow passive flux of ions through cell membranes (Hille,
1984). Currents recorded from ion channels with the patch
clamp and bilayer techniques (Hamill et al., 1981; review
by Miller, 1983) have shown that ion channels repeatedly
open and close, or gate their pores, during normal activity.
The gating mechanism is of considerable interest because
of the dominant role channels play in the control of
membrane potential and other key cellular processes
(Hille, 1984). Models for the gating of ion channels have
generally assumed that the channels exist in a limited
number of discrete open and shut states, with the rate
constants for transitions among the various states remain-
ing constant in time (Colquhoun and Hawkes, 1981). Such
discrete Markov models account for many of the complex
features of single channel kinetics (Magleby and Pallotta,
1983; Moczydlowski and Latorre, 1983; Aldrich et al.,
1983; Horn and Vandenberg, 1984; Colquhoun and Sak-
mann, 1985; Labarca et al., 1985; Blatz and Magleby,
1986b; Sine and Steinbach, 1987; Kerry et al., 1988). In
marked contrast to Markov models with a limited number
of discrete kinetic states, it has recently been considered

Present address of Dr. McManus is Merck, Sharp & Dohme Research
Laboratories, R80B19, P.O. Box 2000, Rahway, NJ 07065.

BiopHYs. J., © Biophysical Society
Volume 54 November 1988 859-870

that the open and shut states may each be represented by a
continuum of states, with the effective rate constants for
leaving the collection of open and shut states given by a
fractal scaling equation (Liebovitch et al., 1987; Liebo-
vitch and Sullivan, 1987).

In a detailed examination of the fractal continuum
model, McManus and Magleby (1988) have found that it
cannot describe the single channel kinetics of a large
conductance Ca-activated K channel (BK channel). The
purpose of this present study is to extend the examination
of the fractal continuum model to three other types of
channels, present additional findings for the BK channel,
and summarize the results for all four channels. Sufficient
data with high time resolution are obtained so that the
predictions of the examined models can be critically
assessed. The findings indicate that the examined fractal
continuum model is unlikely to serve as a general gating
mechanism for the four studied ion channels. A prelimi-
nary report of this work has appeared (Magleby et al.,
1988).

PREDICTED CHANNEL KINETICS

Discrete Markov Model

Discrete Markov models assume that channel gating is
associated with transitions among a limited number of
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open and shut states or conformations, with the rate
constants for the transitions remaining constant in time.
Such models predict that the distributions of open and shut
interval durations will each be described by the sums of
exponentials, with one exponential component for each
state, although all components may not be detected experi-
mentally (Colquhoun and Hawkes, 1981). Thus, distribu-
tions generated by discrete Markov models should be
described by

f@ = i a;r; e, 1)

where f () is the probability density function (PDF), k is
the number of exponential components, and 7; and a; are
the time constant and area, respectively, of each compo-
nent j.

The number of free parameters for the Markov model is
given by

FP, =2k — 1, 2

where k is the number of exponential components. Since
the areas of the exponential components must sum to 1.0
for a PDF, one of the areas is not a free parameter.
Consequently, for a single exponential component there is
only one free parameter (the time constant), and for each
additional exponential component after the first there are
two additional free parameters (an area and time con-
stant).

Fig. 1 A, which plots on log-log coordinates the number
of intervals versus their duration, presents some examples
of the types of distributions expected for discrete Markov
gating kinetics. If there is a single shut (or open) state, then
the distribution of intervals would be described by a single
exponential (continuous line). If there are multiple states,
then the observed distributions would depend on the mag-
nitudes and time constants of the exponential components
generated by the states. For some sets of rate constants,
each state will lead to a discrete bump in the distribution,
as shown by the dotted line generated by a model with
three shut states. For other sets of rate constants, the
distribution could appear as a straight line, or power type
relationship, as shown by the dashed line generated by a
model with seven shut states. The shapes of distributions
which can be generated by discrete Markov models,
including combinations of smooth lines for some parts of
the distribution and bumps and inflections in other parts, is
endless, depending only on the underlying rate constants
for the transitions between the various states.

Fractal Continuum Model

The fractal continuum model assumes that the distribu-
tions of open and shut intervals are described by the
empirical equation

f(t) = A''Pexp {—[4/(2 — D)]#*?}, 3)
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FIGURE 1 Predicted distributions of interval durations for discrete
Markov models and the fractal continuum model. Numbers of intervals
are plotted against interval duration of log-log coordinates, in the form of
probability density functions. (4) Markov model with: continuous line,
single exponential with time constant of 1 ms and area of 1; dotted line,
sum of three exponentials with time constants (and areas) of: 0.01 ms
(0.3), 0.3 ms (0.2), and 100 ms (0.5); dashed line, sum of seven
exponentials with time constants (and areas) of: 0.1 ms (0.504), 0.25 ms
(0.252), 0.625 ms (0.126), 1.56 ms (0.063), 3.91 ms (0.0315), 9.76 ms
(0.0157), and 24.4 ms (0.00787). (B) Fractal model with: continuous
line, A = 1 Hz and D = 1; dotted line, A = 2 Hz"*, D = 1.5; dashed line,
A=05HZ2',D=19.

where A is the kinetic setpoint, and D is the fractal
dimension, such that 1 < D < 2 (Liebovitch et al., 1987;
Liebovitch and Sullivan, 1987). The fractal continuum
model has only two free parameters for each distribution,
Aand D.

One proposed interpretation of Eq. 3 is that channel
gating is associated with transitions among a continuum of
open and shut conformational states, with the effective rate
constants for leaving the open or shut states being a
mixture of the rate constants for leaving the collection of
states (Liebovitch and Sullivan, 1987). Although Liebo-
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vitch and Sullivan (1987) do not derive how such a physical
model could lead to the empirical Eq. 3, Millhauser et al.
(1988) and Laiiger (1988) have presented models with a
large number of states with similar rate constants for the
transitions among the states, which could provide a physi-
cal basis for apparent fractal scaling as D approaches two.

Fig. 1 B presents some examples of the types of distribu-
tions expected for the fractal continuum model described
by Eq. 3. If the fractal dimension D equals one, then the
distribution of intervals would be described by a single
exponential (continuous line). When D approaches two, a
power type distribution is generated (dashed line). Inter-
mediate values of D give intermediate distributions (dotted
line, D = 1.5). In no case does the fractal continuum model
predict discrete bumps or inflections in the distribution.
Thus, whereas both discrete Markov models and the
fractal continuum model can generate smooth distributions
which can range from a single exponential to a power type
function, only discrete Markov models can generate dis-
crete bumps and inflections in the distributions.

METHODS

The patch clamp recording technique (Hamill et al., 1981) was used to
record single channel currents from four different ion channels.

GABA-activated Channel

Currents were recorded from GABA-activated channels in excised
inside-out membrane patches from 5-10-d-old cultures of chick cerebral
neurons. Briefly stated, cerebral hemispheres were removed from stage 34
white Leghorn chicks and dissociated by extrusion through a 44-um pore
nylon mesh. The cells (predominately neurons) were then plated and
cultured. Further details are in Weiss et al. (1988). The solution in the
patch pipette contained (mM): choline chloride, 130; CaCl,, 2; MgCl,, 1;
Hepes-TEAOH, 10; GABA, 1 uM; pH 7.4. The solution at the intracellu-
lar membrane surface contained (millimolar); choline chloride, 130;
EGTA, 1; MgCl,, 1; Hepes-TEAOH, 10; pH 7.4.

Fast Cl Channel

Currents were recorded from Cl channels with fast kinetics in excised,
inside out membrane patches from primary cultures of rat skeletal muscle
(myotubes). Complete details are in Blatz and Magleby (1986b). The
solution bathing the outer membrane surface (the solution in the patch
pipette) contained (mM): KCl, 140; TES buffer, 5; EGTA, 0.5; and
sufficient added Ca?*, for a free Ca?* of 10~*~10-° M. The solution
bathing the inner membrane surface contained (mM): KCl, 1,000; TES
buffer, 2-5; and no added Ca?*; pH 7.2; temperature was either 7.6 or
20°-22°C. The high concentration of Cl~ was used to increase the ampli-
tudes of the single-channel currents, increasing the signal-to-noise ratio.

End-Plate Channel

Currents were recorded from end-plate activated channels in cell attached
patches from end-plate regions of interosseal muscles dissected from the
toes of the frog Rana pipiens. The muscles, in a 10-ml beaker, were
treated with 5 mg/ml (1-2 ml) of collagenase (Type I; Sigma Chemical
Co., St. Louis, MO) plus tetrodotoxin (1 xM) for 30 min. Then protease
(Type VII, 0.5 mg/ml; Sigma Chemical Co.) was added (total volume ~
5-6 ml), and the incubation continued for another 30-75 min. The
muscles were shaken during the above procedures on an orbital shaker
with just enough force to keep the muscles suspended and in gentle
motion. To end the dissociation, the fibers were washed three times with
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Ringer’s solution and then stored in Hepes-buffered Ringers’s solution at
5°C. The fibers were used within 2 d. The solution used to bath the
muscles contained (mM): NaCl, 116; KCl, 2; Na,PO,, 1.3; NaH,PO,,
0.7; pH 7.0. The solution in the patch clamp recording pipette contained
(mM): NaCl, 116; KCl, 2; Hepes, 2; 0.3 uM tetrodotoxin; and 0.1 uM of
either of the agonists isoarecolone methiodide or dihydroisoarecolone
methiodide (Waters et al.,, 1988). The potential in the pipette was
adjusted until the single channel current amplitude fell between 4.0 and
4.2 pA. Experiments were performed at 10°-11°C.

Large Conductance Ca-Activated
K Channel

Currents were recorded from large conductance Ca-activated K channels
(BK channels) in excised inside out membrane patches from primary
cultures of rat skeletal muscle (myotubes). Complete details are in
McManus and Magleby (1988). The solutions bathing both sides of the
membrane contained (millimolar): KCl, 144; TES buffer, 2; and EGTA
1; pH 7.0 or 7.2, temperature, 22°-24°C. Sufficient Ca®* was added to
the solution bathing the intracellular membrane surface to bring the free
Ca t0 0.1-20 M, depending on the experiment.

Recording and Measuring Intervals

Single-channel currents were stored on FM tape during the experiments.
The data on the tape were then actively low pass filtered and analyzed by
computer to determine the durations of open and shut intervals. 50%
threshold detection was used for the fast Cl, end-plate, and BK channels,
as described previously (Blatz and Magleby, 1986b; McManua and
Magleby, 1988). In this analysis, the data were played into the computer
at 4 to )¢ of the normal tape speed. The data were always examined on an
oscilloscope as it was played into the computer to look for possible baseline
drift and noise artifacts. The baseline was adjusted if necessary and any
noise artifacts were noted for later exclusion. Each interval for the
GABA-activated and end-plate channels were visually approved and then
measured by computer using a 50% threshold for detection (details for
GABA-activated channels in Weiss, 1988).

The filtering during analysis was always sufficient to reduce noise
peaks in the absence of channel activity to less than the 50% detection
level. Such filtering prevents the noise peaks from generating artificial
fast components.

Stability plots of mean open and shut durations were used to detect and
exclude modes other than normal (Blatz and Magleby, 1986b; McManus
and Magleby, 1988) and to exclude data with drifting means.

Binning and Plotting Interval Durations

Open and shut intervals were binned according to the logarithms of their
durations and plotted on log-log coordinates as frequency histograms,
which plot the number of observed intervals versus interval duration
(details in McManus et al., 1987). Such plots provide a convenient
method to display data that span many orders of magnitude in interval
durations and frequency of occurrence. In making the plots, additional
bins were sometimes combined further after the log binning to reduce
variation in successive plotted points. The numbers of events in each bin
were divided by bin width, in order to account for increasing bin width
(McManus et al., 1987). The resulting plot is essentially a scaled
probability density function, with an area equal to the total number of
events that would be contained within the distribution.

Fitting Distributions of Interval Durations
with Sums of Exponentials or the Fractal
Continuum Model

To assess the ability of discrete Markov models to describe the data,
histograms of open and shut interval durations were fit with Eq. 1 using
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the method of maximum likelihood (Colquhoun and Sigworth, 1983; with
details for fitting log-binned data in McManus et al., 1987). The number
of significant exponential components was determined with the likelihood
ratio test (Rao, 1973; Horn and Lange, 1983).

To assess the ability of the fractal continuum model to describe the
data, the distributions of open and shut intervals were fit with Eq. 3 using
the method of maximum likelihood. For fitting with either model, the
durations of all intervals less than two times the dead time were excluded
from the fitting process, as the durations of these intervals are underesti-
mated (Colquhoun and Sigworth, 1983), and including such intervals can
lead to “phantom” exponential components (Roux and Sauvé, 1985;
Blatz and Magleby, 1986a).

Ranking the Discrete Markov and Fractal
Continuum Models

The discrete Markov and fractal continuum models are not nested, that is,
one is not a subset of the other. Such non-nested models may be ranked
with the prediction error approach (Akaike, 1974; Horn, 1987), which
has the limitation that the significance level is not known. To apply this
approach, an Akaike predictor value, Py, was first determined from

Pyyp = log, (Ly/Lg) — (ny — ng), )

where L,, and L; are the maximum likelihoods that the observed
experimental data were drawn from the distributions predicted by the
discrete Markov (M) and fractal continuum (F) models, respectively, and
ny and ng are the number of free parameters for models M and F. If
Pyyr > 0, then model M was ranked above model F, and if Py r <0, then
model F was ranked above model M. If Py = 0, then the two models are
of equal ranking. This ranking procedure places a heavy penalty on free
parameters. Starting with equally likely models with equal numbers of
free parameters, if each additional free parameter increases the probabil-
ity less then e-fold, then the additional free parameters will lead to a lower
ranking.

Determining the Significance of the Akaike
Predictor Ranking

The methods detailed in Horn (1987) have been used to determine a level
of significance for the ranking provided by the Akaike predictor value.
Briefly stated, the data were resampled with the bootstrap method in
order to estimate the variability in estimates of the predictor value.
Typically, 50 or more artificial data sets were generated from the original
data set by resampling with replacement (Efron, 1982) and then fit to
determine Py for each data set. Each resampled data set was made by
drawing at random from the original data set a number of samples equal
to the number contained in the original data set. In such a drawing with
replacement, some data points are used more than once and some are not
selected. Each resampled data set was different because the random
numbers used for the drawings were different. The values of Py,
determined from the resampled data sets were then fit with a Gaussian
distribution to determine if the resampled data were significantly
different from zero (P < 0.05).

RESULTS

GABA-Activated Channel

Fig. 2 presents log-log plots of the distributions of open (A)
and shut (B) interval durations for data recorded from
GABA-activated channels in a single excised membrane
patch from cultured chick cerebral neurons. To determine
whether these data were more consistent with a discrete
Markov model or fractal continuum model for channel
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FIGURE 2 Distributions of durations of open and shut intervals recorded
from GABA-activated channels fit by Markov and fractal models. The
numbers of intervals are plotted against their durations on log-log
coordinates. (4) Open times. The continuous line plots the maximum
likelihood fit to the open interval distribution with the sum of three
exponentials, with time constants (and areas in parentheses) of: 0.361 ms
(0.771), 1.83 ms (0.140), and 5.87 ms (0.089). The dashed line plots the
maximum likelihood fit to the open distribution with the fractal
continuum model, with 4 = 3.86 Hz*?' and D = 1.79. The exponent on
Hz is given by 2 — D. (B) Shut times. The continuous line plots the fit to
the shut durations with the sum of three exponentials, with time constants
(and areas) of: 0.615 ms (0.209), 4.82 ms (0.159), and 105 ms (0.632).
The dashed line plots the fit to the shut durations by the fractal
continuum model with 4 = 3.10 Hz°* and D = 1.44. The likelihood ratio
for the Markov to the fractal model was e* for the open distribution and
e'? for the shut. 1,593 open and 1,819 shut intervals were fitted and
plotted. The difference between the numbers of open and shut intervals
arises because the fractions of intervals less than two dead times in
duration, and hence excluded from the fits, are different for the open and
shut distributions. Membrane potential = —50 mV; 1.0 uM GABA; dead
time = 0.18 ms.

BIOPHYSICAL JOURNAL VOLUME 54 1988



kinetics, the most likely fits to the data with each model
were calculated and compared.

The continuous lines in Fig. 2, plot the best description
of the data with a discrete Markov model (Eq. 1, sums of
exponentials). The discrete Markov model gave an excel-
lent description of the observed interval durations, includ-
ing the inflections in the histograms. The dashed lines in
Fig. 2 plot the best description of the plotted data with the
fractal continuum model (Eq. 3). The fractal model only
approximated the data, as it could not describe the inflec-
tions. Since inflections are never predicted by the fractal
model (Fig. 1 and Liebovitch et al., 1987), the fractal
model appears inconsistent with the data.

The Likelihood Ratio Indicates That the Discrete
Markov Model Is More Probable. A quantitative mea-
sure of the difference in ability of the discrete Markov and
fractal continuum models to describe the data was
obtained from the likelihood ratio, Ly/Lg, which is the
likelihood that the observed data were drawn from the
distributions described by the discrete Markov model,
divided by the likelihood that the observed data were
drawn from distributions described by the fractal con-
tinuum model.

The likelihood ratios indicated that the discrete Markov
model was about e and e'* times more likely than the
fractal continuum model for the open and shut distribu-
tions, respectively, for the data in Fig. 2. Considering the
open and shut distributions separately allows for the
possibility that different mechanisms (models) might gen-
erate the open and shut times. If it is assumed that the
basic mechanism generating open and shut times is the
same, then the likelihood that each model described both
the open and shut distributions is given by the product of
the likelihoods of the separate open and shut distributions.
(In practice, the natural logarithms of the separate likeli-
hoods for the open and shut distributions are added.) When
this was done the likelihood ratio indicated that the
discrete Markov model was e'* (10"") times more likely
than the fractal continuum model for the data shown in
Fig. 2.

Ranking the Models Taking into Account the
Numbers of Free Parameters. Although the discrete
Markov model was many times more likely than the fractal
continuum model, as indicated by the likelihood ratio, such
a comparison does not take into account the difference in
the number of free parameters between the two models.
Therefore, the Akaike predictor ranking, which applies a
penalty for each additional free parameter, was used to
rank the two models (Eq. 4 in the Methods). With this test,
the model must be at least e-fold more likely for each
additional free parameter for the model to maintain a
higher ranking.

For Fig. 2, the discrete Markov model had five free
parameters for each distribution (Eq. 2 in Methods), or
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three more than the fractal continuum model (Eq. 3). The
Akaike predictor values for comparing the discrete Mar-
kov to the fractal continuum model for the data in Fig. 2
were 22 and 136 for the open and shut times considered
separately, and 158 when considered together. These val-
ues were calculated with Eq. 4 by subtracting the differ-
ence in free parameters for the two models from the
natural logarithm of the likelihood ratios. As these Akaike
predictor values are greater than 0, the discrete Markov
model still ranks above the fractal continuum model when
the difference in free parameters is taken into account.

The Significance of the Rankings. A limitation
of the Akaike predictor test is that the significance of the
ranking is unknown. In order to set a significance level for
the ranking of the discrete Markov model over the fractal
continuum model, resampling methods detailed in Efron
(1982) and Horn (1987) were used. Fig. 3 plots histograms
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FIGURE 3 Histograms of Akaike predictor values comparing Markov
and fractal models for the data in Fig. 1 from GABA-activated channels.
The Markov and fractal models were fit to 51 resamples of the open and
51 resamples of the shut distributions shown in Fig. 2. (4) Akaike
predictor values for resampled data were calculated with Eq. 4 and
plotted as separate histograms for the open and shut times. (B) Akaike
predictor values for resampled data are plotted for the open and shut
distribution from each experiment considered together. The continuous
lines are Gaussian distributions, with a mean of 24.1 and standard
deviation of 6.45 for the open times, a mean of 143.7 and SD of 14.2 for
the shut times, and a mean of 168 and an SD of 15.5 for the open and shut
times considered together. The arrows indicate the Akaike predictor
values of the original data.
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of the Akaike predictor values for the distributions of open
and shut intervals in Fig. 2 considered separately (4) and
jointly (B) for 51 resamples of the original data (details in
Methods). The histograms plot estimates of the expected
variability in the predictor values if the experiment were
performed 51 times. The arrows indicate the Akaike
predictor values for the original data. The histograms show
that the distributions of expected Akaike predictor values
for the data in Fig. 2 clearly exceed zero.

The continuous lines plot Gaussian distributions
describing the resampled data (see figure legend). The
probability of Akaike predictor values of zero or less being
obtained by chance alone from the Gaussian distributions
would be <10~* for the open times, <102 for the shut
times, and <10-% for the open and shut distributions
considered together. Hence, with a Gaussian assumption,
the rankings of the discrete Markov model above the
fractal continuum model for either separate or combined
distributions were highly significant.

Summary of Data for GABA-activated Chan-
nels. Four different sets of open and shut intervals were
analyzed for GABA-activated channels. In all four the
discrete Markov model gave excellent descriptions of the
open and shut times, and the fractal continuum model gave
poorer descriptions, as indicated by the likelihood ratios.

When the differences in free parameters were taken into
account with the Akaike test, and resampling was used to
determine significance, the discrete Markov model ranked
significantly above the fractal continuum model for three
of the four shut data sets, with the ranking for the fourth
data set being insignificant. Similar analysis showed that
the discrete Markov model also ranked above the fractal
continuum model for three of the four open data sets, but
resampling indicated that only one of these rankings was
significant.

When the open and shut data were considered jointly,
the discrete Markov model ranked significantly above the
fractal continuum for data from three of the four channels,
with the ranking for the fourth channel being insignifi-
cant.

End-plate Channel

Fig. 4 presents log-log plots of the distributions of open (A)
and shut (B) interval durations for data recorded from
end-plate channels activated by 0.1 uM dihydroisoareco-
lone methiodide, a potent acetylcholine receptor agonist
(Waters et al.,, 1988). Data are from six cell attached
patches at the end-plate region of frog interosseal muscle.
Similar to the findings for GABA-activated channels, the
distributions of open and shut interval durations displayed
inflections inconsistent with the fractal continuum model.
As might be expected for data with inflections, the discrete
Markov model gave excellent descriptions of the data
(continuous lines), whereas the fractal continuum model
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FIGURE 4 Distributions of open and shut interval durations recorded
from endplate channels activated by 0.1 uM dihydroisoarecolone
methiodide fit by Markov and fractal models. (4) Open times. The
continuous line plots the maximum likelihood fit to the open durations
with the sum of four exponentials, with time constants (and areas) of:
0.028 ms (0.656), 0.211 ms (0.130), 2.91 ms (0.057), and 11.0 ms
(0.158). The dashed line plots the maximum likelihood fit to the open
durations with the fractal continuum model, with 4 = 2.88 Hz*” and D =
1.71. (B) Shut times. The continuous line plots the fit to the shut times
with the sum of six exponentials, with time constants (and areas) of: 0.079
ms (0.167), 0.600 ms (0.201), 3.79 ms (0.0469), 62.2 ms (0.0428), 1,350
ms (0.346), and 6,680 ms (0.197). The dashed line plots the fit to the shut
durations with the fractal continuum model, with 4 = 0.360 Hz*** and
D = 1.75. The likelihood ratio of Markov to fractal models was e'® for the
open distribution and ¢*® for the shut. 1,217 open and 1,720 shut intervals
were fitted and plotted.

gave poor descriptions (dashed lines). The inadequate fit
by the fractal continuum model is reflected in the Akaike
predictor values of 155 and 457 for the open and shut data
sets, respectively, ranking the discrete Markov over the
fractal continuum model (Eq. 4).

Similar results were found for end-plate channels acti-
vated by isoarecolone methiodide, another acetylcholine
receptor agonist (Waters et al., 1988). These findings for
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end-plate channels are in agreement with the data shown
in Sigworth and Sine (1987), where the distribution of shut
intervals for receptor channels activated by acetylcholine
display a series of marked peaks, which are consistent with
a discrete Markov model and not a fractal continuum
model.

Fast Cl Channel

Fig. 5 presents log-log plots of the distributions of open (A4)
and shut (B) interval durations for data recorded from a
single fast Cl channel in an excised membrane patch from
cultured rat skeletal muscle. Similar to, but even more
pronounced than for the GABA and end-plate channels,
the distribution of shut interval durations displayed
marked inflections. The distribution of open interval dura-
tions displayed, at most, only a minor inflection, suggesting
a smaller fraction of open intervals of briefer duration than
for the GABA and end-plate channels. (The areas of the
exponential components are in the figure legend.)

The discrete Markov model gave excellent descriptions
of both the open and shut distributions (continuous lines).
The fractal continuum model gave a slightly worse descrip-
tion of the open times than the discrete Markov, as
indicated by the likelihood ratio (Markov to fractal) of 3.1.
By taking into account the greater number of free parame-
ters for the discrete Markov model, the Akaike predictor
value (Eq. 4) was 0.1, which was not significantly different
from zero. The fractal continuum model gave a very poor
description of the shut times (dashed lines), as indicated
by the Akaike predictor value of 952.

For 11 additional open distributions from single fast Cl
channels, including the data presented in Blatz and
Magleby (1986b), results similar to those shown in Fig. 5 4
were found. The discrete Markov model gave excellent
descriptions of the open times, and the descriptions of the
open times by the fractal model appeared (by visual
inspection) as good. The likelihood ratios indicated some-
what greater errors for the fractal model, however. When
the larger number of free parameters for the Markov
model were taken into account, the Akaike predictor values
clustered around zero. Resampling indicated only one
significant ranking in the 12 open distributions, and in that
case the Markov model ranked below the fractal, with a P
value of 0.045. Such a ranking would be expected by
chance alone about once every 20 distributions, even if the
rankings of the two models were not significantly dif-
ferent.

For all 12 shut distributions examined from the fast Cl
channel, the Markov model ranked significantly above the
fractal model, and the likelihood ratios usually exceeded
€°®. Such high likelihood ratios arose because typically
more than 95% of the tens of thousands of intervals in the
shut distributions were described with errors greater than
20-1,000% by the fractal continuum model. If the open
and shut data sets were considered jointly, then the Akaike
test ranked the Markov model significantly above the
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FIGURE 5 Distributions of open and shut interval duraitons recorded
from the fast Cl channel fit by Markov and fractal models. (4) Open
times. The continuous line plots the maximum likelihood fit to the open
durations with the sum of three exponentials, with time constants (and
areas) of: 0.013 ms (0.168), 0.208 ms (0.233), and 0.403 ms (0.599). The
dashed line plots the maximum likelihood fit to the open times with the
fractal continuum model, with 4 = 1430 Hz**? and D = 1.08. (B) Shut
times. The continuous line plots the fit to the shut durations with the sum
of six exponentials, with time constants (and areas) of: 0.024 ms (0.106),
0.362 ms (0.0737), 1.63 ms (0.421), 4.32 ms (0.359), 111 ms (0.0247),
and 229 ms (0.0153). The dashed line plots the fit to the shut durations
with the fractal continuum model, with 4 = 6.22 Hz*** and D = 1.57. The
likelihood ratios of the Markov to fractal model were &*' for the open
distribution and €*' for the shut. 7,810 open and 7,996 shut intervals were
fitted and plotted. Membrane potential, — 90 mV; temperature, 22°C.

fractal for all 12 data sets consisting of open and shut
distributions.

The Large Conductance Ca-Activated K
Channel (BK Channel)

McManus and Magleby (1988) have shown that the
distributions of open and shut interval durations recorded
from single BK channels display inflections, consistent

865



with discrete states. They found that the discrete Markov
model described the open and shut distributions for the BK
channel, whereas the fractal continuum model could not
describe either open or shut distributions. In the three data
sets they examined, including the one plotted in Figs. 11
and 12 in McManus and Magleby (1988), the Akaike
predictor value ranked the discrete Markov model above
the fractal continuum model for both the open and shut
distributions, considered separately or jointly.

We have examined an additional 15 data sets for the BK
channel, and found inflections consistent with discrete
states, excellent fits by the Markov model, typically poor
fits by the fractal model, and Akaike predictor values
which always ranked the discrete Markov model over the
fractal continuum model. Resampling suggested that the
rankings were significant for all 18 shut data sets and for
16 of the 18 open data sets. The two open data sets where
the rankings were not significant were of smaller sample
sizes. When the open and shut data were considered
jointly, all rankings were significant. Activity during the
different kinetic modes of the BK channel (see McManus
and Magleby, 1988) was also best fit by discrete Markov
models (not shown).

Further evidence suggesting that the fractal continuum
model does not describe the kinetics of BK channels, are
the observations of Korn and Horn (1988). They find that
the discrete Markov model ranks significantly above the
fractal continuum model for open times recorded from a
Ca-activated K channel in GH, pituitary cells.

Akaike Predictor Values for Four Channels

Fig. 6 A summarizes the ranking of discrete Markov to
fractal continuum models for 36 open (open symbols) and
36 shut time distributions, obtained from four different
channels. Fig. 6 B plots rankings if the open and shut times
in a data set are ranked together. The Akaike predictor
value, Py given by Eq. 4, is plotted against the number of
intervals analyzed. The discrete Markov model ranks
above the fractal continuum model if Py, > 0. In each
figure the dashed lines enclose the data points with insig-
nificant rankings. In 54 of 72 distributions of open and shut
times considered separately, the Markov model ranked
above the fractal, in 17 there were no significant differ-
ences, and in one the Markov model ranked below the
fractal (Fig. 6 A). In 35 of 36 evaluations of open and shut
times considered together, the Markov model ranked sig-
nificantly above the fractal, and in the one remaining
evaluation there was no significant difference.

Notice that the data in Fig. 6 are plotted on double
logarithmic coordinates, and from Eq. 4 that the Akaike
predictor value, Py is an exponent. Thus, for the data sets
where the two models are not significantly different (those
between the dashed lines), and the one data set where the
fractal model ranked above the Markov, the ranking values
differed by less than €. In contrast, in all the remaining
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FIGURE 6 Ranking of discrete Markov to fractal continuum model for
36 data sets of open and shut intervals from four different types of
channels. (4) Akaike predictor values (Py¢) for open and shut distribu-
tions considered separately are plotted against the number of events in
each distribution. Open and filled symbols are for open and shut
distributions, respectively. (B) Akaike predictor values determined for
each data set, with the open and shut distribution considered together, are
plotted against the number of open and shut intervals in the data set. Data
from: GABA-activated channels, triangles; endplate channels, squares;
fast Cl channels, circles; and large conductance calcium-activated potas-
sium channels, diamonds. The rankings of points falling between the
dashed lines were not significantly different from zero.

data sets the Markov model was €' to €' times more
likely.

Distinguishing Models with the
Chi-Squared Goodness of Fit Test
Some comparisons of fits by the discrete Markov and
fractal continuum model were also made using the Chi-

squared goodness of fit test, where the number of degrees
of freedom, m, was calculated from: m = b — 1 — p, where
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b is the number of bins, and p the number of free
parameters in the fit. The two open and two shut distribu-
tions from the end-plate channel and the first eight open
and eight shut distributions from the BK channel were
analyzed. The findings were consistent with those in Fig. 6.
In all 20 distributions, the Chi-squared goodness of fit test
indicated that the observed data were consistent
(P > 0.05) with the discrete Markov model. In contrast, in
18 of the 20 distributions the Chi-squared test indicated
that the data were inconsistent with the fractal continuum
model, and in each of these 18 distributions the P values
were <0.001 that the data were generated by a fractal
model. For the same 20 distributions, the Akaike predictor
test and resampling ranked the Markov model signifi-
cantly above the fractal in 19, with one of the 19 being just
significant, and no significant difference was found for one
distribution. Thus, the Chi-squared test and Akaike test
with resampling gave similar results, and the results of
these two tests simply confirmed in a quantitative manner
the same conclusions which could be drawn from visual
inspection of the fits to the data.

DISCUSSION

Liebovitch et al. (1987) and Liebovitch and Sullivan
(1987) have recently considered the possibility that the
distributions of interval durations from single channels
may be consistent with an empirical fractal scaling equa-
tion. Their interpretation of the empirical equation is that
gating kinetics of single channels are consistent with a
continuum of states, with the effective rate constants for
leaving the collections of open and shut states consistent
with fractal scaling. Such a fractal continuum gating
mechanism for single channels is in marked contrast to
discrete Markov models which assume discrete states, with
the transition rates between the states remaining constant
in time (see Colquhoun and Hawkes, 1981; Hille, 1984).
As discrete Markov and fractal continuum models imply
fundamental differences in the gating mechanisms of ion
channels, and consequently, projected differences in the
observed single channel kinetics, critical analysis of the
single channel data should allow these two models to be
distinguished.

Since it has already been established that discrete
Markov models account for many properties of single
channel kinetics (Neher and Sakmann, 1976; Moczyd-
lowski and Latorre, 1983; Aldrich et al., 1983; Horn and
Vandenberg, 1984; Colquhoun and Sakmann, 1985; Blatz
and Magleby, 1986b; Sine and Steinbach, 1987; McManus
and Magleby, 1988), we examined whether the fractal
continuum model could also describe single channel kinet-
ics, and determined which of these two models was more
probable. Four different types of ion channels were exam-
ined: GABA-activated channels, end-plate channels, fast
Cl channels, and large conductance Ca-activated K chan-
nels.

MCMANUS ET AL. Fractal Models and Channel Kinetics

To evaluate the relative abilities of the two models to
describe the data, we have compared the fits by the fractal
continuum model against those by the discrete Markov
model using an Akaike predictor value to rank the models,
and resampling to determine the significance of the rank-
ings. The Akaike predictor value applies a heavy penalty
for free parameters; each additional free parameter must
increase the probability at least e-fold for a ranking to
remain unchanged (Eq. 4). The Chi-squared goodness of
fit test was also used to compare models to the data for two
of the channels and, in general, gave results consistent with
the Akaike predictor values and resampling.

Comparison of Discrete Markov and
Fractal Continuum Models

36 data sets were examined, each containing a distribution
of open times and a distribution of shut times. The best
possible description of the data by each model was deter-
mined by maximum likelihood methods, and the fits were
quantified by calculating the probability that the observed
data were generated by each model.

In all 72 distributions of open and shut times considered
separately, discrete Markov models gave excellent descrip-
tions of the data. In contrast, in 54 of the distributions the
fractal continuum model gave poor descriptions of the
data, in 16 open and one shut distribution there were no
significant differences between the two models, and in one
open distribution the Markov model ranked below the
fractal (Fig. 6 A). For those distributions where the
ranking of the models was not significant and in the one
open distribution where the fractal model ranked higher,
the fits with the Markov model had less error, but had
lower rankings due to the greater number of free parame-
ters. Treating the open and shut distributions separately in
this manner allows the possibility that different models
may account for gating motions in the open and shut states
of the same channel.

If it is assumed that the same model must account for
gating motions in proteins for both the open and shut
states, then in 35 of the 36 data sets, the discrete Markov
model ranked significantly above the fractal continuum
model (Fig. 6 B). In the remaining data set, the ranking
was not significant. The best fits by the fractal model often
resulted in errors between the observed and predicted shut
distributions of hundreds to thousands of percent (dashed
lines, Figs. 2, 4, and 5). Furthermore, the fractal model
was usually hundreds to thousands of orders of magnitude
less probable than discrete Markov models (Fig. 6). These
likelihood differences and poor fits suggest that the fractal
continuum model is inadequate as a general mechanism for
the gating of these four channels.

However, the fractal model did describe the open times
for the fast Cl channel as well as the Markov model (Fig. 5
A; open circles, Fig. 6 A), and therefore, the question arises
of whether the fractal model might be preferred in this
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case. We think not for the following reasons: (a) as pointed
out by Millhauser et al. (1988), the fractal model leads to
infinitely large rate constants at zero time and, therefore, is
not consistent with modern views of quantum chemistry;
(b) the simplicity of the fractal model will be lost when it is
expanded to account for the inverse relationship observed
by McManus et al. (1985) between the durations of
adjacent open and shut intervals; (c¢) since the Markov
model is consistent with both the open and shut times,
whereas the fractal model is consistent with only the open
times, it seems most economical to assume that the open
times are described by the same basic mechanism as the
shut times.

Since the fractal continuum model appears consistent
with the data examined in its initial consideration (Liebo-
vitch et al,, 1987; Liebovitch and Sullivan, 1987), the
question arises, then, whether Markov models might be
inconsistent with the same data, as the channels examined
to develop the fractal model were different from the ones
examined in this paper. A definitive answer is not possible
without further analysis, but several factors suggest that a
Markov model would be ranked equal to or higher than a
fractal model for the channels examined to develop the
fractal model.

(a) The limited time resolution of 1-1.6 ms in the data
examined by Liebovitch et al. (1987) and Liebovitch and
Sullivan (1987) would have masked a part of the distribu-
tions where major deviations from fractal kinetics often
occur, as indicated by Figs. 2, 4, and 5 in this study, Figs.
11 and 12 in McManus and Magleby (1988), and the data
in Korn and Horn (1988).

(b) Liebovitch et al. (1987) found that the fractal and
Markov models gave similar descriptions of their data. We
have analyzed the same data from their Fig. 4 and found
similar results; the ranking of the models was not signifi-
cant (although the Akaike predictor value did rank the
Markov over the fractal model). More detailed analysis by
Korn and Horn (1988) indicates that the inability to
discriminate between the two models is due to the limited
sample size, and not the fact that the models are indistin-
guishable.

(¢) A requirement of fractal kinetics is that the data be
self similar on different time scales. Liebovitch and Sulli-
van (1987) have tested for self similarity by plotting data
on different time scales. Although the data approximate
self similarity, some pronounced differences between the
plots suggest deviation from a fractal model. Thus, a
Markov model may well give a better description of the
data.

Discrete Kinetic States

The discrete bumps and inflections in log-log plots of open
and shut times (Blatz and Magleby, 1986b; Sigworth and
Sine, 1987; Horn, 1987; Kerry et al., 1988; McManus and
Magleby, 1988; Korn and Horn, 1988) suggest that single
channels pass through discrete kinetic states during gating,
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as required for discrete Markov models, rather than a
continuum of states, as required for the fractal continuum
model. Multiple bumps and inflections in log-log distribu-
tions of interval durations, although not always prominent,
are such a general feature of single channel kinetics that
models which cannot generate such bumps and inflections
can be excluded from consideration as general gating
mechanisms. It should also be noted that the absence of
discrete bumps and inflections in log-log plots of interval
durations are not inconsistent with discrete states. Sums of
exponentials, as required for discrete Markov models, can
generate either bumps or apparently smooth curves on
log-log plots, depending on the exponential parameters
(Fig. 1).

The finding of data consistent with discrete kinetic
states in our study should not be surprising, as three of the
four channels studied are activated by the binding of
agonist or Ca. The binding of each additional agonist
molecule would add an additional distinct chemical state.
Since the time spent in these different chemical states
might be expected to affect the durations of the open and
shut intervals, then these chemical states could give rise to
distinct kinetic states (Colquhoun and Hawkes, 1981;
McManus and Magleby, 1988).

In light of the hundreds of amino acids and resulting
large proteins that form channel molecules (c.f. Finer-
Moore and Stroud, 1984; Noda et al., 1984), it might be
expected that there would be a large number of conforma-
tional states (see references in Liebovitch et al., 1987).
Why then, are there so few kinetic states? Some conforma-
tions may simply have little, if any, effect on the gating
associated with the opening and closing of the channel.
Other conformations may have lifetimes too brief or too
long or too similar in duration to be detected as distinct
kinetic states within the resolution of the kinetic analysis of
the data. Finally, each kinetic state may arise from many
conformational substates which equilibrate rapidly enough
(c.f. Ansari et al.,, 1985) that they are not detected by
single channel analysis techniques.

Models Based on Idealized Assumption of
Protein Dynamics

Although our data suggest that the simple fractal con-
tinuum model of Liebovitch et al. (1987) cannot serve as a
general model for the gating of four different channels, the
fractal model was one of the first to explore gating
properties based on the notion that the time course of
dynamic processes in proteins can occur over many orders
of magnitude. The observations of Liebovitch et al. (1987)
and Liebovitch and Sullivan (1987), that distributions of
shut times can be approximated by a power type function,
and their concept of considering gating in terms of ideal-
ized assumptions about protein dynamics has led to two
interesting models for channel gating. Both models are
discrete Markov models, but they differ from more tradi-
tional discrete Markov models in that they have a very
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large number of states, rather than the fewest possible
states, and it is assumed that the rates constants for
transitions among the states are similar (Millhauser et al.,
1988; Laiiger, 1988).

The expansion of these many-state models to include
multiple independent transition pathways between open
and shut states and also to include some rate constants
which are slower than the uniform rate constants, should
allow them to provide descriptions of single channel kinet-
ics equivalent to those presently obtained from discrete
Markov models with fewer states. Thus, the potential
contribution of the protein dynamics approach upon which
the many-state models are based is not that the resulting
models will have fewer free parameters, but that the
approach provides a means to study gating by starting at
the opposite end of the question asked by the more
traditional kinetic approach. The protein dynamics
approach explores which assumptions about protein
dynamics are consistent with the observed data. The
traditional kinetic approach explores which kinetic gating
mechanisms are consistent with the observed data. Proper
application of both approaches should speed our under-
standing of channel gating.
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