
STATISTICAL DISCRIMINATION OF FRACTAL AND

MARKOV MODELS OF SINGLE-CHANNEL GATING

STEPHEN J. KORN AND RICHARD HORN
Neurosciences Department, Roche Institute ofMolecular Biology, Nutley, New Jersey 07110

ABSTRACT A statistical comparison is presented of Markov and fractal models of ion channel gating. The analysis is
based on single-channel data from two types of ion channels: open times from a 90 pS Ca-activated K channel from GH3
pituitary cells, and closed times from a nonselective channel from rabbit corneal endothelium (Liebovitch et al., 1987a).
Maximum likelihood methods were used to fit the data. For both data sets the best Markov model had three exponential
components. The best Markov model had a higher likelihood than the fractal model, and the Asymptotic Information
Criterion favored the Markov model for each data set. A more detailed analysis, using the Monte Carlo methods
described in Horn (1987), showed that the Markov model was not significantly better than the fractal model for the
corneal endothelium channels. The inability to discriminate the models definitively in this case was shown to be due in
part to the small size of the data set.

INTRODUCTION

As first suggested by the work of Hodgkin and Huxley
(1952), and subsequently reformulated by Fitzhugh
(1965), modeling of ion channel gating has been rooted in
the concepts of classical kinetics. In accord with these
concepts, channels are proposed to exist in a finite number
of discrete states, with transitions between states governed
by first order rate constants. The additional assumption
that the rate constant is independent both of time and of
the preceding history of the channel defines the model as a
time-homogeneous Markov chain model.

Although Markov chain models often fit experimental
data quite well (cf., Magleby and Pallotta, 1983a, b; Horn,
1984; Pallotta, 1985), the possible existence of other, more
satisfactory, models remains. In fact, several conceptually
different models of ion channel gating have been proposed
(Rubinson, 1982; Fishman, 1985). Recently, Liebovitch et
al. (1987a, b, c) applied Mandelbrot's (1983) fractal
concepts to the gating of ion channels. In contrast to
Markovian assumptions, it is assumed in Liebovitch's
fractal model that the channel can exist in an infinite
number of energy states, perhaps due to subtle differences
in protein conformation. Consequently, transitions from
one conductance state to another would be governed by a
continuum of rate constants. The simplest fractal model of
ion channel gating postulates that there is one nonconduct-
ing (closed) and one conducting (open) state, and that the
rates for transition between these states vary as a function
of time (Liebovitch et al., 1987a, b, c).

Here, we used statistical methods to compare Markov
and fractal models of single-channel dwell time data. Two
data sets were analyzed as examples: Ca-activated K
channel open times, which have been extensively charac-

terized using Markov models (e.g., see Magleby and
Pallotta, 1983a, b; Pallotta, 1985; McManus and Magle-
by, 1988), and corneal endothelium channel closed times,
which Liebovitch et al. (1987a, b) have described as
fractal.

METHODS

Patch-clamp Recording
of Single-Channel Currents

The gigaseal patch clamp technique (Hamill et al., 1981) was used to
record single-Ca-activated K channel currents from outside-out mem-
brane patches, excised from cultured GH3 pituitary cells. Patch pipettes,
fabricated from N51A glass, were coated internally and externally with
Sigmacote (Sigma Chemical Co., St. Louis, MO) and externally with
Sylgard (Dow Corning Corp., Midland, MO). The pipette solution
(facing the internal membrane face) consisted of (in mM): KCI, 150;
HEPES, 10; EGTA, 1.1; CaCl2, 0.92; and sucrose, 15 ([Ca] - 0.5 AM,
pH (adjusted with NaOH) - 7.36, osmolality - 319). The bath solution
(facing the external membrane face) consisted of (in mM): NaCl, 140;
KCI, 5; MgCl2, 10; Hepes, 10 and glucose, 20 (pH - 7.36, osmolality -

332). Apamine (200 nM, Sigma Chemical Co.) was added to the bath
solution to block a small conductance K channel. Single-channel currents
(Fig. 1 A) were filtered at 20 KHz, recorded on FM tape at 30 inches/s
(bandwidth - 16 KHz), and digitized from the tape at 80 KHz.

Dwell Time Histograms
Ca-activated K channel open times were calculated using a half-
maximum threshold detection technique (Colquhoun and Sigworth,
1983). 12,148 opening events were measured from a continuous recording
at a holding potential of +20 mV; the open dwell times ranged from 12.5
,gs (the sample interval) to 9.8375 ms in duration. Dr. L. Liebovitch
kindly provided us with 1,465 closed times measured from single rabbit
corneal endothelium channels (Liebovitch et al., 1987a). These dwell
times ranged from 1.65 ms to 1.185 s. Except as noted, dwell time
histograms were plotted with time on the abscissa logarithmically trans-
formed, and the number of events on the ordinate transformed by the
power of one-half (Sigworth and Sine, 1987).
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Correction for Sampling Promotion Error

Dwell times measured at a discrete sample interval are subject to a
binning error known as sampling promotion error (McManus et al.,
1987), which is due to the fact that dwell times are clustered at multiples
of the sample interval. Two strategies are presently available to avoid the
statistical bias caused by this error. The first is to correct the likelihood
function for fitting the data (McManus et al., 1987). The second is to
interpolate the experimental current trace in the vicinity of threshold
crossings, thus avoiding the usual binning of the data at multiples of the
sample interval (Colquhoun and Sigworth, 1983; Sigworth and Sine,
1987).
We have chosen another strategy, which provides an approximate

correction. The probability p(NIt) for an event covering N sample
intervals, given a true duration t, is a triangular function between N - I
and N + 1 sample intervals (Sine and Steinbach, 1986; McManus et al.,
1987). If it is assumed that the true probability density of dwell time is
constant over each bin (i.e., the bin width is narrow compared with the
fastest decay of this density), then the conditional density p(tIN) is also a
triangular function given by

[(t/T) + 1 -N]T (N- 1)T ' t < NT

p(tIN) - [N + 1 - (t/T)]/T NT' t <(N + 1)T,

0 elsewhere

where T is the sample interval (12.5 ps for our data).
Whereas the true dwell times can be of any duration, the measured

dwell times fall into bins, at intervals NT (whereN - 1, 2,. .. ), that are
multiples of the same interval, T. To correct for this error, the events in
each bin were probabilistically redistributed according to the above
density, p(tIN). This was done by calculating the probability for events in
the Nth bin to be located in any interval between (N - 1)T and
(N + 1)T.

For dwell times between (N - 1)T and NT the probability of an event
falling in the interval (t,, t2) iS

T` [(t2_-t2)/2T + (1 - N)(t2 - tl)]
For dwell times between NT and (N + 1)T the probability of an event
falling in the interval (tO, t2) iS

T-'[(N + l( -t)_(t2 _-t2)/2T].
In practice, when data are binned linearly, the correction for sampling
promotion error is simple. One fourth of the data is moved out of the Nth
bin; one eighth goes into the (N - I)th bin and one eighth goes into the
(N + 1)th bin. For log-binning, the bin limits (t,, t2) must be determined
(see Sigworth and Sine, 1987). Then the data in the original Nth bin are
redistributed, according to the above probabilities, among all log bins
between (N - 1) T and (N + 1) T. Note that these corrections for
sampling promotion error convert the histogram bins from integers to
reals. It should also be noted that this correction is only approximate,
since it is assumed that bin widths are small enough that the density of
dwell times is constant over each bin. Our statistical analysis used
log-binned data at a density of 16 bins per decade. Decreasing the bin
widths to 25 bins per decade changed the estimates of time constants by
<1%, which suggests that the correction was adequate for our data.

Logarithmic Transformation of Markov
and Fractal Models

For the logarithmic transformation of time, x - ln(t). The probability
density function for an N-exponential Markov model of dwell time is
(Sigworth and Sine, 1987):

N

g(x) - Ew, exp [x - x,- exp (x - x,)], (1)
i-I
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where w, and x, are the weight and logarithm of the ith time constant.
One of the several advantages of this method of display is that, when using
Markov models, peaks occur at the time constants for transitions between
states (where x - xi). As shown below, this contrasts with the results
obtained for the fractal model.
The fractal model of ion channel kinetics assumes that the kinetic rate

k for transition from one state to another is a function of the time scale in
which it is observed. The rate may be expressed as k - At' -D, where A is
the kinetic setpoint and D is the fractal dimension (Liebovitch et al.,
1987a, b, c). For a physically and mathematically plausible density
function, 1 < D < 2. When D - 1, the rate is independent of time, and the
scheme for this transition reduces to a single exponential, Markov model.
For D > 1.0, as a channel remains in a particular state longer, the rate for
leaving that state becomes smaller.
The cumulative distribution function for a channel that exhibits fractal

properties is:

F(t) = 1 - exp {[-A/(2 - D )]t2-D1. (2)

Following log transformation of time (t), the distribution function is:

G(x) - F[exp (x)] =

1 - exp {[-A/(2 - D)][exp (x)]2-D. (3)

The corresponding probability density function is:

g(x) = A [exp (x)] 2-D exp {[-A/(2 - D)]

- [exp (x)]2-D. (4)
In contrast to the density function for a Markov model (Eq. 1), this fractal
density function is always unimodal, with the peak at

x -ln[A/(2 - D)]/ (2 - D). (5)

Note that the histograms in Figs. 2 and 3 were plotted using log,0(time)
rather than the natural logarithm of time, and were plotted at a bin
density of 10 bins per decade.

Fitting the Dwell Time Distributions
Maximum likelihood methods were used to estimate the parameters for
both Markov and fractal models. For fitting, the data were log-binned at a
density of 16 bins per decade, and the likelihood was calculated for the
data to fall within the upper and lower limits of each bin (Sigworth and
Sine, 1987). The likelihood was calculated for dwell times 't_,i (e.g., see
Horn, 1987; Sigworth and Sine, 1987), because events shorter than t,n
were assumed to be under-represented due to errors related to low-pass
filtering (Colquhoun and Sigworth, 1983). For Ca-activated K channels,
tmin was 37.5 us. For the corneal endothelium channel, tmin was 1.65 ms.
The likelihood was maximized by a variable metric algorithm kindly
provided by Dr. Kenneth Lange.

Theoretical distributions were calculated for each data set by substitu-
tion of the appropriate maximum likelihood estimates into Eqs. (1) and
(4). For comparison with the experimental data, these distributions were
scaled using Eq. (10) in Sigworth and Sine (1987).

Simulations and Model Comparisons
Simulation of data was used in some of the statistical procedures. In each
case, the inverse of the appropriate density function was determined (e.g.,
see Blatz and Magleby, 1986; Horn, 1987). For the fractal model, a
random dwell time, t, was simulated from the equation,

t = [-(2 - D)ln(RAN)/A](2-D )-

where RAN is a uniformly distributed random number between 0.0 and
1.0.
The methods of model discrimination followed the procedures in Horn
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(1987). The best Markov models were determined by sequential likeli-
hood ratio tests and the comparisons between Markov and fractal models
used procedures appropriate for nonnested models.

RESULTS

Ca-activated K Channels
Ca-activated K channels (90 pS) were recorded from an
outside-out patch at a holding potential of +20 mV (Fig.
1 A). This patch contained two channels, but under these
experimental conditions, openings of both channels over-
lapped in fewer than 0.5% of 12,148 observed events.
Likelihood estimates were obtained for five models of
channel closing: four Markov chain models consisting of
one, two, three, or four exponentials and a fractal model.
Dwell times <37.5 ,us were excluded from the analysis (see
arrow in Fig. 2). The remaining data set consisted of
11,677 dwell times. Maximum log-likelihood values for
each model are presented in Table I. Using a likelihood
ratio test, the three-exponential Markov model was clearly
superior to the one- and two-exponential Markov models.
The four-exponential model was not better statistically
(data not shown). Both the likelihood ratio test and the
Asymptotic Information Criterion (AIC, Akaike, 1974;
Horn, 1987) indicated that the three-exponential model
(model M) was better than the fractal model (model F). If
the log likelihood ratio (LLR) is defined as the logarithm
of the ratio of the maximum likelihood of model F to that
of model M, and ki is the number of free parameters in
model i, then

AIC - LLR - (kF - kM) = -801.36.

Because the AIC value is less than zero, it is concluded that
the Markov model is better. The statistical significance of
this value is evaluated below.
Open time histograms were constructed in two ways.
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FIGURE 1 Open times for Ca-activated K channels. (A) Examples of
25.6 ms segments of the data recorded continuously at a holding potential
of +20 mV. Openings are upward transitions. (B) Linear histogram of
open times. Data were corrected for sampling promotion error (see
Methods). The best-fit theory curves for corrected data are superimposed
on the histogram. The best Markov model had three exponential compo-
nents. The insert shows the data scaled for dwell times >200 us.
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FIGURE 2 Log-binned histograms of open times for Ca-activated K
channels. Same data as in Fig. 1. A and B show data uncorrected and
corrected for sampling promotion error. The best Markov model for each
case is superimposed. The best fractal model of the corrected data is
shown (dashed line) in B. The arrow indicates the minimum duration of
data used in the fit. The parameters for the models in B are given in Table
I. The parameters for the model in A are: r,, r2, r3 - 65.84, 5.243,0.9369
ms' ; wI, W2, w3- 0.8831, 0.0465, and 0.0704.

The standard technique, plotting the number of events per
bin as a function of time, is shown in Fig. 1 B. These data
were corrected for sampling promotion error (see Meth-
ods). In Fig. 2 the data were binned according to the
method of Sigworth and Sine (1987); the square root of the
number of events is plotted as a function of the logarithm
of time. As described by Sigworth and Sine, log-binned
histograms provide information graphically that is not
obvious from linear histograms. Markov models predict
peaks in a log-binned histogram, each of which corre-

TABLE I
MAXIMUM LOG LIKELIHOODS AND ESTIMATED

KINETIC PARAMETERS FOR MARKOV
AND FRACTAL MODELS

Ca-activated K channel Corneal endothelium channel

Maximum log likelihoods and log likelihood ratio (LLR) from 3
Markov models and fractal model.

model max. log likelihood model max. log likelihood
1 state -41376.49 1 state -5849.503
2 state -36228.23 2 state -5338.293
3 state -36123.12 3 state -5252.357
fractal -36927.48 fractal -5256.369
LLR (LLF- LLM) - -804.36 LLR (LLF- LLM) - -4.012

Best fit kinetic parameters, 3 state Markov model.

r, - 37.85 ± 1.06 r, - 0.398 ± 0.050
r2- 3.440 ± 0.409 r2- 0.037 ± 0.003
r3= 0.888 ± 0.031 r3 - 0.006 ± 0.001
w,- 0.73 ± 0.01 WI - 0.46 ± 0.02
W2 - 0.11 ± 0.01 W2- 0.43 ± 0.02
W3- 0.16 ± 0.01 W3 - 0.11 ± 0.02

Best fit kinetic parameters, fractal model.

A -4.56 ± 0.08 A - 2.50 ± 0.14
D- 1.77 ± 0.01 D- 1.63 ± 0.01

r,, r2, r3 are rate constants (units of ms-'), and w,, w2, and w3 are
associated weighting factors in the density function in Eq. 1 (r, -
1/exp[x,]). A is the kinetic setpoint (units of Hz(2-D)) and D is the fractal
dimension in the density function in Eq. 4.
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sponds to the logarithm of a time constant (Sigworth and
Sine, 1987). In contrast, the fractal model predicts only a
single peak (Eq. 5 above; Horn and Korn, 1988). The
presence of two prominent peaks in Fig. 2 is itself sufficient
to exclude the fractal model from consideration (Horn and
Korn, 1988). Fig. 2 also shows the effect of correcting the
data for sampling promotion error (see Methods). Fig. 2 A
shows uncorrected and Fig. 2 B shows corrected data.

Theoretical curves, calculated using the three-exponen-
tial Markov model and the fractal model, are superim-
posed on the histograms in Figs. 1 and 2. The parameters
used for each curve are listed in Table I. As expected from
the LLR, the data are fit better by the Markov model.
Note that only two peaks are evident in the plots of Fig. 2,
whereas the Markov model predicts three peaks corre-
sponding to the three exponential components. This is due
to the fact that the two slower time constants are so close
that they form one broad peak.

Corneal Endothelium Channels

Closed time histograms, derived from single-channel data
collected by Liebovitch et al. (1987a) from corneal endo-
thelium, are presented in Fig. 3. The data set consists of
1,465 dwell times. Likelihoods for all five models were
evaluated for dwell times > 1.65 ms, the shortest dwell time
in this data set. The parameter values which gave the best
fits and the likelihoods are presented in Table I. The best
Markov model, by likelihood ratio test, had three exponen-
tial components. The likelihood was not improved signifi-
cantly for a model with four components. Theoretical
curves were calculated using the likelihood estimates (Ta-
ble I) for the three-exponential Markov model (Fig. 3 A)
and the fractal method (Fig. 3 B, solid line). For compari-
son, the theoretical curve for the fractal model using
parameters obtained by Liebovitch et al. (1987a) is shown
(Fig. 3 B, dashed line). No correction was made for
sampling promotion error in our analysis of these data,
because the dwell times were measured manually (L.
Liebovitch, personal communication), and therefore do not

Markov Fit Fractal Fit
n' 16- Likelihood

ci, ~~~~~~~~~~Liebovitch

0

V0

-1 0 1 2 3 4 0 1 2 3 4
Closed Time (log ms) Closed Time (log ms)

FIGURE 3 Log-binned histograms of closed times for corneal endothe-
lium channels. The data were not corrected for sampling promotion error.
A shows the best Markov model and B shows the best fractal model
(smooth line). The dashed line in B is the fractal model using the
parameters estimated by Liebovitch et al. (1987a) for the same data
(A - 1.49 Hz02' and D - 1.79). Other model parameters are given in
Table I.

conform with the probabilistic description in McManus et
al. (1987). When we used our correction on these data, the
LLR decreased in favor of the Markov model (data not
shown). The AIC criterion, which chooses one model over
another, suggested that the Markov model was marginally
superior (AIC =-1.012).

Non-nested Model Comparisons
Although the data shown for Ca-activated K channels
(Figs. 1 and 2) clearly favored a three-exponential Markov
model over the fractal alternative, the situation was not so
obvious for the data in Fig. 3. First, the presence of discrete
peaks is not convincing in Fig. 3. Furthermore, the AIC
value for these data is close to zero, which suggests that the
two models may be statistically indistinguishable for this
data set. This ambiguity can be addressed by more elabo-
rate statistical procedures which use Monte Carlo methods
(Horn, 1987). We will demonstrate these methods first
with the data obtained from Ca-activated K channels.
Two procedures, described in detail in Horn (1987),

were used to assign a significance level to the comparison
of the two models. In the first procedure, 1,000 data sets
were simulated under the assumption that one or the other
model was correct. These data sets were simulated using
the maximum likelihood estimates calculated from the
original data, either for the three-exponential Markov
model or for the fractal model. The size of each data set
was the same as that of the original one, 11,677 dwell times
>37.5 us. A value for LLR (LLF- LLM) was then
obtained for each data set using the best fit from each
model. The distribution of 1,000 LLRs obtained from each
simulation is shown in the upper part of Fig. 4. The
distribution on the left represents LLRs obtained when

80 Simulated Data

u) 60 Markov Fractal
-4-, i

LU
i)40I

# 20.

60
60-- Resampled Data

U,

20

LLR

FIGURE 4 Comparison of best Markov and fractal models for open
times of Ca-activated K channels. The upper plot shows the empirical
distribution of LLRs for the fractal versus Markov models with data
simulated by the Markov model (left) or the fractal model (right). The
original LLR (arrow) is consistent with the Markov model but not the
fractal model. The lower plot is the distribution of LLRs for resampled
data. The distribution is much less than zero, in support of the Markov
model.
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data were simulated using the Markov model; the distribu-
tion on the right was obtained when the fractal model was
used to simulate the data. The arrow below the histogram
designates the original LLR, obtained from the best fit of
the real data. The original LLR is a possible member of the
population of LLRs simulated under the Markov model,
but is distinct from the fractal population. This plot shows
that, for the parameters given in Table I, it is possible to
discriminate accurately between the fractal and Markov
models for every data set.
The second procedure for statistically comparing the

models involved estimating the variability of LLR of the
original data. To do this, 1,000 data sets containing 11,677
intervals were generated by randomly resampling the
original 11,677 intervals with replacement. Maximum
likelihood estimates were calculated for each resampled
data set using the Markov and fractal model. The distribu-
tion of LLRs (LLF- LLM) for each resampled data set is
plotted in the lower panel of Fig. 4. The LLR for the
original data set is shown by the arrow below the distribu-
tion. Ignoring parsimony, if the value of LLR is <0, the
data are consistent with the Markov model. If the LLR is
>0, the data are consistent with the fractal model (a value
of 0 suggests that the models are not statistically different,
in terms of likelihood). The distribution of LLRs for the
resampled data in Fig. 4 is entirely below zero, i.e., the
likelihood was greater for the Markov model in each of the
1,000 data sets. This result again supports the conclusion
that the Markov model is superior to the fractal model for
open times of Ca-activated K channels. A consideration of
parsimony would change the critical value from zero to
-3, the difference in the number of free parameters
between the two models (Horn, 1987). This consideration
has no effect on the choice of the Markov over the fractal
model.

These methods become more important for analysis of
the closed times of corneal endothelium channels. In this
case both the AIC value and the plots of Fig. 3 suggest that
the two types of model are more difficult to discriminate.
Fig. 5 shows the analysis of these models using simulation
(upper panel) and resampling (lower panel). These distri-
butions of LLRs show several characteristics that differ
from those of Fig. 4. First, the distributions of LLRs for
simulated Markov and fractal models overlap, showing
that simulated data sets from the two types of model are
more similar in terms of likelihood. Second, the original
LLR (-4.012) falls in the tails of the simulated distribu-
tions of both models. Based on the mean and standard
deviation of each of these two approximately Gaussian
distributions (see legend of Fig. 5), the original LLR has a
probability P = 0.012 of being a member of the Markov
distribution and P - 0.025 for the fractal distribution.
Based on the rank order of these distributions, the original
LLR has a probability of 0.006 of being a member of the
Markov distribution and 0.012 for the fractal distribution.
Using typical significance levels for hypothesis tests (e.g.,

0
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_
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FIGURE 5 Comparison of best Markov and fractal models for closed
times of corneal endothelium channels. The upper plot shows the
empirical distribution of LLRs for the fractal versus Markov models with
data simulated by the Markov model (left) or the fractal model (right).
The original LLR (arrow) barely falls within the tails of both distribu-
tions. The Markov distribution (left) has a mean of -15.74 and a
standard deviation of 5.16. The fractal distribution (right) has a mean of
7.02 and a standard deviation of 5.63. The lower plot is the distribution of
LLRs for resampled data. The distribution includes both zero and the
AIC value of - 1.012, having a mean of -6.20 and a standard deviation
of 5.16.

a - 0.01-0.05), these probabilities are marginal in terms
of rejecting the appropriate null hypotheses. Third, the
distribution of LLRs of resampled data includes both zero
(P=0.110) and the AIC value (-1.012, P=0.158),
indicating that the two models are indistinguishable
(Horn, 1987). In total, the analysis shown in Fig. 5
suggests that the data for corneal endothelium channels
cannot lead to a clear choice between Markov and fractal
models. We discuss below some of the possible problems in
making a discrimination for these data.

DISCUSSION

Our goal here was to present a rigorous method for
choosing between Markov and fractal models of ion chan-
nel gating. These two classes of models represent markedly
different views of channel gating, and would require
different types of hypotheses regarding gating mecha-
nisms. Markov chain models assume that channels exist in
a finite number of significant energy states, whereas
Liebovitch's fractal model assumes that channels exist in
an infinite number of significant energy states. In practical
terms, the primary difference between the two models is in
the time-dependence of the transition rates; the fractal
model assumes that the transition rate from one state to
another is a function of time (Liebovitch et al.,
1987a, b, c), whereas Markov models are time-homoge-
neous (Colquhoun and Hawkes, 1981, 1983; Horn, 1984).
The statistical methods for comparison of these models are
necessarily complicated, because the models are non-
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nested (one model cannot be described as a smoothly
parametrized subhypothesis of the other, Horn, 1987).
We chose for our analysis two data sets of single-channel

dwell times, one that has been extensively described using
Markov chain models and one that was previously
described as fractal. Analysis of >11,000 Ca-activated K
channel open times strongly favored a three-exponential
Markov model over the fractal alternative. A similar
analysis of 1,465 closed times from corneal endothelium
channels demonstrated, however, that for this data set, the
two models could not be discriminated.
The failure to discriminate between the three-exponen-

tial Markov and the fractal model for corneal endothelium
channels was due to an insufficient amount of data. The
density functions for these models are mathematically
distinct (except that both models can be reduced to a
single-exponential density for specific parameter values).
The available data set had only 1,465 dwell times. If it had,
for example, as many dwell times (1 1,677) as we used for
analysis of Ca-activated K channels, the discrimination
would have been possible. This is shown in Fig. 6. Data sets
of 11,677 dwell times >1.65 ms were simulated under each
model, using the parameter estimates in Table I. The
resultant distributions of LLRs are plotted in Fig. 6. These
distributions are well separated, and neither one includes
zero. This means that, for these parameters and a data set
of this size, the models are always distinguishable. This
fact is especially apparent when considering the data
simulated under a fractal model. Every LLR was much
greater than zero despite the three additional free parame-
ters of the Markov model, which indicates that every
11,677 event data set simulated by the fractal model was
unambiguously fractal.

Another insufficiency of the available data set for this
type of channel was the frequency limitation; data were
limited to dwell times >1.65 ms. It is probable that a
greater resolution of dwell times would help the discrimi-
nation, especially since most of the data in the fractal
model occurs at much faster dwell times (Horn and Korn,
1988).

Simulated Data
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30-

> 20-

10- i .
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FIGURE 6 Histograms of LLRs from data simulated under the Markov
(left) or fractal (right) model using parameters for the corneal endothe-
lium channel but a larger sample size for each data set (see text). The
empirical distributions are well-separated and distinct from zero, showing
that the models are distinguishable for data sets of this size (i.e., 11,677
dwell times).

We have used maximum likelihood methods to fit all of
the data. This contrasts with the methods used by Liebo-
vitch et al. (1987a, b, c). Our estimates of fractal parame-
ters for their single-channel data differ from their esti-
mates. Our maximum likelihood estimates ofA and D are
2.50 ± 0.14 Hz03' and 1.63 ± 0.01. Their estimates of A
and D were 1.49 Hz02' and 1.79 (Liebovitch et al., 1987a).
Fig. 3 B has plots of the density function using both sets of
parameters. Although both curves seem to fit the data
qualitatively, the maximum likelihood estimates, by defini-
tion, yield a density function with a greater likelihood. The
justifications for use of maximum likelihood estimates are
well known (e.g., see Rao, 1973). Specifically, maximum
likelihood estimates are unbiased and have minimum
variance among all unbiased estimates. Furthermore, max-
imum likelihood estimation extracts all of the relevant
information that the data can provide about the parame-
ters being estimated (e.g., see Ferguson, 1967, chapter 3).
Finally, the likelihoods themselves may be used for likeli-
hood ratio tests and comparisons of non-nested models
(Horn, 1987).
Our analysis does not address the usefulness of fractal

models for modeling the behavior of these channels under
other conditions or for modeling channel behavior in
general. However, our results are in agreement with a
similar analysis of dwell times from four different types of
ion channels (McManus and Magleby, 1988; McManus et
al., 1988). Furthermore, we know of no example where a
fractal model is clearly superior to a Markovian alterna-
tive. In fact, the literature is already replete with dwell
time histograms that could not be fit with a fractal model
of the form proposed by Liebovitch et al. (1987a, b, c),
because the multiple components are readily identified
visually (e.g., see Camardo and Siegelbaum, 1983;
Magleby and Pallotta, 1983a, b; Sigworth, 1983; Blatz and
Magleby, 1986; Hestrin et al., 1987; Sigworth and Sine,
1987; Horn and Korn, 1988; Papke et al., 1988).
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