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ABSTRACT A one-dimensional version
of the model recently proposed by
Lauger (1988) to explain the closed-
time distribution of ionic channels in cell
membranes is solved analytically. While
the probability density f(f) for closed-
time lengths may show a well-defined

exponential behavior at short times, a
power-law decay is predicted at long
times. The influence of an additional
random distribution of defects in the
current-conducting protein is investi-
gated and found to be dominating at
long times. Explicit expressions that

may be used for fitting experimental
data are given for the closed-time dis-
tribution. Some of the available data
are discussed and shown to be in good
agreement with the predictions of the
model.

INTRODUCTION

Since the introduction of the patch clamp method (Neher
and Sakmann, 1976), it has been possible to analyze in
detail the properties of single ionic channels in proteins
embedded in cell membranes. The fluctuations of the
electrical current through such a channel can be charac-
terized by assuming that the channel oscillates randomly
between a “closed” (nonconducting) state and “open”
(conducting) state, in which the value of the electrical
current is well defined. In most cases the distribution f(#)
of closed times is not a single exponential (which would
correspond to a single rate constant for transitions
between these states), but exhibits a more complex behav-
ior. This observation suggests that a closed channel can
exist in different substates, in which the structure of the
channel protein is slightly different. In other words, the
reopening of a closed channel seems to be coupled to
time-dependent variations of the protein structure. There-
fore, the measurement of a nonexponential distribution of
closed times yields indirect information about internal
motions in the protein molecule. The general question is
how this information may be extracted by modeling the
dynamics of the structural fluctuations that influence the
channel behavior.

A straightforward procedure is to fit the measured
distribution of closed times by a superposition of a certain
number of exponentials, and to interpret the result in
terms of a kinetic model containing the same number of

'Many few-site Markov models with a structure different from that of
Fig. 1 a have been used in the literature. Although we focus here on a
linear sequential structure, our conclusions remain valid for the other
variants.

protein substates. It is often assumed that the “open”
state and the n substates of the “closed” state of a channel
form a chain-like sequence,' in which transitions are
allowed only between nearest-neighbor states (Fig. 1a).
In this case, the model parameters—the (2n — 1) rates
for the transitions between the open state and the n
substates of the closed state—are uniquely determined by
the fit parameters—the » relaxation times plus (n — 1)
parameters for the relative weights of the n exponential
terms (see, for example, Colquhoun and Hawkes, 1981,
and Hille, 1984). This procedure, which is commonly
referred to as the Markov model, is meaningful only if the
fit of the closed-time distribution in the time range of the
measurement is unambiguous. This is the case if the
doubly logarithmic plot of the experimental closed-time
distribution shows well separated humps, each of which
corresponds to a different relaxation time. However, the
decomposition of the measured distribution into a sum of
exponentials may be not at all unique, and even the
number of exponentials to be used in a fit may not be
sharply defined. This is particularly true in the cases
where the measured distribution function resembles a
power law (McGee et al., 1988) or a fractional exponen-
tial (Liebovitch et al., 1987). In view of such ambiguities
one may question the basic assumption of the Markov
model, according to which only a small number of well-
defined substates of the protein molecule are involved in
the channel kinetics.

In fact, the total number of configurational substates of
a protein molecule is very large. The evidence comes from
a variety of sources. We mention the experiments on flash
photolysis of CO-liganded myoglobin (Frauenfelder,
1984; Ansari et al., 1987; Frauenfelder, 1988a), the
measurement of the Debye-Waller (Frauenfelder et al.
1979; Artymiuk et al., 1979; Frauenfelder, 1988b) and
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the Lamb-Maossbauer factors (Parak et al., 1981; Parak
and Knapp, 1984), and the results of computer simulation
(see, e.g., Elber and Karplus, 1987).

The existence of the substates is due to the fact that
some degrees of freedom of the molecular structure are
governed by relatively weak forces, such as van der Waals
forces or hydrogen bonds, which allows certain intramo-
lecular rearrangements to take place at normal tempera-
tures (Frauenfelder, 1984, 1988a). Simple examples are
the reorientation of molecular side groups and the shift of
hydrogen bonds. A more general type of rearrangement
can be visualized as the diffusion of mobile packing
defects which occurs in the otherwise close packed protein
structure (Lumry and Rosenberg, 1975; Richards, 1979;
McCammon et al., 1983; Englander and Kallenbach,
1984). Building on this knowledge about conformational
substates, models of the kinetics of protein channels may
be constructed which describe the participation of a large
number of substates, without introducing a large number
of model parameters at the same time. A model of this
kind is Liuger’s defect-diffusion model (Liuger, 1988).
This model describes the following physical picture of
channel closing and reopening. A channel is closed when a
molecular group “swings away” from the channel wall
into the ionic pathway, which leaves behind a “hole” in
the channel wall. The hole can propagate into the interior
of the protein. Inside the protein the hole may be visual-
ized as a packing defect in the nearly close-packed
structure, to which a certain amount of free volume can
be assigned. The molecular group blocking the channel
can swing back into the channel wall only if the hole is still
there, or has returned from its random walk inside the
protein. In more general terms, the idea is that the
molecular group can return from its position in the ionic
pathway to the channel wall only when the channel wall is
in exactly the same state which it occupied when the
molecular group swung away. The processes in which the
channel wall makes a transition from the original state to
other states and back are modeled by the diffusion of
defects in the protein molecule. Liuger made a simulation
of the random walk on a finite 3-d lattice, obtaining good
agreement with experimental data.

An empirical ansatz, which is referred to as a “fractal
model” in the literature (Liebovitch et al., 1987) should
be mentioned in this context, because it also builds on the
existence of a large number of substates. The ansatz uses
Kohlrausch’s fractional exponential function (Kohl-
rausch, 1854), which corresponds to a time-dependent
transition rate following a power law. It is argued that
such a behavior of the transition rate, which is invariant
under a change of time scale, can only occur if a
continuum of substates is involved in the channel kinetics.
A kinetic model leading to Kohlrausch’s function, how-
ever, is not given. In two recent publications (Korn and

Horn, 1988; Mc Manus et al., 1988) a critical comparison
of the “fractal model” with the “Markov model” was
made for data on a number of different channels.

The model proposed here is based on Liuger’s defect-
diffusion mechanism. Our first objective is to work out an
analytical solution; this is feasible if the random walk is
performed on a one-dimensional lattice, and permits the
explicit analysis of parameter dependence and asymptotic
forms. An argument in support of the one-dimensional
model is that the chain structure of the protein molecule
may render the defect diffusion very anisotropic, favoring
one-dimensional motion along the main chain. Our sec-
ond objective is to explore the influence of other defects
pre-existent in the protein at the moment the channel
shuts. This possibility can be related to the Glarum model
for dielectric relaxation in glasses (Glarum, 1960; Jickle
1986). With these goals in mind we now proceed to
describe the initial condition for the closure problem and
the dynamics of the random walk.

THE MODEL

Consider a semi-infinite one-dimensional lattice (see Fig.
1 b). Its site number 1 corresponds to the location at the
pore wall where a defect is created by the channel-
blocking displacement.

Initial condition

A composite initial condition is assumed. At ¢ = 0, the
time when the channel closes, a defect (the Liuger
defect) is created at site s = 1. In the rest of the lattice
(s> 1) we add a random distribution of defects (the
Glarum defects), with a specified concentration c.

We note that the assumption that the channel closes
instantaneously is consistent with the experimental obser-

o8 A QUn

2
Bl 2

b
Y 1
/-\ ‘/\
* 1 2 NG 5 s
L 1

FIGURE1 (a) Kinetic scheme for the Markov model. (b) Random walk
on a semi-infinite chain with an absorbing boundary. The absorbed
walker may be visualized as jumping into a limbo state L.
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vation that it must occur over an extremely short time
scale.

Kinetics

The defects are supposed to be noninteracting (which is
probably the most reasonable assumption if the defects
are indeed free volumes), and any of them can reopen the
channel upon arrival at site s = 1. Inside the protein
molecule a defect is assumed to diffuse with a constant
hopping rate given by I'. It is convenient to formulate the
model using a time scale for which this rate is unity. The
relation between the usual, experimental, time ¢.,, (mea-
sured in seconds) and the dimensionless scaled time ¢ is
then

t =Tt 1

The scaled rate at which a closed channel is reopened by a
defect at s = 1 will be denoted by . A defect that reopens
the channel can be thought of as leaving the lattice and
jumping into a limbo state L. When one of the defects
goes into L the channel reopens and the process is
considered terminated.

The distribution of open times is usually simpler than
that of closed times. In Liuger’s picture (Lduger, 1988),
the channel closing is described by a rate v’ associated
with the displacement of the blocking group into the
channel. It is not necessary to consider explicitly the
closing process in what follows.

The single defect kinetics can be described in terms of a
master equation for the continuous-time random walk:

l;n:(’% t) "pn+l,s + pn—l,: - 2p;u (n > 1) (2a)

and
Piu(v, 1) = py — (1 + V)pys (2b)

Here we have defined p, (v, t) as the probability that a
defect located at site s at time ¢ = O is at site n at time ¢,
given the absorption rate vy at the boundary.

SOLUTION OF THE MODEL

To solve the model it is convenient to compute the
probability ®(v, c; ) that a channel that closed at z = 0 is
still closed at time z. Upon realizing that & is the survival
probability for all the defects, we can easily get a formula
suitable for its evaluation because the defects are assumed
to be independent of one another (Tachiya, 1981; Shlesin-
ger and Montroll, 1984)

Q(‘y, [ t) = PI(‘Y ’ t) exp I_c i [1 - Ps(‘Yv t)]]v (3)

§=2

where P,(«, t) is the probability that a walker that started
from site s at time ¢ = 0 is still somewhere in the lattice at
time ¢, i.e., the probability that such a defect has not
reopened the channel. It can be computed from the
solution to Eq. 2 as

P:(‘Ya t) = me(‘Yv t)' (4)
n=1
It is clear that P,(y,0) = 1 and P,(v,t) < 1 for all 4,
t>0.

From Eq. 3 we can find the probability density
f(v, c; t) that the waiting time for the reopening of the
channel has a length ¢ by differentiating with respect to
the time:

f(r,et) = — % (v, 1). (5)

It should be noted that on the usual time scale of 1., the
probability density is obtained by multiplying f by the
defect hopping rate, i.e., '

fexp(’Y’ [ texp) = rf(77 c t)- (6)

The noninteracting nature of the walkers permits the
calculation of the p,(v, t)’s and, consequently, the solu-
tion to the problem, using the normal modes method of
Van Kampen and Oppenheim (Van Kampen and Oppen-
heim, 1972; Van Kampen, 1981). The full details will be
presented in a forthcoming publication (Condat, 1989). It
is useful to mention, however, that, while for ¥ < 2 only a
continuous spectrum of eigenvalues is present, for v > 2
an isolated point, representing a surface state, must be
added. This surface state plays a crucial role in the
determination of the short-time behavior of the solution.

RESULTS

Next we summarize the results obtained for f(v, c; t).

(a) An explicit solution of the model equations in terms
of known functions can be given if ¥ = 1 or y = 2. In these
cases f can be expressed by the modified Bessel functions
I,(2t) and I,(2t) as follows:

fA,e0) = e 7' + ce”¥[(Iy + 1) — 7' LI + )]}

. exp (c I% - e"‘[(% + 2t)lo + (1 + 2t)1|]]), 0

fQ,ct) =2e7¥[Iy — I, + ce*I,1,]
-exp e[l — e~ *(Iy + 2tI, + 2tI)]}.  (8)
The appearance of the factor exp (—2¢) multiplying each

of the Bessel functions is characteristic of the solutions to
the model under consideration. The Glarum defects con-
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tribute the elements containing the factor c in Eqs. 7 and
8. Setting ¢ = 0 we are left with the contribution of
Liuger’s defect. There is no surface state component in
Egs. 7 and 8. (b) Approximate analytical solutions can be
obtained from expressions for large  and for |y — 1| « 1.
These can also be written in terms of e *Iy(2¢t) and
e 2I,(2t). The large v solution is presented in Appendix
B. (¢) The long term behavior of f(, c; t) is given by

c 1
S ct) =[W—7t + W]

22 1 1 [t 1 1 9

C R I K
(t>|1 — 4|y %t » 1). The t~*? term in the prefactor is
the contribution of Liuger’s defect. This is the general
form for a single defect performing a random walk on a
semi-infinite chain with an absorbing boundary. The
proportionality with 4~ is reasonable, because for large v
there is an enhanced probability of early pore opening;
obviously this reduces the chances of a late opening.

The first term in the exponential of Eq. 9 is dominant at
very long times. It corresponds to Bordewijk’s solution of
the Glarum model on a continuum (Bordewijk, 1975). As
noted by Blumen et al. (1986), the ¢'/2 stretched exponen-
tial should be a general feature of this type of model. The
t'? term is also independent of v (except through the
prefactor, of course), which means it is controlled by the
walk dynamics and not by the absorption process at the
pore; it represents the contribution of defects originally
located at distances of the order of ¢!/? from the channel.

The following term in the exponential is time-indepen-
dent but not y-independent. It becomes important at
small values of v, for which there will be on the average
many passages of the defects through site 1 before the
channel is opened. For small values of v one must wait
very long times before the Bordewijk asymptotic form
takes over.

(d) For arbitrary values of v and ¢, the result may be
expressed in terms of integrals that are well-suited for
rapid numerical evaluation (see Appendix A).

ANALYSIS

The infinite one-dimensional and the finite three-dimen-
sional models have an important feature in common. In
both cases the Liuger defect must return to the origin.
Hence, the channel will be reopened at ¢ < « for any vy >
0, even in the absence of Glarum defects. In our descrip-
tion this is expressed through the equation

f0 *fy, ¢ t)dt = 1. (10)

Note that in an infinite three-dimensional lattice the
Liuger defect can migrate to infinity, and thus Eq. 10 can
be valid only for ¢ > 0.

Since the site s = 1 is known to be occupied by a defect
at ¢ = 0, then the initial value of f'is given by

f(v,6,0) = . an
This equation can also be verified by an explicit evalua-
tion of the solution.

At large values of v, the Liuger defect is strongly
privileged, the Glarum defects becoming qualitatively
important only at very long times. The large + solution is
presented in full in Appendix B. However, given the weak
dependence on ¢ at short and moderate times, it is useful
to look at the much simpler ¢ = 0 case, for which Eq. Bl
reduces to:

—2
S 0;t) = :—t[— %Io(ZI) + [l + %(1 + %)]l,(Zt)j

1 2
+ (7 — ; - ?) exp [—'th/('Y - 1)] (12)

The last term in this equation, which is due to the surface
state, is at ¢ = 0 roughly proportional to v, and at times
t < v~ ! its contribution is much larger than that of all the
continuum states taken together. Therefore, we have
initially a well-defined exponential decay. This behavior
is clearly seen in the curves for ¥ = 10 and 4 = 30in Fig. 2

f(y.c:t)

FIGURE 2 Closed-time distribution as a function of time for several
values of the parameters + (rate constant for channel reopening) and ¢
(density of Glarum defects). Note the well-defined short-time exponen-
tial decay in the y = 10 and v = 30 curves.
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FIGURE 3 Closed time-distribution on a log-log scale. The different
regimes can be observed. The long-time behavior is given either by a
power law (¢ = 0) or by a stretched exponential (¢ > 0). In the inset the
data for an end-plate channel (Colquhoun and Sakmann, 1985) are
plotted on a log-log scale together with the results of Lauger’s simula-
tion (from Liuger, 1988). See text.

In the last case, f(¢) decays by three orders of magnitude
almost as a pure exponential. The exponential regime can
be thought of as describing the intraburst region observed
in many experiments. (For example see Colquhoun and
Sakmann, 1985).

At longer times, the continuum solution dominates and
a long tail results. This is consistent with the often
observed fact that long closed times appear far more
frequently than it would be expected from a purely
exponential distribution.

In Fig. 3 we show f(v, ¢; t) on a log-log scale, which
allows us to follow its behavior over several time decades.
In the large v curves a shoulder is seen to appear beyond
the exponential region; this shoulder becomes more
marked with increasing y. The Laduger-dominated
f(,0;t) ~ t~¥? and Glarum-dominated, f(v, ¢ # 0; )
~exp (— ct'/?), asymptotic regimes become evident at
long times.

COMPARISON WITH EXPERIMENTS

Rabbit corneal endothelium
channel

To test the predictions of the theory it is necessary to look
at single-channel experimental data that extend over a
relatively long time scale. An appropriate experiment is
that performed on a nonselective channel in the rabbit

corneal endothelium (Liebovitch et al., 1987). The data
include 1,465 closed times and extend over three orders of
magnitude in time. In Fig. 4 we plot the data, together
with the results of Liuger’s simulation and those of the
calculation presented here. Liuger (1988) allowed the
defect to perform a random walk on a cube containing
125 sites; he took v = 33 and a jump rate of (12/11)s™".
In Fig. 4 we chose v = 2 and a jump rate of 325"

We can see that, while the curve for y = 2, ¢ = 0.5 gives
an excellent agreement with the experimental results,
that for v = 2, ¢ = 0 yields a poorer representation. If ¢ <
0.5, it is still possible to obtain a very good fit by
increasing the value of vy. A relatively large ¢, however,
permits a better adjustment, because it yields the long-
term downward slant that is absent in the single-defect
case. Note that we obtain a good fit with a value of vy
smaller than that used by Liuger (1988). This may be
due to the fact that in our one-dimensional version of the
model the walker at site 1 can only jump into the limbo
state or into site 2 (see Fig. 1). In the three-dimensional
version, the walker in the site next to the channel has
several paths available; this makes v relatively less effi-
cient. However, because our I' is larger than Liuger’s, the
corresponding dimensional rates 4T differ by a factor of
<2.

Due to the finite experimental resolution, it is clear that
some of the briefest closed events must have gone unde-
tected. Therefore, the total number n of closed events
must be taken as an adjustable parameter, which permits
a vertical shift of the curve without changing its shape.
We took n = 1,560. Liebovitch et al. (1987) obtained a
good fit of their data using Kohlrausch’s fractional expo-

FIGURE 4 Closed-time distribution for a channel in the rabbit corneal
endothelium. én is the number of events per millisecond, on =
MTf(tep) + (107%). The experimental data (squares) of Liebovitch et al.
(1987) are plotted together with the results of Lauger’s simulation (- - -)
(L&uger, 1988) and our own results fory = 2,c=0.5(—)andy = 2,c =
0 (---). We took T' = 32 57! and n = 1,560.
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nential function (Kohlrausch, 1854) as an empirical
ansatz (see their Fig. 13). The statistical significance of
the fits was tested and compared with the multi-exponen-
tial fitting of the Markov model by Korn and Horn
(1988). Although five fit parameters were used—
compared with only two for the Kohlrausch function—the
result of the Markov model was not significantly better
for this type of channel. In other cases, however, in which
a doubly logarithmic plot of the closed time distribution
shows oscillatory behavior, the use of the Kohlrausch
function was found to be unsatisfactory compared with
the results of the Markov model (Mc Manus et al. 1988,
Korn and Horn, 1988).

In the case of the rabbit corneal endothelium channel
one could discriminate between Liebovitch’s fractal
model and our defect-diffusion model if data for shorter
times were available. While in the model discussed here,
as well as in the original version due to Liuger (1988)
f(t =0) is finite, in the proposal of Liebovitch et al.
(1987) f(t) increases without limit as ¢ — 0 (although, of
course, the model has a proper distribution, i.e., Eq. 10 is
satisfied). In particular, we conclude that the number of
undetected brief events in the experiment under consider-
ation must have been of the order of 10%. On the other
hand, Liebovitch et al. (1987) had to assume that n =
11,000, which would imply that the number of undetected
events exceeded by an order of magnitude the number of
recorded ones.

Frog end-plate channel

Lauger (1988) has obtained a good fit for another experi-
ment performed over a long time interval, that of Colqu-
houn and Sakmann (1985) on a suberyl-dicholine-
activated frog end-plate channel. The experimental data
(squares) as well as Liuger’s fit (continuous line) are
plotted on a log-log scale in the inset of Fig. 3. The
horizontal axis in the inset corresponds to ¢, varying
between 10~° and 1 s. The vertical axis indicates the
number of events per second. The scale runs from 10? to
108 (Lauger, 1988).

Although we can also obtain a good fit for all the points
corresponding to closed times shorter than 10 ms (for
example, taking v ~ 20, T' ~ 10° s~! and n ~ 3,000), we
cannot account for the two points corresponding to the
longest intervals: a curve that describes reasonably well
the rest of the data always passes well below these points.
It is certainly possible that there are other channels,
having relatively long activation times, in the patch
considered. These extra channels could account for the
long-time data. If there was really only a single channel
present and we want to understand its behavior in terms
of the defect-diffusion model, we have to conclude that
either (a) the diffusion is effectively three-dimensional, or

(b) it is one-dimensional but there are traps where the
defect can dwell for times longer than it would in a normal
site.

NG 108-15 neuroblastoma x glioma
channel

McGee et al. (1988) studied a voltage-sensitive K* chan-
nel in NG108-15 cells. One of the main goals of that work
was to examine the effects of changes in membrane lipid
composition on the properties of the channel. To this end
they enriched the cell phospholipids with polyunsaturated
fatty acids. In Fig. 5 we reproduce their results for the
closed time probability density functions corresponding to
cells enriched through the addition of arachidonic acid
(20:4) (the enriched patches), as well as to cells that were
not subjected to this treatment (the control patches).

Although Mc Gee et al. (1988) used a superposition of
six exponentials to fit the resulting curves, we can see
from Fig. S a that the simple form f(t) = at =/ fits well
the data from the control patches over almost four orders
of magnitude in time. This is exactly the behavior corre-
sponding to a Lauger defect in the long-time regime. At
the longest times (7., > 1s) the data points lie below the
=3/ line. This would be consistent with the presence of a
low concentration of Glarum defects, which become
asymptotically dominant. Deviations from ¢~/ are also
observed at the shortest measured times. Because the
curve turns upward, we estimate that v is in the range 2 <
v <10. (For higher values of v a shoulder is present. [See
Fig. 3])
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FIGURE 5 Closed-time distribution for the K* channel in NG 108-15
cells. The experimental data (circles) of McGee et al. (1988) are plotted
for the control (@) and enriched (b) patches. The enrichment was due to
the addition of arachidonic acid. The straight lines have a slope of —3%.
The constant @ is proportional to the product 74T
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Once the ¢t~/ form is accepted, a single fitting parame-
ter () is left. Because a depends on T, the jump rate, and
the total number of closed events, these three parameters
cannot be separately identified when only the long-time
data are available. On the other hand, the fact that the
power law behavior becomes evident at times shorter than
1 ms suggests that the defect jump rate must be quite
high.

For the enriched patches there is a gentle oscillation
superimposed on the =2 line. These oscillations may be
accounted for by a perturbation of the defect diffusion
due to the enrichment. It is conceivable that the agonist
causes a slight variation of the different transition rates
(cf. Fig 1 b), which renders the defect diffusion along the
chain of substates inhomogeneous and leads to the
observed deviation from the ideal ¢~*%-behavior. While
the Liuger defect diffusion still plays the main role, the
enrichment is responsible for the onset of a second, much
weaker, process that generates the observed fluctuations.

It is our opinion that the =%/ behavior observed over a
wide time range is a strong evidence in favor of the
defect-diffusion model. This model does not require the
parameter proliferation that ensues if one insists on
making a fit with a superposition of exponentials.

Gramicidin A channel

Ring (1986) points out his gramicidin A channel mea-
surements may be fit with a single process proportional to
t7*, with 1.5 < x < 2. His multiple regression plot gives
x = 1.7. (There is apparently a typographic error in the
caption to his Fig. 7; the values x = 1.7 and x = 1.9 are
transposed). This suggests that the channel may have
been observed in the long-time regime of a Liuger defect
diffusing essentially along a one-dimensional path.

Rat skeletal muscle channel

Blatz and Magleby (1986) investigated single fast Cl~
channels from rat skeletal muscle. They fit their data,
which cover almost five orders of magnitude in time, with
a superposition of five exponential components. We note,
however, that the data seem to oscillate about the line 7%,
with x ~ 1.65. Although the oscillations (or humps) are
more marked than in the case of the enriched neuroblas-
toma x glioma channel, the results suggest that a modi-
fied Lauger defect-diffusion process is also effective
here.

Rat colonic channel

R. Reinhardt et al. (1987) studied the properties of an
anion-selective channel from rat colonic enterocyte

plasma membranes reconstituted into plane phospholipid
bilayers. From an experimental record lasting 380 s they
obtained a closed-time histogram that included 2,888
events. They used a bin-width of 1 ms and fit the data
with a superposition of two exponentials. Taking a jump
rate of the order of 670 s~ and n > 4,500, it is possible to
obtain a good fit with values of v ranging from vy = 2.5 up
toy = 6, withc = 0.2.

The data are clearly consistent with a defect-diffusion
interpretation. Unfortunately, the histogram does not
span a range of time wide enough to allow a precise
determination of «.

SENSITIVITY TO EXTERNAL PARAMETERS

The channel kinetics can be affected by different external
factors e.g., the temperature, applied potential, agonist
nature and concentration, frequency of applied field, etc.
In the model discussed here, these external factors
influence the measured closed-time distribution only
through their effect on the three parameters v, ¢, and T
Experimental variation of such factors therefore provides
an opportunity for a stringent test of the applicability of
the model to a given channel. In general, when the
dependence of the model parameters upon externally
controlled conditions is not known, the parameter values
need to be determined by fitting for every independent
measurement. However, some external factors, like the
electrolyte agonist concentration or an applied electric
field, are likely to influence mainly the jump rate y of the
molecular group blocking the channel, and to have little
effect on the defect concentration and hopping rate in the
interior of the protein molecule. In such cases, the varia-
tion of the closed-time distribution is essentially deter-
mined by its dependence on vy. Therefore it is useful to
analyze in detail the dependence of our result for fon «,
neglecting the contribution of the Glarum defects. This is
done by looking at the first derivative, f,, of f with respect
to v. We obtain,

sin® g[2(1 — cosq) — ¥7]
[1+2(y — 1) cosq + (y — 1))] 2
- exp [—2t(1 — cosq)]

2 r.
Sin 00 == jo' dq

' (y — 2)?

+0(7—2)[‘y’—372+4'y -
vy—-1

exp [—7't/(y — 1)].

(y-17 13

Here 0(y — 2) is the step function, which indicates the
contribution of the surface state for v = 2. The short-time
form of Eq. 13 is given by

fi=1—-Qv+ Dt +05CY +4v+2)> +..., (14)
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while the long-time limit is (see Eq. 9),

1
- zﬂ,l/z,yzts/z'

Sfy= (15)
The function f, is plotted in Fig. 6 for several values of .
In all cases the curves start from unity at ¢ = 0 and go to
zero asymptotically from below as # — . In the interme-
diate region they show a minimum, which becomes deeper
and occurs at shorter times for large values of v.

At short times (shaded areas in the inset to Fig. 6), f
grows with an increase in . As ¢ evolves, f grows less and
less with an increment in v; beyond the solid line in the
inset, the response of f to a modification in v changes sign.
The minima of f, are reached along the dashed line.

When v » 2, the vanishing of the response (i.e., f, = 0),
occurs at a time ¢ ~ v~ '. The reason for this is that the real
solution (surface state) contribution vanishes at ¢ ~ vy~ ', a
fact that may be easily verified. This contribution goes
very fast from positive to negative values whose magni-
tude is much larger than that of the contribution of the
complex solutions. Another general observation is that the
minimum in f, always occurs at a time which is slightly
below twice the time at which £, = 0.

The sensitivity of f to changes in < is then well-
determined in this defect-diffusion model. However, the
dependence of v (or ¢, or the jump rate) on the external
parameters is not specified a priori. It can be determined
only via experimental observations.

fy(y.0;t)

FIGURE 6 First derivative f, of the distribution of closed times with
respect to v, as a function of time. The numbers next to the curves are
the corresponding values of . The solid line in the inset separates the
regions where f, > 0 (shaded) and f, < 0. The dashed line gives the
position of the minima of f,. The time derivative of £, is indicated as f,.

Suppose a fast exponential is clearly identifiable in a
set of experimental data for a given channel. By clearly
identifiable we mean that, in a fit using several exponen-
tials, the time constant 7y corresponding to the briefest
closures must be much smaller than all the other time
constants. The existence of a fast exponential suggests a
high value of +, the fast exponential itself corresponding
to the surface state contribution. We can obtain a relation
between v and I' by equating I'r; to the time constant in
the last term of Eq. 12:

Y

1
y—1 T

(16)

Colquhoun and Sakmann (1985) studied the effects of
different agonists on the end-plate channel currents.
Because the briefest time constant is clearly identifiable
in each case, we can apply Eq. 16. (In a few of their
experiments, they observed signs of the possible presence
of a superfast exponential, which we disregard in this
analysis.) Under the assumption that the internal jump
rate I' is not substantially affected by the agonist, we
estimate the following values of 4 for the various cases:
Acetylcholine, v = 54; suberyldicholine, ¥ = 21; carba-
chol, ¥ =70; decan-1, 10-dicarboxylic acid dicholine ester,
vy = 15.6. Here we used the value of T obtained from our
fit to the suberyldicholine data. Although the jump rate
may be expected to depend on temperature, the differ-
ences between the temperatures at which the various runs
were performed were probably too small to generate
detectable changes. Variation in the agonist concentra-
tion did not modify the observed value of 75, so v and T'
seem to be independent of the concentration. From the
data for this channel it is also apparent that the depen-
dence of these rates on the applied potential must be quite
weak.

SUMMARY AND OUTLOOK

An analytical solution to Liuger’s defect-diffusion model
in one dimension has been worked out. The influence of
pre-existent defects in the protein has been investigated.
Their contribution, although relatively small (except at
very long times) was shown to be important in the cases of
the corneal endothelium and the rat colonic channels. It
accounts also for the ¢,,, > 1 s downturn in the curves for
the NG108-15 channel.

It is opportune to remark here that, the protein being a
finite structure, only a limited (although probably large)
number of sites is available for the walk. For the M-site
lattice our predictions break down for times ¢ = M2 The
experiments of Liebovitch et al. (1987) and Reinhardt et
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al. (1987) extended up to ¢ ~ 32 and ¢ ~ 20, respectively.
Hence, the number of sites that effectively took part in
the diffusion process is of the order of 10. The experiment
of Colquhoun and Sakmann (1985), on the other hand,
extended up to ¢ ~ 500, so ~50 sites must have partici-
pated.

Some qualitative aspects of the contribution of the
Glarum defects may remind us of a finite-size system. In
both cases the value of f(¢) at intermediate times is higher
than that corresponding to a single Liuger defect in the
semi-infinite chain. From Eq. 10 we see then that in both
cases the value of f(#) at long times must drop below the
™32 prediction for the Liuger defect in the semi-infinite
chain.

We note that a model described by a master equation
analogous to Eq. 2, with s = 1, was analyzed indepen-
dently in a just published work (Millhauser et al., 1988).
This master equation was obtained by assuming that the
ion-channel proteins have a very large number of states of
similar energy. The authors considered explicitly the y =
1 and v « 1 cases and obtained the asymptotic behavior of
f(t), which is exactly the one that follows by setting ¢ = 0
in our Eq. 9. They also pointed out the power-law-like
behavior of f(¢) in the experiments of Ring (1986) and
Blatz and Magleby (1986). A computer simulation for an
M-site system was made, showing that at times t ~ M? the
%2 behavior of f(t) is cut off by finite-size effects, as it
should be expected.

The diversity of the channels existing in nature is
enormous. Therefore one cannot expect a model as simple
as ours to account for all the data. E.g., there are cases
where a kinetic model containing only a small number of
substates (referred to as the Markov model, see Fig. 1 a)
gives a better fit of the data. At this point it is of interest
to note that our defect diffusion model (Fig. 1 b) could be
generalized so as to include the Markov model as a
limiting case. This could be achieved by allowing the
(asymmetric) transition rates for a small number of sites
to be different from the common value (denoted by I'). If,
in particular, the transition rates were modified in such a
way that a small number of sites in the chain act as traps,
the long-time behavior would be governed by these trap
states. In this case the model would lead to a closed-time
distribution similar to those described by the Markov
model (cf. the discussion in McManus et al. 1988). In
principle, a continuum of different versions of the defect-
diffusion model could be constructed, with our version
of a “democratic” participation of all states and a
“two-class™ version with many transition states and a
small number of dominant traps as limiting cases. Need-
less to say, it would be of interest to work out (by
computer simulation or analytically) the solution of such
a generalized defect-diffusion model for the channel
kinetics.

APPENDIX A:
Integrals for the evaluation of ()

In this appendix we express f(v, ¢; t) in terms of integrals, which are
readily evaluated numerically for arbitrary values of v, ¢, and ¢.
Taking the derivative of Eq. 3 we arrive at

fOr.c; t) = {cP(1)[Py(2) + YP\(2)]
- P((Olexpic[l — P,(r) — Q()]). (AD)

The various functions appearing here may be calculated using the
following forms:

Pi(t) = [ dq(1 + cosq }¥(q. 1)

-2
+ (7 )g(t)ﬂ('y -2), (A2
vy-—1

Py - -2 fo " dg sin® qy(g, 1)

(y -2
ST oty - D, (AY

and

() - 3 [ dalexp 261 — cos 9)) - 1}h(aW(a. 1)

- @ [6(t) — 110(y — 2). (Ad)

Here 0(y — 2) is the step function. We have also defined:

g(t) = exp [ ¥’t/(v - D], (A5a)
h(q) = (1 + cosq)/(1 — cos q), (A5b)

and
Y1) v exp [-2¢(1 — cos q)] (ASc)

#[v* + 2(1 — v)(1 — cos q)] .

The terms containing g(z) have their origin in the surface state, active
for v > 2. This contribution is important only at short times.

APPENDIX B

The ¥ » 2 case

If v » 2, all the quantities appearing in Eq. A1 can be evaluated in
closed form. We obtain

f(79 [ t) = (Al + CAZ) €xp (CB)’ (Bl)
where
-2t
A, -e—l— % + [l + 2(1 + l)}I,I
vt Y Y t
2y — 2
+ T2, (B2)
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- 2)e
Az ¢ (Io + Il)(lo + I] + 7‘) + _‘Y_(_’_Y_)_

Ty (v - 1)

2

[(1 - 3)1., + (1 B )I.]g( p - X0 - 2) =2 a0y, (BY)
v Y 7t
and

B= % + % —e"‘[% + 2ty + I) + % U, + ll)}

-2
PO ———g(t). (B4)

The function g(¢) was introduced in Eq. ASa. The argument of the
Bessel functions is again 2¢ everywhere. The sources for the different
terms are easy to identify. By explicit evaluation and comparison with
the results of the numerical integration (Appendix A), we can verify
that the large vy approximation embodied in Eq. B1 works well down to
values of v not very far from 2.
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