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ABSTRACT A model for the effect of
protein concentration on the rate of
lateral diffusion of integral membrane
proteins is presented, in which the pro-
teins are represented by equivalent
hard circular particles on a surface. As
the density of particles increases, the

probability of finding a vacancy immedi-
ately adjacent to a tracer particle into
which it may diffuse decreases, result-
ing in a concomitant reduction of the
tracer diffusion coefficient. Using
scaled particle theory to calculate the
concentration-dependent probabilities,

a simple approximate resuit is obtained
in closed form, that is compared with
the results of previously published
Monte Carlo lattice simulations and
experimental observations.

INTRODUCTION

Experimental measurements of diffusion of membrane
proteins within the plane of a synthetic membrane indi-
cate that lateral diffusion coefficients decrease substan-
tially as the total area of membrane occupied by protein
increases (Peters and Cherry, 1982; Tank et al., 1982). It
is estimated that a typical biological membrane contains
intrinsic proteins occupying on the order of one-quarter of
the surface area (Grasberger et al., 1986). Thus the effect
of area occupancy on the surface diffusion of a membrane
protein may have significant ramifications for the kinetics
of a variety of biochemical processes thought to involve
surface diffusion of one or more membrane protein spe-
cies (Axelrod, 1983).

The tracer diffusion of several soluble proteins in
aqueous solutions containing various amounts of different
“background” protein species has recently been measured
(Muramatsu and Minton, 1988). It was found that the
dependence of tracer diffusion coefficients upon the con-
centrations and relative sizes of background species could
in most cases be semiquantitatively described by an
extremely simple model, wherein each of the protein
species was represented by an equivalent hard sphere
having a radius close to that calculated from simple steric
considerations of molecular mass and partial specific
volume. In this model it is assumed that a tracer molecule
may diffuse only if an adjacent element of volume, into
which it may diffuse, can be found which is free of any
part of a background molecule. The rate of tracer diffu-
sion decreases with increasing concentration of back-
ground species in accordance with the decreasing proba-
bility of finding such an element of free volume,
calculated using scaled particle theroy.

The effect of area occupancy upon tracer diffusion in

two dimensions has previously been treated by Monte
Carlo simulation using a model wherein tracer and back-
ground particles hop between adjacent sites on a planar
lattice (Pink, 1985; Saxton, 1986; and references there-
in). The purpose of the present communication is to
present the two-dimensional analogue of the simple scaled
particle model previously developed for diffusion in three
dimensions, and to compare and contrast results obtained
using this model with those previously obtained via Monte
Carlo simulation and with the limited experimental data
currently available.

DESCRIPTION OF MODEL

As the model described below is quite similar to that
presented in Muramatsu and Minton (1988), it will be
described here in condensed form; Muramatsu and Min-
ton (1988) should be consulted for details. It is assumed
that diffusion of an intrinsic protein in the plane of a
membrane may be represented by a two-dimensional
random walk in which the diffusing species undergoes a
Brownian displacement of average distance Ar on an
average of once every At seconds. A Brownian displace-
ment involves movement of the diffusing (tracer) particle
into an element of adjacent surface area termed the target
area (shaded area in Fig. 1 4). When an additional
background species is present in the membrane, there
exists a probability that part of the target area will be
occupied by parts of one or more background particles.
The probability of undergoing a Brownian displacement
during a given time interval is assumed to be proportional
to the probability that the target area is entirely vacant of
any part of a background particle. These considerations
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FIGURE1 (A) Schematic representation of a two-dimensional
Brownian displacement. Shaded target area, which must be free of
background particles, is generated by translating the circular diffusing
particle by distance Ar. (B) Approximation to target area shown in 4
generated by translating diffusing particle by Ar’ and simultaneously
increasing its radius by the same amount. Figure reproduced from
Muramatsu and Minton (1988).

lead to the relation (Muramatsu and Minton, 1988)
InD/D, = —AG?/RT, 1)

where D is the tracer diffusion coefficient at finite concen-
tration, D, is the tracer diffusion coefficient in the dilute
limit, and AG ¥ is the negentropic work required to vacate
the target area of background particles. AG ¥ is approxi-
mated by AG}, the negentropic work required to vacate an
area of similar shape (shaded area in Fig. 1 B), generated
by simultaneously translating the diffusing particle by Ar’
and increasing its radius by the same amount.

Letting r, represent the tracer radius, we obtain (Mara-
matsu and Minton, 1988)

AGL = AGg(" + A”) - AGc(rt)v (2)

where AG(r) is the negentropic work required to create a
circular cavity of radius r free of any part of a background
particle in a two-dimensional fluid comprising hard disks
of radius r, occupying a fraction ¢ of total area. Scaled
particle theory (Lebowitz et al., 1965) provides a simple
closed form relation for approximate calculation of this
quantity:

AG.(r)/RT = B, + Byr + B,r’, A3)
where
By= —In(1 — ¢)
2 ¢
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Eqgs. 2 and 3 are combined to yield

AG}/RT = B,Ar' + B, 2r, Ar' + Ar?). )

Let Ar* be that value of Ar’ such that AG; = AG¥, and
assume for simplicity that it is independent of the concen-
tration of background molecules, i.e., solely a property of

the tracer species. Then Egs. 1, 3, and 4 may be combined
to yield

InD/D, - —B(z + 2-}3)] 0 —[? 2 ;x] 0, (5

where
¢

Em

x = Ar*/r,

and
f=r/r.

The dependence of diffusion coefficient upon ¢, the
fraction of area occupied by background protein, is thus
presented as a simple function of the ratio of the sizes of
background and tracer species, and an adjustable scaling
parameter, x, which is smaller than unity and assumed
constant for a given tracer species.

RESULTS AND DISCUSSION

Calculations of D/ D, as a function of ¢ are plotted in Fig.
2 for various combinations of f and x. Two trends are
immediately obvious. The dependence of D upon ¢
becomes stronger as the ratio of Brownian step size to
tracer size becomes larger, and as the ratio of background
species size to tracer size becomes smaller.

Consider the case of tracer diffusion of a single species
of protein in a reconstituted membrane containing only
that species (self-diffusion). Let us assume that at low
resolution, the cross-section of the diffusing protein in the
plane of the membrane may adequately be represented by

D/D,

1.0

FIGURE2 Dependence of D/D, upon fractional area occupancy by
hard circular particles, calculated via Eq. 5. Three sets of curves are
shown; in each set the solid curve was calculated with x = 0.1,
short-dashed with x = 0.2, long-dashed with x = 0.3, and dot-dashed
with x = 0.4. The rightmost set of curves was calculated with f = 3, the
middle set with f = 1, and the leftmost set with f = 1A.
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a circle. For this case f = 1. One would expect that with
increasing tracer size, the ratio of the Brownian step size
to tracer size (that is, the parameter x) would decrease,
and hence the dependence of D/D, upon ¢ as well. This
result may be contrasted with that obtained by Saxton
(1986) from Monte Carlo simulations of random walks of
hexagons of various sizes on a triangular lattice. He
reported that the concentration dependence of self-
diffusion did not vary significantly with the size of the
hexagon. Assuming that the size of individual hops on the
lattice remains constant as the size of the hexagons
increases, his result disagrees qualitatively with that of
the present treatment.

The dependence of D/D, upon fractional site occu-
pancy ¢* of hexagons on a triangular lattice, calculated
by Pink (1985) and Saxton (1986) for hexagons of
comparable size, is plotted in Fig. 3. The results of the two
independently performed simulations agree reasonably
well out to a fractional area occupancy of 0.6. Above that
value, the value of log (D/D,) calculated by Saxton
decreases much more rapidly with increasing area occu-
pancy than does that calculated by Pink.

Four curves, representing the dependence of D/D,
calculated using Eq. 5 with f = 1 and five different values
of x, are also plotted in Fig. 3. The value of ¢ used in
calculating these curves has been taken to be equal to
0.907 times the value of fractional site occupancy used for
the lattice simulations to partially take into account the
fact that hexagons can completely fill a plane, whereas
hexagonal close packing of circles only fills 0.907 of
planar area. It is evident that the dependence of D/D,
upon fractional area occupancy calculated according to
Eq. 5 cannot be made to agree with the results of the
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FIGURE3 Dependence of log (D/D,) for two-dimensional self-diffu-
sion upon fractional site occupancy by hard hexagons (Pink, 1985;
Saxton, 1986). The corresponding fractional occupancy of a surface by
hard circular particles is ¢ = 0.907 ¢* (see text). (Open circles) results
of Pink (1985). (Filled circles) results of Saxton (1986) for R = 4
(notation of Saxton [1986]). Smooth curves calculated using Eq. 5 with
f=1and x = 0.1 (rightmost curve), 0.2, 0.3, and 0.4 (leftmost curve).

simulations over the entire range of ¢ for any fixed value
of x. Reasonable agreement can, however, be achieved
over the range 0 < ¢* < 0.3.

Both the lattice model (Pink, 1985; Saxton, 1986) and
the present model predict concentration dependences of
the self-diffusion coefficient that are qualitatively smaller
than observed experimentally for two different membrane
proteins (Peters and Cherry, 1982; Tank et al., 1982).
Our results thus confirm previous assertions (Pink, 1985;
Saxton, 1986) that factors other than excluded volume,
such as protein-protein interactions, must be contributing
substantially to the concentration dependence reported in
Peters and Cherry (1982) and Tank et al. (1982).

At the present time we are unaware of any experimen-
tal data or any other model describing the effect of
increasing concentration of one species of membrane
protein upon the tracer diffusion coefficient of a second
species of membrane protein, with which the present
model may be compared.

The present model and its three-dimensional analogue
differ from previous two-dimensional and three-dimen-
sional free volume theories of diffusion (O’Leary, 1987, a
and b) in two important respects. In the theories of
O’Leary it is assumed that the element of free volume
that must be created for a Brownian jump to take place is
circular (or spherical), and must have a radius equal to
that of the tracer species. Here and in Muramatsu and
Minton (1988), this element of free volume is not
assumed to be circular (or spherical), and its volume is
only a fraction of that of the tracer. The relations used in
the present work and in Muramatsu and Minton (1988)
to calculate the negentropic work of creating the requisite
element of free volume are significantly different from
those used by O’Leary and are based on what we feel is a
more reasonable physical model of diffusive motion.

There are several possible reasons why the predictions
of the scaled particle model are at variance with the
results of the lattice model simulations. These include (a)
unphysical quantization of translation and/or orientation
imposed by the lattice model and (b) oversimplification of
the present model deriving from the assumption that the
parameter Ar* is independent of background concentra-
tion and/or neglect of correlation between the probabili-
ties of successful Brownian displacements at time ¢ and
time ¢ + At. Because currently available data are insuffi-
cient to indicate which of the two approaches yields a
more realistic result, we hope that the present communi-
cation will stimulate development of a reliable experimen-
tal model for tracer diffusion of hard particles in a
two-dimensional fluid.
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