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SUMMARY

1. The linear response of turtle cones to weak flashes or steps of light
was usually well fitted by equations based on a chain of six or seven
reactions with time constants varying over about a 6-fold range.

2. The temperature coefficient (Q10) of the reciprocal of the time to peak
of the response to a flash was 1*8 (15-25o C), corresponding to an activa-
tion energy of 10 kcal/mole.

3. Electrical measurements with one internal electrode and a balancing
circuit gave the following results on red-sensitive cones of high resistance:
resistance across cell surface in dark 50-170 MQ; time constant in dark
4-6-5 msec. The effect of a bright light was to increase the resistance and
time constant by 10-30 %.

4. If the cell time constant, resting potential and maximum hyper-
polarization are known, the fraction of ionic channels blocked by light at
any instant can be calculated from the hyperpolarization and its rate of
change. At times less than 50 msec the shape of this relation is consistent
with the idea that the concentration of a blocking molecule which varies
linearly with light intensity is in equilibrium with the fraction of ionic
channels blocked.

5. The rising phase of the response to flashes and steps of light covering
a 105-fold range ofintensities is well fitted by a theory in which the essential
assumptions are that (i) light starts a linear chain of reactions leading to
the production of a substance which blocks ionic channels in the outer
segment, (ii) an equilibrium between the blocking molecules and unblocked
channels is established rapidly, and (iii) the electrical properties of the
cell can be represented by a simple circuit with a time constant in the dark
of about 6 msec.

* Present address: Department of Physiology, Stanford University, Stanford,
California 94305, U.S.A.
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6. Deviations from the simple theory which occur after 50 msec are
attributed partly to a time-dependent desensitization mechanism and
partly to a change in saturation potential resulting from a voltage-
dependent change in conductance.

7. The existence of several components in the relaxation of the potential
to its resting level can be explained by supposing that the 'substance'
which blocks light sensitive ionic channels is inactivated in a series of steps.

INTRODUCTION

There is now general agreement that light hyperpolarizes many verte-
brate photoreceptors (see Tomita, 1970; Hagins, 1972), and in some cases
there is evidence that the hyperpolarizationr is generated by a decrease in
the conductance of ionic channels in the outer segment (Toyoda, Nosaki &
Tomita, 1969; Baylor & Fuortes, 1970; Hagins, Penn & Yoshikami, 1970;
Korenbrot & Cone, 1972). To explain the dependence of the conductance
change on light, Baylor & Fuortes (1970) suggested that absorption of
photons leads to the production of an intermediary substance which de-
creases membrane conductance by interacting with ionic channels in the
outer segment. The aim of the present paper is to explore the hypothesis
proposed by Baylor & Fuortes and if possible to put it on a quantitative
basis. The first move was to look for a reasonably simple way of describing
the linear response of turtle cones to flashes or steps of light. We then
attempted to extend the analysis to larger signals by assuming that the
concentration of the intermediary blocking molecules varied linearly with
the light intensity and that non-linearities arose partly from the nature of
the equivalent circuit of the cone and partly from competition between
blocking molecules for the photo-sensitive channels. This proved successful
up to 50 msec after the beginning of a flash or step, but at longer times it is
necessary to assume that the behaviour of the blocking molecule is also
non-linear. A description of the nature of this non-linearity is deferred to
the next paper of this series (Baylor & Hodgkin, 1974).
The second half of the paper deals with the relaxation of the potential

to its resting level and provides qualitative evidence for the existence of
several components of widely different time constant.
The theoretical section (pp. 688-698) summarizes the equations used in

analyzing or reconstructing the first 50 msec of the response to flashes or
steps covering a 1 05-fold range of intensities. In a later, and more specula-
tive paper (Baylor, Hodgkin & Lamb, 1974) we shall attempt to extend the
reconstruction to times of the order of 2 sec.
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METHODS

The apparatus and method were as described in the paper by Baylor & Hodgkin
(1973). The resistance and capacity of certain cones were measured with a single
electrode, using the bridge-circuit principle (Fein, 1966). In order to reconstruct the
rising phase, equation (5) was integrated numerically using the Taylor series method
(Norman, 1973).

NOMENCLATURE

Equivalent light intensities
When monochromatic light is used the intensity at the retina can be

given directly in photons (or quanta) #m-2 sec-1. With white light the
total photon density is not a relevant quantity because much of the spec-
trum is not absorbed by the receptor. However, for any given source and
receptor a calibration factor can be determined which allows one to give
the equivalent effect of the light at the optimum wave-length (see Baylor
& Hodgkin, 1973). In the present series of experiments the unattenuated
white light was equivalent in its effect on red-sensitive cones to that of a
monochromatic light of wave-length 644 nm and intensity 67 x 106 photons
um-2 sec-'. The corresponding figure for green-sensitive cones at 559 nm
was 36 x 106 photons ,#m-2sec-' and for rods at 519 nm was 30 x 106
photons itm-2 sec-1. The initial rate at which chromophores are isomerized
in an unbleached cone can be estimated by multiplying the light intensity
by the effective collecting area which was probably about 1 1Im2 in most
of the experiments in this paper, but may be 10 gM2 in the most sensitive
cones (see Baylor & Hodgkin, 1973).

Sensitivities
The flash sensitivity, SF, is defined as the peak hyperpolarization pro-

duced by a weak flash divided by the density of applied photons at the
optimum wave-length (/tV photon-' ,tm2).
The step sensitivity S. (or simply S) is the steady hyperpolarization due

to a very weak steady light divided by the light intensity at the optimum
wave-length (TV photon-l sec ,sm2) (see Baylor & Hodgkin, 1973).

Integration time
If the linear response to a weak flash is f(t) where f(t) = 1 at the peak of

the response, the integration time, t1, is defined as ff(t) dt. From this

definition it follows that the step sensitivity is equal to the flash sensitivity
multiplied by the integration time (see Baylor & Hodgkin, 1973).
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Electrical effect of one photoisomerization; effective collecting area
Baylor & Hodgkin (1973) obtained evidence that much of the variation

in sensitivity between cones arises from the differences in effective collect-
ing area that result from variation in the angle of incidence of the light
relative to the axis of the cones. They suggest that the maximum flash
sensitivity of 250 1tV photon-' ,m2 corresponds to axial entry of light and
that the effective collecting area is then 10 /Zm2. On this basis a cone with
a sensitivity of 25 uV photon-' 'Im2 is taken as having an effective collect-
ing area of 1 /m2 and both the sensitive and insensitive cone then have the
same absolute sensitivity of 25 ,uV per photoisomerization. The symbol
St is used to denote the peak voltage per photoisomerization.

Rising and falling phase of response
By rising phase of the response we mean the initial hyperpolarizing

phase and by falling phase we mean the later phase of repolarization.

Michaelis equation
We shall follow Dixon & Webb (1964) in describing the rectangular

hyperbola
U x

Umax- k + x
as a Michaelis equation. Other names associated with this relation are
Michaelis' colleague Menten (1913), Langmuir (1916) and Briggs & Haldane
(1925).

If U/Umax is known and we wish to calculate a variable proportional to
x this can be done by the formula

x U
k Umax-U

which will be called an inverse Michaelis relation.

THEORETICAL SECTION

Equivalent circuit theory: the relation between membrane potential and
the fraction of light-sensitive channels blocked

The object of this section is to derive equations which enable one to
calculate the extent to which the light sensitive channels are blocked during
the response to a flash or step of light. For this purpose the network pro-
posed by Baylor & Fuortes (1970) will be used, with the addition of a
parallel capacitance C (Fig. 1). In this circuit g is the constant conductance
in series with the voltage E. gi is the conductance of the channels affected
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by light and has the value gD in darkness; for simplicity the equilibrium
potential of the light-sensitive channels is taken as zero, as was found to be
approximately the case by Baylor & Fuortes (1970). The assumption is not
critical since the theory is primarily concerned with displacements of the
potential from its dark value.
V is the internal potential, VD is its value in darkness and VL (= E) is

the limiting value of V with a light of saturating intensity.

Inside

Fig. 1. Equivalent circuit of cone after Baylor & Fuortes (1970). ( is the
membrane capacity, g is the fixed conductance in series with the battery E
which maintains the resting potential .anld gi is the variable condutictance
which is reduced by light.

TD = C/(9D + 9) is the time constant in the dark and TL = C/g is the time
constant when gi is reduced to zero under the influence of a bright light.

a 9D+9

is a ratio which enters into a number of relations such as

VD

(1)

(2)

(3)

RL
RD) (4)

where R is the d.c. resistance between the inside and outside of the cell.
The differential equation for the circuit in Fig. 1 is

dV
W + V~~gj + g) = Eg. ~~(5)
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The light-sensitive conductance gi is regarded as the sum of the con-
ductances of the channels remaining open, and a variable B defined by

B - 9D-g9 (6)
gD

gives the fraction of light-sensitive channels blocked at any particular
time. If B is known as a function of time, V can be computed by solving

dVTLd + V[a-(a-1 )B] = E, (7)

which follows from eqn. (5) and the definitions ofTL, a and B. An alternative
form of eqn. (7) using the hyperpolarization U (= V) - V) is

dU
8,rL-aj+U[a-(a-1)B] = BUL, (8)

where UL is the maximum hyperpolarization.
A useful relation which follows at once from eqn. (8) is

B = aU+ rLdUUd
UL+(a-l)U (9

In the steady state this reduces to

B = aU(U(10)UL + (a-1)Up10
U B

or UL a-B(a-l) (11)

Baylor & Hodgkin (1973) estimated that in turtle cones one photo-
isomerization gave a peak hyperpolarization AU of about 25,1V. From
eqn. (9) it follows that at the peak of the response the fraction of con-
ductance channels blocked by one photoisomerization is given by

AB=aAUa ULAvB=
If a = 1-6 and UL = 25 mV, AB = 1/630; this estimate is of the same
order of magnitude as that obtained by Cone (1973).

Eqns. (8) to (11) are more general than might appear from the derivation given
here. Thus they apply to systems in which complete activation involves a change
from a dark state in which the light-sensitive pathway is a conductance gD in series
with a battery ED to a light state in which the pathway is a conductance gY in series
with a battery EL. For these systems eqns. (8)-( 11) apply if B remains the fraction
of channels activated, TL is the time constant in strong light, CI(P + gL), and a is the
ratio of total conductances in dark and light, i.e. (9+ gD)/( + gb).
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Possible relations between concentration of activating substance andfraction
of ionic channels blocked

This paper provides evidence that light produces a state of activation
whose intensity at any fixed time up to 50 msec after a flash varies linearly
with the light intensity over several log units. In the model used for
analysis the state of activation is characterized by a variable y which
represents the number of blocking particles per receptor. Combination of
a single particle with a channel is assumed to reduce the conductance of
the channel to zero. We shall make the provisional assumption that there
is an instantaneous relation, for example, a Michaelis relation, between B,
the fractional closure of the ionic channels and the linear variable y. The
purpose of this section is to provide a physical basis for alternative forms of
the function relating B to y.

It is possible that the division of a receptor outer segments into sacs and
disks provides a series of 'compartments' within which any blocking
particles released by light would be to some extent confined. In the general
case of a compartment having n channels and r particles the probability f
that a channel is blocked under equilibrium conditions can be obtained
from

[r-(n- I)f] [1-f] = kf, (12)
where k is the dissociation constant. The basis of this equation is that a
single channel is uncombined for a fraction (1-f) of the time and during
that time there are [r - (n - 1)f] free particles available to combine with it.
Hence the mean rate of association is proportional to the left-hand side of
eqn. (12) and the mean rate of dissociation to the right-hand side. At
equilibrium these two rates must be equal.
Two extreme cases will be considered - the first being that all channels

and activating particles are confined in a single large compartment which
can be identified with the receptor, and the second that there are a large
number of compartments each containing a single channel. In the first
macroscopic case, arguments based on the Law of Mass Action can be used
but in the second it is necessary to consider statistical variation in the
number of particles per compartment as well as the fraction of time for
which each particle is combined. In both cases the relation between B and
y reduce to a Michaelis equation when the affinity of the activating mole-
cule for the channel is low, and both lead to the same relation for dB/dy
as y approaches zero.
One large compartment; equations based on Law of Mass Action. If N0 is

the total number (both blocked and unblocked) of light-sensitive channels
per cone and y is the total number of activating particles per cone (both
free and bound) then BN0 is the number (or concentration) of blocked
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channels, (1 - B)NC is the concentration of unblocked channels and y - BN,
is the concentration of free y. Application of the Law of Mass Action on
the assumption that an equilibrium has been established gives

(y-BNe) (1-B)Nc BNck. (13)

This is equivalent to (12) above, because for a single macroscopic compart-
ment r=_ry, f - B and n=N, > 1.

Equation (13) has two solutions for B, one of which is greater than unity
and therefore not physically meaningful. The solution of interest is

B= {Yy+Nc+k-V[(y+Nc+k)2- 4Ny]}. (14)
If k > Ne, which implies that free y always greatly exceeds bound y, this
approximates to the rectangular hyperbola

B yl+N y+ (15)
y Ifk+Nc *y+k- 15

If k < Nc which implies that free y is negligible until all the channels are
blocked eqn. (14) reduces to

B = y/N, for y < Ne,
B=1 for y>N .

For comparison with experiments it is convenient to eliminate Nc from
eqn. (14) by using the variables Y = y/Nc and K = k/N,. Y is then the
mean number of blocking molecules per ionic channel and K is a dissocia-
tion constant expressed in the same units as Y. In terms of these variables
eqn. (14) becomes

B = i {Y+ 1 +K-4[(Y+1 +K)2- 4Y]}. (16)
Fig. 2 illustrates the relation between B and log [Yf(1+ K)] calculated
from eqn. (16) with different values of K. The choice of horizontal scales
is made in order that the curves coincide for small Y.
The inverse equation which allows Y to be calculated from B is

Y = BK+i B (17)

Single channel compartments. On the assumption that the Nc channels
are distributed one per compartment there will be Nc compartments. If
it is also assumed that each of the No photoisomerizations leads to a
blocking particle with probability P(t) at time t after the flash then the
mean number of blocking particles per compartment, Y, is

Y = P(t) (18)
Ne
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On putting n = 1 in eqn. (12) we obtain

r(1-f) = Kf,
where r is the number of particles, f is the fraction of time for which the
channel is closed and K is the dissociation constant. Hence

r
f r=r+K' (19)

As the particles are assumed to be distributed randomly among compart-
ments the probability of a compartment containing r particles is

yr e-Y
Pr =

r !

-2 -1
r~~~~ Ir~~

1.0

B

0*5

0

0 I 2
I1

B

lg[1o

Fig. 2. Theoretical curves giving instantaneous relation between B, fraction
of ionic channels blocked, and the log of the linear variable Y/(1+ K) which
is proportional to light intensity. In terms of the underlying theory Y is the
total number of blocking particles divided by the total number of channels
and K is the dissociation constant in the same units as Y (see text).

In the upper curves the cone is regarded as a single compartment and the
curves were calculated from eqn. (16). In the lower curves it is assumed
that there is one light-sensitive channel per compartment and the curves

were calculated from eqn. (22).
The values of K were as follows K 0 (curves 1), K = 1 (curves 2),

K (curves 3), K = 1 (curves 4), K Cal (curves 5) in which case both

curves are Michaelis relations.

(20)

.
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and the probability of a channel being blocked in a compartment con-
taining r particles is

P e-y r\
P.f(r) = r! r+K[ (21)

Hence the fraction of channels blocked is

e-_y Z Ytf r ) (22)
r=1 r.!r+Kj

Eqn. (22) can be simplified in certain cases. If the affinity of the particles
for the channels is very high K -÷ 0 and

B = 1-e-y, (23)
which is the fraction of compartments containing one or more particles.
If K = 1,

B= 1-(1-e-y)/Y, (24)
and if K > 1,

B Y/(Y+K). (25)
Consequences of taking B(Y) as a Michaelis function. The assumption

that the instantaneous relation between the fraction of channels blocked,
B, and the concentration of blocking particles Y is a Michaelis relation
(eqn. (25)) has a number of interesting implications. If B is eliminated
between eqn. (25) and (11) we obtain for conditions in which dU/dt = 0,

U Y
UL Y+aK (26)

Thus if the relation between B and Y is a rectangular hyperbola the rela-
tions between U and Y will be similar but the dissociation constant will
be aK instead of K. Since Y is assumed to be proportional to light intensity
it follows that if a light of intensity I' blocks half the sodium channels, a
light of intensity al' will give half maximal hyperpolarization. Another
interesting point about this assumption is that the increment in the resist-
ance of the light-sensitive channels should be directly proportional to light
intensity.

If the Michaelis relation (25) applies, the inverse relation for calculating
the linear variable Y is

Y B
K 1-B' (27)

which we assume applies at any instant or
Y U
aK UL- (28)

which is valid only under steady-state conditions.
In applying the Michaelis relation to reconstruct the rising phase it is



ELECTRICAL RESPONSE OF TURTLE CONES

convenient to eliminate constants by using the step-sensitivity which is
defined as

(dU S. (29)

t=W

Thus suppose that for a step of light of intensity I

Y = c'IIS(t), (30)
where c' is a constant and 0(t) = 1 for t = ac,

S (dU\ _dU dY (31)

_= t=oo

From eqns. (28) and (30)
- c'U (32)

aX

and B =
SIo(t) (33)

and B = ~~~~~SIqS(t)+a-'UL~
If 0(t) is known this equation can be used in conjunction with eqn. (8) to
reconstruct the rising phase (see page 711).

Kinetics of the activation substance in the linear region
The aim of this section is to derive equations which describe the linear

response of the cell to small flashes or steps of light. The distortion intro-
duced by the Michaelis equation, or more complicated relations such as
eqns. (16) or (22) will have negligible effects if the signal is less than a
millivolt. Apart from the slight lag introduced by the cell time constant,
which is about 5 msec in the dark, records of small signals should therefore
give accurate information about the time course of the closure of ionic
channels. As the total delay between a flash and the peak of the linear
response is of the order of 100 msec we shall neglect the effect of the cell's
electrical time constant in a preliminary description of the response.

Fuortes & Hodgkin (1964) found that the linear responses of Limulus
ommatidia could be fitted by mathematical equations in which the effects
of light pass through a chain of low-pass filters of equal time constant. The
linear responses of turtle cones and rods to flashes are more asymmetrical
than those of Limulus ommatidia but can be fitted by a similar model in
which the time constants are not all equal (see Penn & .Hagins, 1972). This
model will be described in terms of a chain of chemical reactions rather
than an electrical network as this gives a possible meaning to the variation
of rate constants along the chain.

Suppose that the absorption of a photon by a chromophore uncovers
or releases a particle A on which six sites are combined with a ligand L
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(e.g. a proton) which is lost with a rate constant a after the photon has been
absorbed. Activation by light then starts the following chain of reactions

AL6 -- > AL5 --> AL4-+ AL3 -4> AL2 _ - AL, > A

Yi > Y2 ; Y3 > Y4 > Y5 ~ Y6 > Y7
where the a's are rate constants and the y's are concentrations. Of these
seven compounds we assume that only AL1 can block the 'sodium' channels
in the outer segment. The concentration of AL1, which is denoted by ye at
a time t after the beginning of a light stimulus I(t) can be obtained by
solving the following set of equations:

dyt +la,y= cI(t),

dY2+a2Y2 = alYP (4
dy (34)

dy +a6Y6 = as5Y5

where c is a proportionality constant. An identical set of equations would
hold for a ligand becoming attached to empty sites or for a series of intra-
molecular rearrangements. The property which all these systems must
have in common is that the rate constants for the back reactions should be
negligible compared to the forward rate constants. In the following
sections we consider three possible ways in which the time constants might
vary along the chain.

Independent activation. The simplest assumption to make about such a
chain of reactions is that they proceed independently. In that case the
relation between the a's is as follows

a,1= 6a, a2= 5, ...a6 =a.
Thus al is six times a6 because AL6 has 6 times more L than AL1.
On solving eqn. (34) with this restriction for the case where I(t) is an

instantaneous flash Iz\t, we obtain

Y6 = 6cIAt e-at (1 -e-at)5. (35)
This relation can also be obtained in a simpler manner. The probability
that a given site on a particle released by one photon is occupied by an
L is eat and the probability that the site is vacant is 1-e-et. For a particle
with six sites, the probability of the state in which five sites are vacant
and one site is occupied is

P(t) = 6 e-at (1-e-at)s. (36)
For a particle with n sites, the probability is

P(t) = n e-at (1 e-at)n-. (37)
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In terms of y? the response to a flash is

Y. = ncIAt e-at (1 - e-t)n-l (38)
and to a step is

= e(1-e-t)n. (39)

If we assume that for small signals the change in membrane potential U is
linearly related to Yn by U = k'y. and define a step-sensitivity constant S
by S = ck'/a, then

U = IS(1-e-t)n (40)
gives the response to a step,

U = IAtSnc e-at (1 e-t)fn-i (41)

the response to a flash and

U = IS(F(t+ 2)-F(t j))' (42)

where F(t) = (1-e-t)n... t > 0

gives the response to a rectangular pulse lasting from - jAt to JAt.
Rate constants in arithmetic progression. Although most of our results

with flashes were fitted by eqn. (41) some were more symmetrical, although
less symmetrical than the Poisson curves given by the original Limulu8
model. A useful equation, which can be fitted to all the results and which
reduces to eqn. (41) as one special case and to the Poisson curve as another,
can be obtained by assuming that the rate constants are in arithmetical
progression. If al - a2 = a2- a3... .etc., then the response to a flash is

IAtc (axa2....n-1) e-antI(n-1)-e-a t/(n- -)n-4
=n (n-i1)! a1-2 j(3

The model in which the ligand is lost independently is a special case of
arithmetic progression in which a, = na, a2 = (n-i1)...a, = a, and as
would be expected eqn. (43) then reduces to eqn. (38). On the other hand
if a1 = a2 ... = an = a, eqn. (43) reduces to the Poisson curve considered
by Fuortes & Hodgkin (1964), i.e.

Jlvtc (at- es
Yn

t
( n-1)

a

!44(n-i1)! (4

Final rate constant different. The third model considered is a system in
which all the rate constants except the last are equal, i.e.

al = a2 = ... an-1 = as

a=_da.

697
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In this case the solution for an instantaneous flash is
=~tc (e-A e-2 (Ief) '(4fl)rTr1

r=O

where T = ait.
Although this model does not give such a neat solution as the other two

it has certain advantages when we come to describe the effect of a back-
ground in shortening and reducing the response to a test flash. For it turns
out that this effect and others related to it can be described fairly well by
assuming that the final rate constant an increases with the concentration
of the inactive end-product Yn+l and that the rest of the chain stays
constant.
Another advantage of this class of model is that it seems quite likely

that the final rate constant might be very different from those in the rest
of the chain. Thus it might take five or six steps to release a calcium ion
which would be available to block channels until combined with some
chelating compound. It is also not hard to visualize a system with equal
rate constants, rather than with rate constants varying according to the
independence relation. What is required is some kind of bottle-neck or
rate-limiting step which is the same for all reactions.

RESULTS

The linear response to flashes and steps of light
The average response of a red-sensitive cone to flashes of light has the

characteristic shape shown by the circles in Fig. 3. The continuous curve
which is clearly a good fit to the points was calculated on the independent
activation formula derived on p. 697, i.e.

U = IAtSnci e-at (1 e-at)n-l (41)
where U is the hyperpolarization, I is the light intensity, At is the pulse
duration (11 msec), S is the step-sensitivity, a is the rate constant
(16.7 sec1), t is the time from the midpoint ofthe flash and n is the number
of 'reactions' which was taken as six.

Fig. 4, in which log U/I is plotted against log t, extends the treatment to
stronger flashes and shorter times. If the system were strictly linear all the
points would fall on a common curve. This is plainly not the case but the
left-hand parts of all the curves do appear to converge on a common curve
and appreciable non-linearities do not appear until the hyperpolarization
exceeds 1-2 mV.
The continuous curve which is a fairly good fit to the left-hand parts

of all curves was again drawn from eqn. (41) with exactly the same
parameters. However, as the flash had a finite duration of 11 msec the
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comparison is not fair at times less than 20 msec where eqn. (41) should
strictly be replaced by the finite difference equation

U = IS{F(t+ 2)-F(t 2))' (42)
where F(t) = (1e" t), (t > 0)

=0, (t < 0).
2-0

1-5

> 1-0

0

0 50 100 150 200 250 300
mfsec

Fig. 3. Mean linear response of red-sensitive cone to weak flashes of white
light of duration 11 msec; 31 frames were averaged and the vertical lines
through the points are + 1 s.E. of mean; hyperpolarization is plotted up-
wards. The continuous curve was calculated from the independent activation
formula eqn. (41) (pp. 697, 698) with n = 6, a = 16-7 sec-1 and S = 2-92 REV
photon-' #Cx2 sec; At was 11 msec and IAt was equivalent to 93-6 photon
,Ull2 at A..aX Maximum hyperpolarization 20 mV; flash sensitivity 19-5ISV
photon-' #m!',; 150 jsm diameter light spot; temperature 21' C; resting
potential -39 mV. The abscissa is the time in msec from the middle of
the 11 insec flash.

With strong flashes and at times less than 10 msec the experimental points
lie to the right of this relation which is shown by the interrupted curve in
Fig. 4. These points require an n approaching 7, but the fit to the linear
response is then rather less good. This type of discrepancy which was
observed in most experiments could be explained if one of the delays
in the model were composite. Thus if the shortest time constant of
(6a)-1 = 10 msec were replaced by ten 1 msec delays (which would be a
fair representation of the delay introduced by the diffusion of a small
molecule over a distance of 2 or 3 Aim) it would have little effect over
most of the curve but would reduce the theoretical values at small times.

29-2
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1OU

104

103

102

10

I
10 100 1000

msec

Fig. 4. Responses of red-sensitive cone of Fig. 3 to 11 msec flashes of light.
The abscissa is time, t, on a log scale from the middle of an 11 msec flash.
The ordinate which is also plotted on a log scale is the hyperpolarization
divided by the intensity of the light (I) which is given relative to its un-
attenuated value. In these units log I was as follows: curve 1, 0; 2, - 0-31;
3, -065; 4,-0-97; 5,- 1-33; 6, - 1-65; 7, - 2-00; 8, - 2-30; 9, -257;
10, -2-88; 11, -3-22; 12, -3-53; 13, -3-90. The continuous curve was

calculated from eqn. (41) with the same constants as in Fig. 3, i.e. n = 6,
oa = 16-7 sec-1 and S = 2-92 #V photon-' /m2 sec if I is expressed in
equivalent photon flux. In the Figure, where I is given relative to its
unattenuated value of 67 x 106 photon /m-2 sec' at 644 nm, S = 1-96 x

105 mV per unit of unattenuated light intensity. The interrupted curve

which allows for the width of the pulse was calculated from the finite
difference eqn. (42) with the same constants. Experimental details as in
Fig. 3.
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ELECTRICAL RESPONSE
msec

3 10 30 100
msec

OF TURTLE CONES
msec

10 30 100 300

10 30 100 300
msec

Fig. 5. Response of red-sensitive cone to 9-6 msec flashes, left (A) and steps,
right (B) plotted on log x log scale as in Fig. 4. The logarithms of the light
intensity I (which is given relative to its unattenuated value) were: curve

1, 0; 2, - 0-31; 3, - 0-65; 4, - 0-97; 5, - 1-33; 6, - 1-65; 7, - 2-00; 8, - 2-30;
9, -2-57; 10, -2-88; 11, -3-22; 12, -3-53; 13, (B) -3-90; 14, -4-21;
15, -4-55; 16, -4-86; 17, -5-17. In A curve 13 is the mean of eight
responses obtained with a log mean I of -4-14. For the steps (B) the smooth
curve was calculated from eqn. (40) with n = 7, a = 20-8 sec-1 and S =

2-88 x 105 mV per unit of unattenuated light. For the flashes the finite
difference eqn. (42) was used with the same constants and At = 0-0096 sec.

One relative unit is equivalent to 67 x 106 photons /km-2 sec-1 at 644 nm.
In those units the step sensitivity was 4-3 #sV photon-' 4m2 and the flash
sensitivity was 35 1EV photon-' M2. White light; diameter of spot 50 jm;
resting potential -39 mV; peak hyperpolarization 25-5 mV; temperature
21.80 C.
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Fig. 5 which is from another red-sensitive cone extends the treatment

from flashes (left) to steps (right). The continuous curves were drawn with
n = 7 and a = 20*8 sec-1 using eqn. (42), above, for flashes and eqn. (40)
for steps, i.e.

U = IS (1 - e-at)n. (40)
Although the agreement with the independent chain model is impressive

other models work equally well and in some cases better. The first point
is illustrated by Fig. 6 in which the mean response of nine red cones is
compared with two theoretical formulae. The continuous curve is the

1.0

0-5

0 100 200 300
msec

Fig. 6. O. Average linear response of nine red-sensitive cones to weak
flashes, corrected to 20° C from Baylor & Hodgkin (1973). Before averaging,
the mean response in each experiment was scaled to give a peak of unity.
The continuous curve was calculated from the independent activation
eqn. (41), with n = 6, a = 15*15 sec'1 and the appropriate scaling factor
to give a peak close to unity. The interrupted curve was calculated from
a model with five stages of time constant 17 2 msec and one of 86 msec,
i.e. eqn. (45) with n = 6, T = t/17.2 (with t in msec), ft= t and an
appropriate scaling factor to give a peak close to unity.

independence model with n = 6 and a-' = 66 msec and the interrupted
curve which is an equally good fit was calculated from a model in which
five of the reaction time constants were equal to 17-2 msec and the sixth
was 86 msec. Our tentative conclusion is that any model with n = 6-7 can
be fitted to the results provided that we allow sufficient dispersion of time
constants. It should also be emphasized that in the linear systems con-
sidered here we can change the order of the reactions without affecting the
results.

Fig. 7 illustrates the response of a red-sensitive cone which does not
agree with the independence formula but which can be fitted by either
model 2 (rate constants in arithmetic progression) or model 3 (five time
constants of 17 msec and one of 51 msec).

Table 1 summarizes the parameters obtained by fitting the three models
to red- or green-sensitive cones and to rods.
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1-0

0-5

0
0 100 200 300

msec
400

Fig. 7. Average linear response of a red-sensitive cone to weak 10-5 msec
flashes. 160 frames were averaged giving a mean peak response of 0- 7mV to
an average quantity equivalent to 7-3 photon /sm-2 atA,,; flash sensitivity,
94 /AV photon-' Em2. In this cone the response was more symmetrical than
usual. The continuous curve was drawn from eqn. (43) with n = 6, a, =
66-7 sec-L and a,, = 33 sec-'. The interrupted curve was drawn from eqn.
(45) with n = 6, T = t/17 (with t in msec) and 1 =j. The peaks of both
experimental and theoretical curves have been scaled to unity. Tempera-
ture 210C; spot diameter 75,utn; white light in this and all subsequent
Figures.

I

0 0-4 0-8

0%'-V~~~~~~~~~~~~~~~~~~~~~~~I I I I I

0 0-2 0-4
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0 0-2 0*4 sec
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0
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0 0.5 1.0

Fig. 8. Response of red-sensitive cone to weak 9 msec flashes (left) and steps
(right) of white light, at three different temperatures. Each trace is the
average of 16 frames. The intensity of the flashes was 22 times that of the
steps. The circles in the right-hand column were obtained by integrating
the flash responses (see Baylor & Hodgkin, 1973). The maximum hyper-
polarization in this cell was 12 mV at 10-4 and 20. 5 C and 10 mV at
27.20 C. The diameter of the light spot was 140 jzm.

Effect of temperature on the linear response

The effect of a change of temperature from 10-4 to 27-2° C on the re-

sponse to flashes and steps of light is shown in Fig. 8. The intensity and
duration of the flashes was constant and these records were taken at the

1040C

mvE
20.5° C

0 _

-1.C
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same gain. The intensity of the step at 10.40 C was half that at the other
two temperatures and the gain at 27° for the step record was twice that in
the records at 10-4 and 20.50 C. The records were taken in the linear region
of the response and the form and amplitude of the step response agree
with the circles calculated by superposition from the flash response (see
Baylor & Hodgkin, 1973). In this experiment the flash sensitivity was
approximately constant but the step sensitivity decreased as the tempera-
ture was raised - as would be expected from the decrease in area and
approximate constancy of the peak amplitude of the flash responses.

300

200'

E

E
0

100

80 00
0

60 -

0.0033 0.0034 0 0035 0-0036
1
Tabs

Fig. 9. Effect of temperature on the kinetics of responses to flashes. Pooled
results from fourteen red cones. The time to peak in msec of linear responses
to brief flashes is plotted logarithmically against the reciprocal of the
absolute temperature. The slopes of the lines through the points corre-
spond to an activation energy of about 10 kcal/mole.

Borsellino, Fuortes & Smith (1965) found that Limulus ommatidia did not
behave in this way since the flash sensitivity increased with temperature
and the step sensitivity remained approximately constant. However,
before concluding that there is a real difference it should be said that our
result is uncertain because we were never able to hold an electrode in a cell
over a downward change in temperature, and the approximate constancy
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of the flash responses in Fig. 8 could be attributed to a progressive
decline in sensitivity. The point that is clear from this and other experi-
ments is that increasing the temperature accelerates the response. From
the Arrhenius plot in Fig. 9 we conclude that the apparent activation
energy of the rate processes underlying the response is 9-84 kcal/mole
and that the temperature coefficient (Q10) of the reciprocal of the time to
peak is about 1-8 between 15 and 250 C. These are somewhat smaller than
the values of 19-56 kcal/mole and 3-2 for the Q10 obtained for Limulus
ommatidia by Borsellino et al. (1965) but still sufficiently high to eliminate
straightforward aqueous diffusion as a main cause of the delay.

40, I

E E0

-20 _c

0 '20 40 60 80 100 120
msec

Fig. 10. Changes in potential produced by current in darkness (a), and during
the response to light (b), superimposed tracings. Between the arrows, a rec-
tangular pulse of depolarizing current (strength 1-5 x 10-10 A) was passed
through the micro-electrode. c is the response to light without current.
Red-sensitive cone 2 in Table 2; 20.80 C. Spots of white light, diameter
75/sm were flashed for 10 msec just before the beginning of the trace; the
intensity was equivalent to 1-5 x 106 photons /%m-2 sec-, at An.

In terms of the independent activation model outlined on page 696 our
result means that the activation energy for loss of a single particle is
9*84 kcal/mole and that cx has a Q10 of 1P8.

So far as we can tell a Q10 of about 1 8 applies to the non-linear responses
produced by strong flashes as well as to the linear responses.
A curious feature of the experiments at 270 C was that a strong flash

often dislodged the electrode from the cone - as if strong lights caused
some movement or rapid volume change in the cone.

Measurement of the cone's electrical resistance and capacity
In spite of making many trials we were unable to insert two micro-

electrodes into the same cone. However, in cones with a high resistance it
was possible to obtain satisfactory records by balancing out the voltage
across the electrode resistance with the equivalent of a bridge-circuit
(Baylor & Fuortes, 1970). Fig. 10 illustrates one of these experiments and
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shows that the beginning of the charging curve is well defined. As can be
seen from the figure and from the data against cone 2 in Table 2, a strong
flash of light increased the time constant and resistance by about 30 %,
as would be expected from eqns. 2-4 since VL/VD = 1*3. The agreement
is poor in the case of cone 3 which had a larger response and a lower re-
sistance, but we do not know whether the discrepancy should be attributed
to a genuine divergence from the simple network or to the difficulty in
choosing the right setting for the bridge balance. An interesting feature
of the records is that when the current was superposed on the response to
a flash of light, the extra voltage produced by the current swung past zero
when the currentwas switched off; this will be discussed further on page 717.
The values in Table 2 for the resistance RD across the cell membrane in

the dark are much higher than that of 25 MO reported by Baylor & Fuortes
(1970). This may be because cone resistances vary greatly, perhaps as a
result of variations in the amount of coupling, and that the cones in
Table 2 are from the upper end of the distribution. On this basis it seems
possible that cone 2 with 170 MU in the dark is an isolated cone (Baylor &
Hodgkin, 1973). From the time constant and resistance the capacity is
found to be 37'6 pF in the dark and 37*2 pF in the light. This does not
seem an unreasonable value for a single cone. If the inner segment is
regarded as a cylinder 8 ,sm in diameter and 40 ,um long its surface area
would be 10-5 cm2. If there are 800 sacs in an outer segment with a mean
diameter of 2 jsm the effective area might be 5 x 10-5 cm2 so that the
capacity per unit area would be

37x 10-12

Analysi of the rising phase
Relation between channel closure and light intensity at fixed time. The

results described in the previous sections are consistent with the hypothesis
that flashes and steps of light produce a blocking substance whose 'con-
centration' is proportional to light intensity in the early stages of the
response. Linearity between voltage and light intensity breaks down if the
response exceeds a few millivolts but it is not clear whether this is caused
by an instantaneous non-linearity of the type considered in the theoretical
section or by some more complex kind of desensitization. In an attempt
to answer this question we calculated the fractional closure of the light-
sensitive channels from the hyperpolarization U and its rate of change
ar by eqn. (9):

B aU +( 1)U (9)
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In the experiment illustrated in Fig. 11 the resting potential was - 39 mV,
the maximum hyperpolarization UL was 20-3 mV, hence

59.3
a = =1-52.

With strong flashes the variable conductance gi should be reduced to a
very small fraction of the fixed conductance g and the potential should
approach its maximum exponentially with the light time constant
T, = C/g. In the experiment considered, a plot of ln (UL- U) for the strong-
est flash response gave rL = 8-3 msec which is similar to that found directly

log Y
-1 0 1 2 3

"OF
0-8

0-6

B i
0-4 _i

0-2

0 0 . ,

2 3 4 5 6
log Q

Fig. 11. Relation between fraction of channels blocked (B) and log quantity
(Q) of light at various times after a flash. 0O 40 msec after flash; *, 30 msec
after flash, curve shifted 0-3 log units to left; A, 50 msee after flash, shifted
0-2 log units to right, + single point at maximum (110 msec after flash)
of linear responses, shifted 0-6 log units to right. The ordinate of these
experimental points was calculated by eqn. (9) with a = 1-52, FL = 8-4 msec
and UL = 20-3 mV. The abscissa of the experimental curves (lower scale)
gives the logarithm of the equivalent photon density of the flash in photons
uIm-2 at the optimumi wave-length of 630 nm. The continuous curve, for
which the upper scale gives log Y was calculated by eqn. (22) with K = i.
x, the relation between the peak voltage expressed as a fraction of the
maximum hyperpolarization and the intensity of the flash; the interrupted
curve which fits these points is the Michaelis curve Q/(Q + Qj), where Qu is
the equivalent photon density at which the peak voltage is half maximal.
For further experimental details see Fig. 3, which was obtained on the
same red-sensitive cone.

in other cones (Table 2). It can be seen from Fig. 11 that values of B
calculated at times of 30, 40 and 50 msec all fall on a common curve when
shifted by appropriate amounts along the horizontal axis of log light in-
tensity. This common curve deviates from a Michaelis relation in the
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direction expected if the affinity of blocking molecules for channels is high.
As reported by Baylor & Fuortes (1970) a Michaelis curve usually fits the
relation between peak voltage and light intensity as it did in this experi-
ment. However, since the time to peak changes from about 110 msec with
weak flashes to 50 msec with strong flashes, it is clear that the potential
at a fixed time cannot also be fitted by a rectangular hyperbola. Such
points deviate from a Michaelis curve in the same way as those in Fig. 11
although the discrepancy is not as great as it is for the variable B.
The continuous curve in Fig. 11. which is a good fit to the experimental points was

calculated by eqn. (22) (p. 694)

B= e- 1 o 9 r )(22)
r=1 r!\r+K

with K = i. By making certain assumptions we can use the agreement of this
theoretical expression with the experimental results to estimate the number of light
sensitive channels in the cone. In eqn. (22) Y the mean number of blocking particles
per channel is given by

Y = 0 P(t),
N.

where N is the number of photons successfully absorbed by the cone, N, is the
number of channels and P(t) is the probability of a blocking particle being present
in a compartment containing one channel which has absorbed a photon. The cone in
this experiment had an absolute flash sensitivity of 22 REV photon-' 6m2 which is
about one-tenth of that seen in the most sensitive cones for which Baylor & Hodgkin
(1973) considered an effective collecting area of 10 ,tm2 to be appropriate. We shall
therefore take the collecting area of this cone to be 1 /Zm2. If we make the further
assumption that each photoisomerization starts a conservative chain of reactions we
can calculate P(t) by eqn. (37), i.e.

P(t) = 5 e-(1 -e-t)4,
which was found to fit the variation of B with t in this receptor with a = 14 sec-1.
By a conservative chain we mean that each photoisomerization liberates one yj
particle and that the reactions from Yi to y5 proceed without loss or amplification.
On that basis P(t) = 0 4 at the maximum which occurred with t = 110 msec; at 50,
40 and 30 msec P(t) is respectively 0-16, 0 1 and 0 05. From these values and the ob-
served ratios of NoA to y it is found that the number of channels is 178-187 per cone.
In terms of the particular theory used this number is also the number of compart-
ments. However it should be made clear that even if the estimate of the number of
channels is approximately correct the data in Fig. 11 provide no real evidence for
the existence of compartments. By using a slightly larger value of K we were able
to fit the data in Fig. 11 reasonably well by eqn. (16) which was derived without
assuming any compartmentalization. If each photoisomerization liberates R particles
the argument used above gives the number of channels as about 180R.

The results in Fig. 11 are typical of experiments in which the diameter
of the light spot was 100-150 /,tm. In experiments with 50 ,tm spots both
the curves for B and peak voltage were usually somewhat flatter and B
was then well fitted by a Michaelis curve (Fig. 12). It can be argued either

(1) that the steeper curves in Fig. 11 represent the behaviour of an
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isolated cone and that the flatter curves in Fig. 12 occur because the
impaled cone is coupled to others which receive less light (see Baylor &
Hodgkin, 1973), or

(2) that the Michaelis relation for B in Fig. 12 is 'correct' and that the
steeper curves in Fig. 11 arise from some extraneous effect such as feed-
back from the horizontal cell.

1.0

B ~~~Flashes+
O.5 +

0 1 2 3 4 5 6 7

log Iand. -
5Fig. 12. Relation between fractional closure of ionic channels, B, and log

light intensity at fixed times during the rising phase of responses to flashes
and steps of light. Each set of points was calculated at a particular time
after the stimulus by eqn. (9) with a = 1-64, UL = 25 mV and TL = 10 msec.
For the flash run (with a 9-6 msec flash) times in msec from the middle
of the flash are: 0, 50; x, 40; A, 30; Lii, 20; +, 15; V, 10; *, 7; A, 5
and for the step run times in msec from the beginning are 0O 70; x, 50;
A, 30; L1, 20; +, 15; V, 12; *, 10. Continuous curves are Michaelis curves
displaced along the abscissa. The light intensity is given in relative units
such that the unattenuated light had an intensity of 106; 1 relative unit
_ 67 photons #um-2 sec-l at 644nm. For further details of this red-
sensitive cone, which was illuminated with a 50#,m diameter spot see
Fig. 5.

The first alternative is supported by the fact that the isolated red-
sensitive cone described by Baylor & Hodgkin gave steep curves which
were almost identical with those in Fig. 11.

Reconstruction of rising phase of the response to flashes and steps of light.
The electrical responses of the cone which gave the most consistent and
noise-free records are illustrated in Fig. 13. In this experiment the light
spot was 50,um in diameter and the instantaneous relation between B

711
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and light intensity was a Michaelis equation, as can be seen from Fig. 12
which is from the same cell.

In order to reconstruct the rising phase we need to solve two equation
derived in the theoretical section, i.e.

TL-d+U a-(a-I)B] = BUL (8)
and

B
Shb (t) (3

SIq(t) + a-'UL (33)

In the cone of Fig. 13, rL was estimated as 10 msec, a as 1-64 and the
step sensitivity S as 3 x 105 mV per unit of unattenuated light; from the
maximum response, UL was taken as 25 mV for the flash run and 24-25 mV
for the step run. From the horizontal shifts in Fig. 12 it is a simple matter
to obtain experimental estimates of qS(t) and these were found to be well
fitted by the following expressions with t in msec.
Steps 0(t) = [1 - exp (- t/48)]6. (46)
Flashes of duration 9-6 msec

0(t) = {1-exp (-t/48)}6-{1-exp [(9.6-t)/48]}6 (47)
with the second term zero for t < 9-6 msec.
The expressions for 0(t) are consistent with those used in Fig. 5 to fit the

small changes in potential in this cell, i.e.
F(t) = [1-exp (-t/48)]7 (48)

for steps and the corresponding finite difference formula for flashes. In the
linear analysis of Fig. 5 we neglected the cell time constant and used a
chain of seven steps of time constant

6-86, 8, 9-6, 12, 16, 24, 48 msec.
In the non-linear analysis with which we are now concerned we have a
variable time constant of 6-10 msec and six steps of time constant

8, 9'6, 12, 16, 24, 48 msec,
so the two treatments are nearly equivalent. The two values of S are also
internally consistent since the difference between 2-875 x 105 and 3 x 105
allows for the slight non-linearity of the small signals measured in Fig. 5.
Having established the form of 0(t) and obtained values for all the

constants we can check the analysis by comparing the experimental
results with numerical solutions of eqns. (8) and (33). As can be seen from
Fig. 13 there is good agreement up to about 50 msec for flashes and steps
over a 105-fold range of light intensities. At longer times signals of more
than about 2 mV deviate in the manner expected from a mechanism which
desensitizes with a time delay.
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15
14
13
12
11
10
9
8

I I I 1
0 50 100 150 msec

I I I I

0 50 100 150

Fig. 13. Reconstruction of the 'rising phase' of the responses of a red-
sensitive cone to flashes and steps of light. The continuous lines are
tracings of oscilloscope records with hyperpolarization downwards and
the circles were calculated from eqns. (8), (33) and (46) (steps) or (47)
(flashes). The light intensity I varied approximately in steps of 2- 11
between 7 x 106 (curve 17) and 1 (curve 1); the 'exact' value of log I for
each experimental curve is given in Fig. 5. The unattenuated white light was
equivalent to 67 x 106 photons /sm-2 sec' at 644 nm. 'Exact' rather than
nominal values of I were used in calculating the theoretical curves. For
further details of this red-sensitive cone see Fig. 5 and Fig. 12.

Experiments with gaps of darkness
In Fig. 14 the eye was exposed to a light equivalent to 3-7 x 104 photon

#Mn-2 sec-' for 1 sec. After 1 sec which is redefined as zero in Fig. 14 the
light intensity was either doubled or reduced to zero for 40 msec. The

--n
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experiment therefore allows one to compare the effect of adding or sub-
tracting the same light intensity from a steady background. As can be seen
from the figure the depolarization resulting from the gap of darkness is
much larger than the hyperpolarization resulting from the added light.

0

-15 F-

-2 LL0
0

0

-4 0o5

-fI.0

100
I l

.200

1*5

2. 0

msec

Fig. 14. Effect of interrupting or brightening a steady light on membrane
potential and calculated concentration of blocking substance. The cell was
stimulated with a steady light of intensity equivalent to 3-74 x 104 photons
/tm-2 sec-1 at the optimum wave-length of 644 nm. The steady light was

turned off for 40 msec or the intensity was doubled for 40 msec; the
resulting changes in membrane potential were averaged in a few frames and
plotted (continuous lines, open symbols). The solid symbols show the
hypothetical concentrations of activator, calculated from eqn. (49) with
TL= 1 1 msec, a = 1-63, UL = 22 mV. Values of Y/K thus obtained were

normalized by dividing by 1-36, the steady level of Y/K. Dashed curves

through these points are symmetrical and were fitted by eye. 50 ,uIn
white stimulating spot. Membrane potential in darkness -35 mV, 19*85 C.

This asymmetry disappeared when a linear variable proportional to the
concentration of hypothetical blocking particle was calculated by the
following procedure. The variable B, representing the fraction of ionic
channels blocked, can be obtained from eqn. (9) and the linear variable Y,

A
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wnich is proportional to the concentration of the hypothetical blocking
particles, -can be then calculated from B by the inverse Michaelis relation
(27). Elimination of B between eqns. (19) and (27) gives

Y aU+TLLY(49
K UL-U-rLM (

This procedure was justified by the fact that in this experiment, which
was carried out with a 50 ,tm diameter spot the B(I) curve at a fixed time
was close to a Michaelis relation. As can be seen from the Figure, the values
of Y/K are almost perfectly symmetrical, for the curve through both sets
of points were drawn from a common template. The experiment supports
the conclusion that there is a rapidly established equilibrium between the
concentration of a blocking particle which varies linearly with light in-
tensity and the fractional closure of the ionic channels. It also shows that
the response to a pulse of light added on to a background (or to a gap of
darkness) is diphasic; this point will be considered further in later papers.

Analysis of the falling phase
Initial peak and plateau in cone responses. A characteristic feature of the

response of turtle cones is that after a strong flash the potential sags from
a peak of 15-25 mV to a plateau of 12-20 mV. This effect could be attri-
buted either to a desensitization of the transduction mechanism which
leads to an increase in the variable conductance gi or to the development
of an additional leak across the battery and conductance which determine
the potential when gi is zero. Experiments of the kind illustrated in Fig. 15
support the second alternative. Here the records labelled A and B show
the separate effects oftwo strong flashes and C gives the effect of combining
them at an interval of 200 misec. If the decline from the peak were due to
desensitization one would expect the second flash to give a second peak
when superposed on the plateau. Fig. 15 shows that this does not happen
and that the only effect of the second flash is to prolong the plateau pro-
duced by the first. This is consistent with the idea that the light-sensitive
conductance remains at zero throughout the whole of the plateau and that
the sag from the initial peak depends on a decrease in the potential at
which the cell saturates.

Fig. 16 shows a modified circuit which accounts for the initial spike
and plateau. Here it is assumed that there is a second variable conductance
gr in parallel with the light sensitive conductance gi. This hypothetical
conductance is not directly affected by light but increases with a delay
of about 60 msec when the cell is hyperpolarized. In the dark, with
V -40 mV, gr is supposed to be negligible but it increases to a limiting
value (gr) of about 0*2g when the cell is hyperpolarized to more than
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about -55 mV; this causes the potential to sag from its initial value to a
level of -60 mV which is maintained as long as there is enough blocking
substance to keep gs zero. If the light-sensitive conductance became zero
instantaneously and there were no capacity, a very strong flash would
cause the potential to rise suddenly to -70 mV and then decline to
-60 mV. Calculations described in a later paper (Baylor et al. 1974) show
that with a cell time constant (IL) of 10 msec, a sag time constant of

E

0 250 500 7S0
msec

Fig. 15. Effect ofa bright conditioning flash on the response to a subsequent
bright test flash. Tracings from oscilloscope recordings. A: response to test
flash alone. B: response to conditioning flash alone. C: response to both
flashes, with the upper two responses dotted in. Red cone, coincident
75 ,tm white stimulating spots. Flashes of strength equivalent to 6-7 x
105 photon /%m-2 at the optimum wave-length of 644 nm. 20.20 C.
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67 msec and 9r = 0-2g the initial peak would be about 5 mV beyond the
plateau.

Fig. 10 on page 706 provides some evidence for the presence of a con-
ductance varying with potential in the manner assumed in the previous
paragraph. In that experiment and in others of a similar kind it was found
that when a depolarizing current was applied to a cone hyperpolarized by
a strong flash the extra voltage produced by the current swung past zero
when the current was switched off; no such effect was seen when the same
current was applied in the dark. This type of rebound is expected from a
mechanism which increases a parallel conductance with a time delay when
the cell is hyperpolarized.

Inside

Fig. 16. Equivalent circuit which accounts for the initial spike and plateau.
The variable conductance gf increases reversibly and with a delay when the
cell is hyperpolarized; g9 is the light-sensitive conductance.

When the diameter of the illuminated area was increased from 100 ,um
to 1t5 mm the drop in hyperpolarization after the peak merged into the
larger decrease associated with feed-back from the horizontal cells (Baylor,
Fuortes & O'Bryan, 1971). This raises the possibility that the sag seen with
spots of 100lm or less might also be due to horizontal cell feed-back.
Flashes illuminating less than 100 ,um give very little change in the
potential recorded from the horizontal cell layer but there might none-the-
less be localized electrical changes, with corresponding variations of trans-
mitter release, in the fine horizontal cell processes which make contact
with the cones.

Evidence supporting the idea that horizontal cell feed-back could account
for the spike and plateau phenomenon has been obtained in the rods of
Gekko gekko by Kleinschmidt (1973). These photoreceptors normally show
an initial spike and plateau not unlike that in turtle cones. However, after
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the preparation has been treated with 50 mm aspartate, which depolarizes
horizontal cells and renders them insensitive to light, the initial spike of
the rods disappears and the records then have a well-defined flat maximum.
Component in the falling phoae of the response of cones to flashes and steps

of light. When the response to a flash is between 30 and 90% maximal a
distinct hump can often be seen on the falling phase. The general appear-
ance of records such as those in the left-hand column of Fig. 17 suggests

A B C

0~~~~~~

mV ~~~~~~~~~~~~~0
-10 Y/K t

-20 2

0 200 400 0 200 400
msec msec

0 200 400
msec

Fig. 17. Division of response to flashes into two components. A, tracings of
responses of a red-sensitive cone to flashes equivalent in strength to
8-75x 102, 1*34 x 103, 3-37 x 103 and 6 93 x 103 photons jm-2 at 644 nm.
B, open circles, hypothetical concentrations of blocking particles calculated
from eqns. (9) and (17) with a = 1-6, UL = 25-5 mV, TL = 6-3 msec and
K = j. The interrupted curves depict one way in which the 'composite'
response can be split into two components CQ and C2, which are shown as
separate families in the right-hand column. Resting potential -42 mV;
75 #m diameter white spot; 20.90 C.

that it may be legitimate to regard such responses, and others in which the
division is less obvious, as made up of two components which will be called
C, and C2. Before attempting to divide the response into two components
it is desirable to transform it into a linear form by calculating the variable
Y representing the concentration of blocking molecules. The fraction (B)
of channels blocked was first obtained by eqn. (9) and Y was then calcu-
lated by eqn. (17) i.e.

Y B B
K 1-B+K- (17)
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A value of K = I was chosen as this gave a good fit to the experimental
points relating B to light intensity at fixed times of 30 and 50 msec. The
results of the analysis are shown in the middle column where the dotted
lines show plausible but admittedly arbitrary divisions of the response
into two components; these are shown as separate families in the right-
hand column.

According to this analysis the first component C, reaches an earlier
peak and the rate constant with which it relaxes increases dramatically as
the flash increases. On the other hand the rate constant with which the
second component declines remains more nearly constant and the move-
ment of the peak towards earlier times can be explained by supposing that
the second component is generated by the first.
With stronger flashes the second component becomes of saturating

intensity and may hold the potential on the plateau for 300 msec (Fig. 18A).
After C2 has relaxed, a third component C3 which disappears with a time
constant of about 1 sec can be seen at the end of the record. If the duration
of the flash is increased to t sec, C3 itself can become of saturating intensity
and with maximal light intensity holds the potential at the plateau for
3 sec after the light has been switched off. In that case as can be seen from
the lower sets of records the third component is followed by a fourth
component C4 which relaxes with a time constant of 10-20 sec. A still
slower component can be identified after steps lasting more than 30 sec
but consideration of these results is deferred to the next paper (Baylor &
Hodgkin, 1974).
The existence of several components in the relaxation of the potential

to its resting level can be explained by supposing that the 'substance'
which blocks the light-sensitive channel is inactivated in a series of steps.
In the model of the rising phase it was assumed that an absorbed photon
started a chain of five or six consecutive reactions leading to the blocking
molecule y.. We now suppose that something rather similar may happen
on the falling phase and that yE is degraded sequentially in a series of steps
(Yn)l (Yn)2, etc. To simplify nomenclature we shall use the variable z
instead of Yn when considering the degradation of the blocking particle,
thus z1 and Yn are equivalent. The scheme adopted in order to explain the
present results as well as those in a later paper (Baylor et al. 1974) is

K12 K8s Ks4 K45

Z1 ' Z2 ' 3 ' Z4Z^ Z5 (50)
Ks1 K82 K,,

It is assumed that only Z1 blocks and that Z2, Z3, etc. exert their influence
through the back reactions IC21, K32 etc. which maintain Z1 and lead to its
disappearing with a series of distinct time constants. One alternative to
the above scheme is to neglect back-reactions and assume that Z2, Z3 and
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Z4are also able to block the light sensitive ionic channels. Another is to
assume that Z1 is degraded in a series of parallel reactions with different
time constants. Thus if one adopts the popular idea that calcium ions are
the agents which block the light-sensitive ionic channels, then one might
suppose that the concentration of these ions is reduced by combination
with several types of molecule having widely different affinities and reac-
tion velocities.

Methods of estimating the rate constants in 'equation' (50) will be given
in a later paper (Baylor et al. 1974). Here we shall be concerned with the
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Fig. 18. For legend see facing page.
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measurement of the time constants for the disappearance of the various
components.
For small signals in darkness rl, the time constant for conversion of Z1

to Z2 is about 100 msec if one adopts model 3 on page 698. For large signals
or for small signals on a background T1 is much less and from the analysis
of Fig. 17 may decrease to 10 msec or less. r2 the time constant with which
the second component disappeared was determined by plotting the log-
arithm of the intensity of the light stimulus against the time taken for the
potential to fall from its peak to some fixed value in a typical flash run
such as the family in Fig. 19. It can be seen from those records that over a
considerable range the falling phases of responses to flashes increasing in
geometric progression have approximately the same shape but are shifted
along the time axis by fixed amounts. This result is explained if the con-
centration z1 of the blocking substance at any fixed time is proportional
to light intensity and if its concentration falls exponentially. If

z1 oc Ie-/'r, (51)
then for z1 constant

= r2 In I + constant (52)

so that for I increasing in steps of 2* 1, t' shifts by constant increments of
0*7 r2. This method of calculating r2 was the one commonly employed but
a more elaborate procedure was employed in plotting the lower part of
Fig. 19 in order to test the assumptions that during the plateau the con-
centration of blocking particles at a fixed time is proportional to light
intensity and declines exponentially. For this purpose we calculated a

Fig. 18. Records illustrating presence ofcomponents which relax at different
rates after applying intense flashes or steps of light to red-sensitive cone.

A, response of red-sensitive cone to 10 msec flashes recorded on medium
time base. The light intensity varied in steps of about 2 11 between the
equivalent at 644 nm of 7*6 x 103 photon ,um-2sec-' in record 15 and
2*68x 108 in record 1.

B, response to 1-5 sec steps of light recorded on slow time base. The light
intensity varied in steps of about 4-45 between 1-8 x 103 photon #m-2 sec-
in record 17 and 2-68 x 108 in record 1.

C, same responses as 1, 3, 5, 7, 9 in B but recorded on a still slower time
scale on an inkwriter.
Four components can be tentatively identified, e.g. C1, C2 in record A 10;

C2, C3 in record A 1; C3, C4 in records B 1, or C 1. The unattenuated light
in this experiment was made 4 times its normal value by using only one

light channel and removing the combining prism.
The flash sensitivity of this cone was about 30 ,uV photon" 1um2; resting

potential -43 mV; white light, spot diameter 103 /Am; 210 C.
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Fig. 19. Relaxation of second component of response. Above, family of
fourteen responses to 10 msec flashes increasing in steps averaging 2-11
from a quantity equivalent to 41 photons /Am-2 to 6-7 x 105 photons /sm-2
(at 644 nm). Below semi-logarithmic plot of Y/KQ where Y/K is propor-
tional to the concentration of blocking particles calculated by eqns. (9)
and (27) with TL = 6-3 msec, UL, = 21-5 mV and a = 1-54. Q (= IAt) is
the equivalent quantity of light which was: 0O 3-4 x 10' photons tm-2;
*, 6-9x 103; A, 1-5 x 104; A, 3-1 x 104; [1, 7-3 x 104; *, 1-5x 10'; K,

3-3 x 106; *, 6-7 x 10'. The abscissa is the time after the initial peak.
The Figure indicates that during the second component of the response
the concentration of hypothetical blocking particles is proportional
to the quantity of light and declines exponentially with a time constant of
60 msec. Resting potential -41 mV; 75 jam diameter white spot; 20.9° C;
red-sensitive cone; flash sensitivity 24 ,uV photon-' Dam2.
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variable Y/K, which is proportional to the concentration of blocking
particles, by the simple inverse Michaelis relation

Y B
(7

K 1-B' (27)
where B is the fraction blocked which was calculated in the usual way
using eqn. (9). It may seem illogical to use the simple relation rather than
eqn. (17) which was considered applicable at earlier times, but the second
rather than the first component is now being considered and the effective
value of K in eqn. (17) may be different. In a later paper (Baylor et al.
1974) it will be shown that K12/K21 in eqn. (50), is of the order of 10 which
would make the effective value of K 3'3 rather than i; a simple inverse
Michaelis relation is then a reasonable approximation. More generally one
might say that there is no reason why the unknown factors which make
B( Y) deviate from a Michaelis relation at 50 msec should also operate at
100-300 msec. At all events the procedure works reasonably well since the
points in Fig. 19 which are proportional to Y/Q all fall fairly close to the
same straight line when plotted semilogarithmically in spite of the fact
that the quantity of light Q varied over a 200-fold range.

TABLE 3. Relaxation time constants in seconds in five red-sensitive
cones (R) and one green-sensitive cone (G)

'r2 (sec) r3 (see)
Â 5 ^r74 (sec)

Cone (1) (2) (3) (4) (5) (6) (7)

R 1 0'062 0*065 0.075
R2 0-058 -- -
R3 0*052 - 0-9 2 10-20
R4 0-061 1 2 0.76 12-20
R5 0*067 - - 14 10
G 1 0.061 - 16 10-20

Notew on method
r2was measured from standard 10 msec flash run using the following method:

(1) eqn. (51) and time shift corresponding to e-fold increase in light intensity,
(2) method illustrated in Fig. 19, (3) from curves in Fig. 17.

T. from after effect of strong 10 msec flashes or 1 sec rectangular pulses using (4)
moderately intense and (5) intense 1 sec steps or (6) intense 10 nisec flashes;
moderate implies a light equivalent to 106 to 1 07 photons ,un2 sec1- and intense
one of ca. 108 photons um-2 sec1.

74 was estimated from the final tail seen in Fig. 18C. (7). Temperatures 20-220 C.

Table 3 summarizes the measurements of the time constants underlying
the relaxation of potential from the plateau. r3 and 74 were obtained from
the rate of return of potential to its resting level after strong 10 msec
flashes (Td) or strong 1 sec steps (74).
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Behaviour of different components during long pulse. The experiments described in

the previous sections suggest that the hyperpolarizing effect of light can be attri-
buted to several components which relax at different rates when the light is switched
off. By changing the length of a rectangular pulse and studying the relaxation of
potential at the end of the pulse it is possible to obtain tentative information about
the way in which the different components vary during a long step. For example,
with an unattenuated light of 67 x 10" photons 1am-2 sec-1 it was found in one red-
sensitive cone that the component which relaxed with a 1-2 sec time constant was
larger after a 1 sec step than after a 10 sec step. In another experiment with a cell
of similar sensitivity a 3 sec step equivalent to 67 x 106 photons /zm 2 sec-1 had
about the same effect as a 1*5 sec step of the same intensity indicating a maximum
near 2-2 sec. From the flash sensitivity of 36-3 mV photon-' jum2- we estimate the
effective collecting area as 1-45 /Zm2 so the light should produce about 108 photo-
isomerizations per second. As there are about 108 chromophores per cone the time
constant for loss of photopigment should be roughly 1 sec at this level of light in-
tensity. On this basis a component which relaxes with a 1 sec time constant should
have the time course t e-t which has a maximum at t = 1 sec. The discrepancy be-
tween this and the experimental estimate of 2 sec could arise from an error in esti-
mating the effective collecting area of the cone, or from rapid regeneration of pigment
or saturation in the rate of destruction of the 1 sec component.

In preliminary experiments with weaker lights we obtained some evidence that
the component which relaxed with a time constant of c. 0-1 sec might reach a maxi-
mum between 0-1 and 0-5 see and then decline to about t with a time constant of
roughly 1 sec. This effect which was observed on one occasion with a light equivalent
to 0-7 x 106 photon /sm-2 sec' in a cone with an effective collecting area of 1-5 /tm2
cannot be attributed to loss of chromophores since the time constant with which
these disappear should be of the order of 100 sec at the level of illumination men-
tioned above.

DISCUSSION

Like other photoreceptors the electrical response of turtle rods and
cones has an S-shaped delay in the response to flashes or steps of light.
Previous authors (Baylor et al. 1971; Schwartz, 1973) have found that the
early part of the rising phase and the linear response to weak flashes were
reasonably well fitted by an equation of the type proposed by Fuortes &
Hodgkin (1964), i.e.

U = AQT6 eaT, (53)

where U is the hyperpolarization, Q is proportional to the quantity of
light, T is proportional to time and A is a constant. This corresponds to
seven stages of exponential delay in the Fuortes-Hodgkin model. In these
earlier studies no attempt was made to find the exact form of the linear
response by averaging, so eqn. (53) was not subjected to any very critical
test. Our experiments show that if linear responses are determined accur-
ately by averaging many responses to weak flashes they are much more
asymmetrical than eqn. (53). To obtain a good fit we retained the idea of
six or seven stages of exponential delay but abandoned the assumption
that all time constants are equal, as in the Fuortes-Hodgkin model, and
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assumed instead that they vary over a 5- to 7-fold range (cf. Penn &
Hagins, 1972). In the particular case described as independent activation,
the theoretical treatment leads to the following relatively simple ex-
pressions for the responses to steps (54) and flashes of light (55)

U AI (1 -e-1')n, (54)
U = A'Qe-T(1-e-T)-1 (55)

where A and A' are constants, I is the light intensity and n = 6 or 7.
These relatively simple expressions give a surprisingly good fit to the
linear responses of red- and green-sensitive cones.

In seeking to explain the delay, three general types of hypothesis might
be considered. In the first place it seems possible that the model might be
literally correct in the sense that five or six events have to take place
before a chromophore which has absorbed a photon can release the block-
ing particle or particles which close the ionic channels.
Another possibility which at first seems plausible is that each absorbed

photon might start an autocatalytic reaction so that the concentration of
blocking particles would rise initially as y = eT. However, this idea can
be ruled out because if such a curve is plotted on double logarithmic paper
its shape remains unchanged. Thus if Z = In y and W = in T, y = eT
becomes Z = eW. Such a curve is of a completely different shape from the
double logarithmic plots in Figs. 4 and 5 which appear to have straight
lines as their asymptotes at short times. This would seem to exclude any
simple kind of autocatalytic model as the explanation of the S-shaped
delay. In a later paper we shall consider evidence that the blocking particle
may be destroyed or degraded by an autocatalytic reaction, but that in no
way affects the conclusion that the blocking particles are not produced by
a regenerative reaction.

Several authors (e.g. Ives, 1922; Cone, 1964; Rushton, 1965) have con-
sidered the possibility that a particle released by light might have to diffuse
a certain distance before.reacting with an ionic channel. If one dimensional
diffusion from an instantaneous point source to a sink at a distance I is
considered, one obtains a series in which the dominant term at short times
is

y cc T-A e-LV4T (56)

where L and T are in units to make the diffusion coefficient unity. If this
expression is transformed by the substitutions Z = in y, W = ln T one
obtains

Z = const -jW-(L2/4) ew. (57)
This again is very different from the asymptotic straight line of slope
6-7 seen in Figs. 4 and 5. The diffusion theory might be rescued by
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assuming some variation in the diffusion distance L but there are two other
difficulties which should be mentioned. For the diffusion theory to work
with a small ion or molecule there must be a minimum distance of the
order of 10 sum in order to give a delay of 100 msec in the time to peak
hyperpolarization. By assuming a large particle or some sort of restricted
diffusion one could reduce this distance to 1 Dam and propose that a particle
must diffuse from the periphery of the sac to a channel on the axis of the
cone. But photons can be absorbed anywhere in the sac and those absorbed
close to the channel will act with very little delay. For these reasons
diffusion would not be expected to give more than one stage of delay and
if the molecule involved were small the delay might not exceed a few msec.
Another difficulty with the diffusion theory is the high activation energy
of the initial rate of rise, about 10 kcal/mole in turtle cones and 20 kcal/
mole in Limulu8 ommatidia (Borsellino et al. 1965), which rules out simple
aqueous diffusion as a cause of the delay.
Although diffusion may perhaps be excluded as the main cause of delay

it almost certainly makes some contribution as the diffusion time from
the edge to the centre of a cone of radius 1 ,tm is of the order of 1 msec
for a small molecule.

It is important to notice that the S-shaped rise in potential soon after
applying a step or flash of light cannot be explained by assuming that six
particles are required to block a single channel unless one makes the
additional and somewhat unlikely assumption that all six particles orig-
inate from one and only one photoisomerization. If six particles are re-
quired and come from more than one photon then superposition would not
apply and the effect of two photons would be more than twice that of one.
Another possibility which can be rejected is that there is one ionic

channel per chromophore and that one photoisomerization blocks one
channel. Since there are some 108 chromophores per cone, the effect of one
photoisomerization would on this hypothesis reduce the variable con-
ductance gy by 1 part in 108. As complete suppression of go hyperpolarizes
the cell by only 25 mV, one photoisomerization would therefore hyper-
polarize the cell less than 25 x 10-5 gV instead of 25 REV as estimated by
Baylor & Hodgkin (1973). In order to account for the observed flash
sensitivity it seems necessary to suppose that the number of light-sensitive
channels is very much less than the number of chromophores and that the
average effect of one photoisomerization is to block about 1/600 of the
total number of channels (see p. 690).

Part of this work was supported by USPHS Grant 1 R01 EY00904 and special
Fellowship 2 FI1 NSO1 135 to D.A.B., and by a U.K. Commonwealth Scholarship to
T.D.L.



ELECTRICAL RESPONSE OF TURTLE CONES

REFERENCES

BAYLOR, D. A. & FUORTES, M. G. F. (1970). Electrical responses of single cones in
the retina of the turtle. J. Phyaiol. 207, 77-92.

BAYLOR, D. A., FUORTES, M. G. F. & O'BRYAN, P. M. (1971). Receptive fields of
cones in the retina of the turtle. J. Phyaiol. 214, 265-294.

BAYLOR, D. A. & HODGKIN, A. L. (1973). Detection and resolution of visual stimuli
by turtle photoreceptors. J. Phy8iol. 234, 163-198.

BAYLOR, D. A. & HODGKIN, A. L. (1974). Changes in time scale and sensitivity in
turtle photoreceptors. J. Physiol. 242, 729-758.

BAYLOR, D. A., HODGKIN, A. L. & LAMB, T. D. (1974). Reconstruction of the electrical
responses of turtle cones to flashes and steps of light. J. Physiol. 242, 759-791.

BORsELLINO, A., FUORTES, M. G. F. & SMITH, T. G. (1965). Visual responses in
Limtdu8. Cold Spring Harb. Symp. quant. Biol. 30, 429-443.

BRIGGS, G. E. & HALDANE, J. B. S. (1925). A note on the kinetics ofenzyme action.
Biochem. J. 19, 338-339.

CONE, R. A. (1964). The rat electroretinogram. II. Bloch's law and the latency
mechanism of the b-wave. J. gen. Physiol. 47, 1107-1116.

CONE, R. A. (1973). The internal transmitter model for visual excitation: some
quantitative implications. In BiOchemi8try and Physiology of Viaul Pigments,
ed. LANGER, H., pp. 275-282. Berlin: Springer-Verlag.

DIXON, M. & WEBB, E. C. (1964). Enzymes, 2nd edn. New York: Academic Press.
FEIN, H. (1966). Passing current through recording glass micro-pipette electrodes.
IEEE Tran8. bio-med. Engng 13, 211-212.

FuORrTEs, M. G. F. & HODGKIN, A. L. (1964). Changes in time scale and sensitivity
in the ommatidia of Limulus. J. Physiol. 172, 239-263.

HAGINS, W. A. (1972). The visual process: excitatory mechanisms in the primary
receptor cells. A. Rev. Biophy8. Bioeng. 1, 131-158.

HAGIINs, W. A., PENN, R. D. & YOSHIKAMI, S. (1970). Dark current and photocurrent
in retinal rods. Biophy8. J. 10, 380-412.

IvEs, H. E. (1922). A theory of intermittent vision. J. opt. Soc. Am. 6, 343-361.
KORENBROT, J. T. & CONE, R. A. (1972). Dark ionic flux and the effects of light in

isolated rod outer segments. J. gen. Phy8iol. 60, 20-45.
KLEINSCHMIDT, J. (1973). Adaptation properties of intracellularly recorded Gekko

photoreceptor potentials. In Biochemietry and Phy8iology of Viual Pigments,
pp. 219-224. Berlin: Springer-Verlag.

LANGMUIR, I. (1916). The constitution and fundamental properties of solids and
liquids. J. Am. chem. Soc. 38, 2221-2295.

MICHAELIS, L. & MENTEN, M. L. (1913). Die Kinetik der invertinwirkung. Biochem. Z.
49, 333-369.

NORMAN, A. C. (1973). Taylor User's Manual. University of Cambridge Computer
Laboratory.

PENN, R. D. & HAGINS, W. A. (1972). Kinetics of the photocurrent in retinal rods.
Biophy8. J. 12, 1073-1094.

RUSHTON, W. A. H. (1965). The Ferrier Lecture, 1962. Visual Adaptation. Proc. R.
Soc. B 162, 20-46.

SCHWARTZ, E. A. (1973). Responses of single rods in the retina of the turtle.
J. Phyeiol. 232, 503-514.

TOMITA, T. (1970). Electrical activity of vertebrate photoreceptors. Q. Rev. Biophy8.
3, 179-222.

TOYODA, J., NosAxi, H. & TOMITA, T. (1969). Light-induced resistance changes in
single photoreceptors of Necturus and Gekko. Vision Re8. 9, 453-463.

727


