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SUMMARY

1. End-plate currents have been studied in glycerol-treated frog sar-
torius nerve-muscle preparations with the voltage clamp technique.

2. The effects of temperature on the decay rate of end-plate currents
were investigated over a temperature range from 10 to 30-5° C. The @,,
for the decay constant of end-plate currents depends somewhat on mem-
brane potential; at — 100 mV the decay constant has a @, of 2-7.

3. Peak end-plate current depends non-linearly on membrane potential
with a decreasing slope conductance associated with hyperpolarization.

4. The ‘instantaneous’ voltage—current relationship for end-plate
channels was determined by causing step changes in membrane potential
during end-plate current flow. This relationship appears to be linear.

5. The interaction of acetylcholine with its receptor is viewed as being
analogous to the first step in enzymic catalysis. On this view, acetyl-
choline binds to its receptor and induces a conformational change which is
responsible for opening end-plate channels. By analogy to the first steps
in the catalytic sequence of enzymes, the binding step is very rapid, almost
diffusion-limited, and the conformational change is rate-limiting.

6. Equations describing this process have been derived. Expressions for
the rate constants have also been derived by considering changing dipole
moments of the transmitter-receptor complex associated with the con-
formational change. As the transmitter-receptor complex is in the mem-
brane field, different conformational states have different energies, and
the rate of conformational change thus depends on membrane potential.
The equations thus derived are shown to account adequately for the time
course of end-plate conductance change.

* Present address: Department of Physiology and Biophysics, University of
Miami School of Medicine, Miami, Florida 33152, U.S.A.
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INTRODUCTION

The end-plate currents of frog sartorius muscle decay with a simple
exponential time course, and the rate constant characterizing this decay
depends exponentially on membrane potential (Magleby & Stevens, 1972):
end-plate current decay is slowed approximately twofold for each 100 mV
of hyperpolarization. In this paper we develop a quantitative description
for the time course of end-plate currents and their voltage dependence.
Although sufficient information about end-plate physiology and structure
is not yet available to permit a rigorous derivation of equations describing
the end-plate currents, we do provide what is intended to be a plausible
physical basis for our description.

Of the various different physical interpretations possible for the equa-
tions to be described here, we favour the following: acetylcholine is viewed
as binding to its receptor, and inducing a conformational change which
opens an end-plate channel. This conformational change follows first-
order kinetics and is supposed to be the rate limiting process so that
the exponential decay of end-plate currents reflects the relaxation of
the receptor back to its normal, closed, conformation. Further, the
receptor-acetylcholine complex, since it is embedded in the post-synaptic
membrane, is in an electric field produced by the end-plate membrane
potential; a 50 Debye (D) change in the dipole moment of this receptor-
transmitter complex associated with the shift from an open to a closed
conformation is adequate to account for the voltage sensitivity of the
end-plate currents’ declining phase.

In addition to the quantitative analysis of end-plate current time course
presented here, we also include further experiments intended to give
better definition to end-plate properties. Manipulation of temperature has
revealed that the time constant for the declining phase of end-plate cur-
rents has a @,y of approximately 3. We have confirmed Korda§’s (1969)
observation that peak end-plate current often is non-linearly related to
membrane potential, with a flattening of the voltage—current relationship
for membrane potentials more negative than about —80 mV, but have
presented evidence that the ‘instantaneous’ voltage—current relationship
may well be linear.

METHODS

The methods used here are the same as those described previously (Magleby &
Stevens, .1972). For experiments in which temperature was manipulated, cooling
was accomplished by circulating coolant through coils in thermal contact with the
base plate upon which the experimental chamber was mounted, the temperature
being regulated by controlling the rate of coolant flow and its temperature.

The equations describing end-plate conductance changes (eqns. (1), (12) and (9c))
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were solved with an analogue computer, and the solutions (Fig. 6) displayed on an
oscilloscope. The driving function W(¢) (continuous curve in Fig. 4) was realized
by applying a brief square voltage pulse to a suitable passive circuit.

RESULTS
Part I
The end-plate current decay constant has a Q,, of about 3
In order to specify better the properties of end-plate currents, and
particularly to determine if their temperature sensitivity is that expected
for simple diffusion or instead for some more complicated process, we have
examined the effects of temperature over the range from 10 to 30-5° C.
Graphs of the rate constant (a) for end-plate current decay as a function
of membrane potential are presented in Fig. 1 for two preparations. From
these data it is clear that cooling both prolongs end-plate currents and in-
creases the slope of the log « vs. membrane potential relationship. As we
have shown previously (Magleby & Stevens, 1972), currents decay expon-
entially with a rate constant « which depends exponentially on membrane

potential (V) a(V) = Be4”. (1)

For one preparation (filled circles in Fig. 1), 4 = 0-93x 10-2mV-! and
B = 1-55 msec™! at 22-5°C and 4 = 1-25x 10~2mV-! and B = 0-585
msec~! and 10° C, corresponding to a @,, of 2:9 for @ at —100 mV; for a
second preparation (squaresin Fig. 1), 4 = 0-64x 101 mV-land B = 2-37
msec—1at 30-5° Cand 4 = 1:09x 10~2mV-'and B = 1-33 mV-! at 20° C,
corresponding to a @, for @ of 2-7 at — 100 mV. Because the slope of the
log @ vs. membrane potential curves depends on temperature, the @,
calculated for « also varies with voltage. Our values of @,, would agree
more closely with that reported by Takeuchi & Takeuchi (1959) if the
calculation had been carried out for a membrane potential closer to zero.

Peak end-plate current depends non-linearly on voltage

Korda$ (1969) has reported that the peak end-plate current is non-
linearly related to membrane potential, and this phenomenon must of
course be considered in any quantitative treatment of end-plate currents.
We have confirmed Kordas’s observation, as shown by the data presented
in Fig. 2; in this experiment, for example, the slope conductance decreased
from 1-3 gmhos at 0 mV to 0-85 yumhos at — 100 mV. Associated with the
decreasing slope conductance, the time to peak end-plate current increased
slightly for more negative membrane potentials. For the eell which yielded
the data in Fig. 2, the end-plate currents reached their peak value about
100 psec later at — 100 mV than at 0 mV, a latency increase of about
159,. Although this effect was small, it was observed -consistently in our
experiments, and also seems to be present in Korda§’s published records.
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Fig. 1. Semilogarithmic plot of the end-plate current decay constant a as a
function of membrane potential for various temperatures. Temperature
is indicated with each curve. These data were obtained from two different
preparations, one indicated by open squares and the other by filled circles.

The ‘instantaneous’ end-plate voltage—current relationship is linear

We wish to formulate our description of end-plate currents in terms of
the underlying permenbility changes, but in order to do so it is necessary
to have information about the voltage—current relationship for ensembles
of end-plate channels. One might be tempted to attribute rectifying pro-
perties to the end-plate membrane from data like those presented in Fig. 2,
but such curves of peak end-plate current as a function of membrane
potential do not necessarily reflect the voltage—current characteristics of
the membrane accurately. The difficulty in using the peak current vs.
voltage curve to infer channel properties is that the time course of the
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underlying permeability changes depends itself upon membrane potential,
80 that there is no guarantee that the end-plate membrane is in the same
state at the time of peak current flow for each membrane potential. For
example, considering hypothetical two-state channels which can be either
open or closed, the data shown in Fig. 2 can be accounted for either (a) by
assuming that the same number of channels are open at the point of peak
current flow and each such channel has a non-linear voltage—current
relationship; or (b) by supposing that individual channels have a linear
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Fig. 2. Peak end-plate current as a function of membrane potential. Other
data from this end-plate appear in Figs. 5 and 64. The continuous curve
above was calculated from eqns. (1), (12), and (9¢) with the driving
function that appears in Fig. 4 (continuous curve) and the values of con-
stants given on page 189. Negative values denote inward currents. The

interrupted straight line is included to indicate the departure from a linear
peak current-voltage relationship.

voltage—current relationship, and (because of the opening and closing
kinetics of these channels) fewer channels are in the open state at the time
of peak current low when the membrane is hyperpolarized than when it
is near 0 mV.

The appropriate way of measuring permeability properties of the end-
plate membrane would be to determine the ‘instantaneous’ voltage—
current relationship with step-wise changes of the membrane potential at
various times during end-plate current flow. This experiment is, unfor-
tunately, impractical because the responses of non-end-plate membrane
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obscure those of the end-plate channels under investigation, and because
of complications arising from longitudinal membrane potential gradients.
With the type of experiment used previously to distinguish between
memory and no-memory mechanisms, however, it is possible to make
estimates of ‘instantaneous’ voltage—current relations during the decaying
phase of end-plate currents as « in eqn. (1) relaxes instantaneously (on the
experimental time scale) to the value appropriate for its new membrane
potential (Magleby & Stevens, 1972). The technique, then, is to cause step
changes in membrane potential during the declining phase of end-plate
currents, subtract out the contributions from non-end-plate membrane,
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Fig. 3. ‘Instantaneous’ voltage—current relationship for end-plate channels,
obtained as described in the text. The equilibrium potential measurement

for this end-plate was uncertain but falls within the range indicated by the
bar near the origin of the voltage axis.

and extrapolate the exponentially declining currents back, over the
several hundred microsecond time period where observations are not
available, to find the current flowing immediately after the step. To obtain
the data presented in Fig. 3, the membrane potential was held at —50 mV
and, 400 usec after the time of peak current flow, was stepped (in less than
80 usec) to —75 or — 100 mV. The current flows were extrapolated back
to the time of the step, yielding the linear voltage—current plot shown in
Fig. 3.

An alternative approach to measuring the ‘instantaneous’ voltage—
current relation is to cause step changes in membrane potential near the
time of peak current flow in a prostigmine-treated preparation. In this
situation, because of the rather broad peak produced by prostigmine, one
can make a measurement of current before there has been appreciable (less
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than about 10 9,) relaxation of permeability away from its value at the time
the membrane potential jump occurred. This experiment also gave a
linear voltage—current curve not essentially different from that shown in
Fig. 3. Although these experiments are inherently difficult, with many
sources of error, the results are consistent with the hypothesis that the
voltage—current curve for end-plate channels is linear.

Part IT

Although many features of synaptic transmission are quite clear, a
‘sufficient number of gaps exist in current knowledge to make impossible
a rigorous derivation of equations describing end-plate processes. Never-
theless, with some simplifying assumptions, it is possible to arrive at a
general description of end-plate current flows which should be adequate
to provide a context for the following discussion. After developing such
a description, we examine the various terms in the resulting equations to
identify ones which may be most plausibly neglected; we wish to arrive
finally at equations which can account for the end-plate currents we have
observed in experiments.

Basic hypothesis

Following the depolarization of the nerve terminal, the concentration
of acetylcholine in the synaptic cleft rapidly increases because of trans-
mitter release, and then decreases with a time course determined by dif-
fusional and hydrolytic losses, and by binding to and unbinding from
receptor and possibly other molecules fixed within the cleft region. The
acetylcholine also interacts with receptor molecules on the post-synaptic
membrane and induces increases in permeability to sodium and potassium
ions; these permeability increases give rise to the measured end-plate
currents. As the receptor appears to be a membrane-bound protein
with considerable specificity in ligand binding (Changeux, Kasai & Lee,
1970; Changeux, Meunier & Huchet, 1971; Miledi, Molinoff & Potter,
1971), it seems most natural to view the interaction of acetylcholine with
its receptor as analogous to an enzymatic process. Following the binding
of substrate to enzyme, many enzyme-substrate complexes are thought
to undergo a conformational change as the first step in the catalytic sequence
(Eigen & Hammes, 1963; Hammes, 1968a, b; Chock, 1971; Gutfreund,
1971);- by analogy, acetylcholine would bind to its receptor, and the
succeeding conformational change would allow ionic transport through the
end-plate channels. Thus,

kB
T+R=T-R=T-R*, (@)

ky a
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where T represents acetylcholine, R represents the receptor, T- R is the
transmitter-receptor complex associated with a closed channel, and 7'- B*
is the ‘open’ conformation of this complex; k,, k,, @ and £ are the rate
constants for the indicated processes. Note that it has been assumed that
one acetylcholine molecule reacts with a single receptor, and that co-
operative interactions between receptors do not occur.

Equations for end-plate currents

The preceding description can be formalized as follows: suppose the
end-plate region under consideration contains N receptors of which y are
complexed with transmitter and in the closed conformation, and z are com-
plexed with transmitter and in the open conformation. It will be assumed
that the conductance is proportional to z. Specifically

g = vz, (3)

where g is the end-plate conductance and 7 is the conductance of one open
channel. According to scheme (2), the rate at which the number of com-
plexes in the open conformation changes is given by

dz ,
T - —ax+ fy. (4)

Similarly, from (2) the number of complexes in the closed configuration
changes according to

dy

T =t leeO) N -2 —y) - (B+ Ry, (5)
where c(t) is the local concentration of acetylcholine. Because the dimen-
sions are generally small, it will be assumed that the cleft volume V con-
taining the receptors under consideration is thoroughly mixed by diffusion
so that partial differential equations do not result. The rate at which the
number of molecules in this volume changes is thus given by the con-
servation equation

d"(t) = f(t)- j G(t —T)e(r) dr — kge(t), (6)
——
release diffusion hydrolysis

where f(t) is the function describing release from the nerve terminal,
G(t) is the kernel characterizing diffusion out of the cleft volume ¥V, and
kg is the rate constant for enzymatic hydrolysis of acetylcholine. Terms
which describe buffering of cleft concentration by the binding of acetyl-
choline to receptor and other molecules have, for simplicity, been neglected.
The function G(¢) which characterizes diffusional loss of transmitter will
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depend upon the properties and geometry of the cleft region outside of the
volume under consideration. The rate of acetylcholine loss from the cleft
volume due to cholinesterase hydrolysis is taken to be simply propor-
tional to acetylcholine concentration here because we have assumed that
the number of cholinesterase molecules is sufficiently large that appre-
ciable saturation does not occur; this assumption is not essential for the
arguments that follow, and it is made here merely to simplify the equations.

The simultaneous eqns. (3), (4), (5) and (6) constitute (to the accuracy
of our approximations) a general description of end-plate currents. Before
considering the magnitude of contributions made by the various terms in
these equations, it will be convenient, although not essential, to further
simplify matters by introducing two additional approximations. The
binding of substrate to enzyme, while specific, is generally so rapid as to
be almost diffusion-limited (Eigen & Hammes, 1963; Hammes, 1968b;
see also Peller & Alberty, 1959). The usual approximation, then, for
enzyme-substrate systems is to assume that the binding reaction is
essentially at equilibrium ; in our case, this is equivalent to saying that, on
the time scale determined by &, and k,, y is slowly varying so that dy/df in
eqn. (5) nearly vanishes. To this approximation, eqn. (5) becomes

_ kyo(t)N +z(a—kyo(t) (7)
- ﬂ + kz + klc(t) )

This equation is further simplified by noting that &, and k, are generally
large compared to « and B, the rate constants for conformational change
and by assuming that N is large compared to = (that is, only a small
fraction of the total number of possible channels is open at a given time).
With these simplifications, eqn. (7) finally becomes

C(t)N
Yy = m ’ (8)

where K is equal to k,/k,, the equilibrium constant for the binding reaction.
Eqn. (8) may be used to eliminate y from eqn. (4) to give

dr _ c(t)N
With the aid of (3) this becomes
dg c(t)N
3 = —WtYh K+’ (90)
which may be written
d
T = —ag+BW0), (9¢)
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with W(¢) denoting
c(t)N
Y&+ (e)

Eqn. (9a) then specifies the number of receptors in the open confor-
mation and equations (95, ¢) give the additional conductance due to the
action of the transmitter.

A simple exponential decay of end-plate conductance would in general
be obtained from a system described by eqns. (9¢) and (6) under one of two
conditions: first, it is possible that the hypothesized conformational
change occurs rapidly compared to the change in cleft transmitter con-
centration described by eqn. (6). In this case, (2) would always be close
to equilibrium, and dg/d¢ in eqn. (9¢) would nearly vanish so that con-
ductance would be approximately proportional to concentration

a0y = £ wo.

The observed exponential decay of end-plate currents would then reflect
an exponential decay of cleft acetylcholine concentration. Secondly, the
receptor conformational change may be slow compared to the changes in
transmitter concentration governed by eqn. (6). According to this alter-
native, the terms on the right of eqn. (6) would be such to produce a rapid
rise and fall of cleft acetylcholine concentration, and the exponential
decay of end-plate conductance would follow from eqn. (9b) when c(¢) has
decayed nearly to zero. Briefly, we have selected the second of these
alternatives because terms on the right of eqn. (6) do not have the pro-
perties required to account for the decay of conductance, while macro-
molecular conformational changes do frequently have rate constants com-
parable to those of the observed decay.

According to the first alternative above, the time course of end-plate
currents essentially reflects the acetylcholine concentration, so that the
exponential decay of end-plate currents must arise from one or more of the
terms on the right of eqn. (6). For this alternative to be acceptable, then,
the properties of the processes in eqn. (6) must be compatible with the
observed properties of end-plate currents. Because the release function f(¢)
is a very rapid transient declining at 10° C, for example, with a rate constant
(Katz & Miledi, 1965; E. F. Barrett & C. F. Stevens, unpbl. obs.) of approxi-
mately 2msec—! (compared to the 0-2 msec—1rate constant for decline of end-
plate currents at 10° Cand —90 mV; see Fig. 1), this factor seems unlikely
to make an appreciable contribution to the declining phase of end-plate
currents. Nor does the second term in eqn. (6), the diffusional loss of
acetylcholine, appear to be able to account for the decaying phases of end-
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plate currents. Not only does iontophoresis of acetylcholine by end-plate
currents fail to yield the required voltage sensitivity (Magleby & Stevens,
1972), but the rate constant which characterizes the decay of end-plate
currents has a @,, of approximately 3, while the @,, of diffusion should be
close to 1. If we wished to maintain the first alternative, then, the decline
of cleft acetylcholine concentration would have to be mainly governed
by the remaining term in eqn (6), the hydrolytic loss of transmitter. A Q,,
of 3 is plausible for enzymic catalysis, and acetylcholinesterase molecules
closely associated with the post-synaptic membrane could well be voltage
sensitive, but we have previously presented evidence against the hypo-
thesis that the decaying phase of end-plate currents is determined by the
rate of acetylcholine hydrolysis (Magleby & Stevens, 1972). As the pro-
cesses described in eqn. (6) apparently do not have properties which are
compatible with those for the decaying phase of end-plate currents, we
have rejected the notion that end-plate conductance is a simple reflexion
of cleft acetylcholine concentration.

According to the second alternative, the processes described by eqn. (6)
are more rapid than the hypothesized conformational change and the
decay of end-plate conductance is thus effectively determined by « in
eqn. (9¢). It does seem possible that diffusional and hydrolytic losses from
the receptor area could be as rapid as required by this view (see Eccles &
Jaeger, 1958), and the rates reported for conformational changes in enzymes
could easily be as slow as indicated by the approximately 1 msec—! decay
constants observed for the decaying phases of end-plate currents. The most
rapid conformational changes reported for enzymes described by scheme
(2) occur at rates of around 10 msec™! (Erman & Hammes, 1966; Holler,
Rupley & Hess, 1969; del Rosaria & Hammes, 1970; Hammes & Simplicio,
1970), and range down to rates of about 0-01 msec™! (Kirschner, Eigen,
Bittman & Voigt, 1966; Halford, Bennett, Trenthan & Gutfreund, 1969;
Janin & Iwatsubo, 1969); values close to the 1 msec! found for end-plate
currents seem most common, however (Hammes, 1968a, b; Chock, 1971;
see also references cited in Gutfreund, 1971). Altogether then, the evidence
at hand seems to favour the notion that the decay of end-plate currents is
determined by the rate of conformational change, and not by the decline
of cleft transmitter concentration. We shall use this conformational change
hypothesis as a basis of our treatment of end-plate currents; it must be
emphasized, however, that while our proposals can provide a plausible
explanation for the observed results, firm conclusions about the mechanisms
we have discussed must await more complete information about the pro-
cesses underlying end-plate currents.
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Calculation of rate constants in end-plate current equations

According to our proposal, then, acetylcholine which enters the synaptic
cleft is rapidly removed by diffusion and by cholinesterase activity, so
the cleft concentration rapidly approaches zero. When transmitter con-
centration becomes low, W(¢) in eqn. (9¢) approaches zero and the con-
ductance is approximately governed by the equation
Since a in this equation has a specified physical significance, we can predict
the form of its dependence on membrane potential. Specifically, « should
be given by (Glasstone, Laidler & Eyring, 1941; Vineyard, 1957; Prigogine
& Bak, 1959)

a(V) = vexp (_g,_’(,m), (10)

where v is an effective vibration frequency, k is Boltzmann’s constant, T'
is the temperature (°K) and U is the Helmholtz free energy difference
between the receptor molecule in its open conformation and its transition
state.

As the molecule changes its conformation, in general its dipole moment
in the direction normal to the membrane surface will change because the
relative position of charges is altered, and also perhaps because the number
of ionized groups changes (Schwartz, 1967; 1970; Schwartz & Seelig,
1968; Seelig & Schwartz, 1969; see however, Marchal, 1971). For a changing
dipole moment in an electrical field the energy difference between two
states is given by U(V) = Uy— Epu; here U(V) is the force energy difference
between two states as a function of membrane potential, U, is the free
energy difference between the states in the absence of field, E is the field
strength, and u is the difference between the two states in dipole moment
normal to the field direction. Membrane potential is taken to be propor-
tional to field strength, with the proportionality constant M being the
effective thickness of the membrane

4
= 7
Thus the equation for a(V) becomes

(V) = vexp _kfl[']o exp(?’l;l(c?).

In general, 4 depends upon field strength (as well as differences in dipole
moment resulting from conformational change) because dipoles tend to
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align in the direction of the field (Debye, 1929). However, in the case of a
membrane-bound protein whose dipole moment is almost entirely deter-
mined by ionized groups (cf. Schlecht, 1969), molecular movement is
greatly restricted so that alignment with the field should be minimal. For
the receptor, then, g should be approximately field-independent, and (V)
should be given by

a(V) = vexp _k—,_,[{" exp V(MLkT) (11)

(with g constant). If A = u/MkT and B = vexp(— Uy[kT), the result
becomes

a(V) = Be4”. (1)
This is of course the empirically determined form of a.

Eqn. (11) accurately predicts the dependence of @ on membrane poten-
tial, but can be considered a plausible explanation for this dependence only
if reasonable values for dipole moment difference x result from the data. If
an effective membrane thickness of 50 A is selected, the average value of
A (0-00795 + 0-00043 (s.E.) mV~1) determined previously (Magleby &
Stevens, 1972) gives a px of 48-4 + 2-6 (s.E.) D. Since dipole moments for
proteins are often in the range of 200-500 D (McClellan, 1963), the cal-
culated value for x requires only a change in dipole moment equal to
about 10-25 9, of the total dipole moment, an amount that seems reason-
able. The quantity a(0) was found previously to be 1:67 + 0-04 (S.E.) msec™!
(Magleby & Stevens, 1972), a value quite comparable to those found for
enzymes (Hammes, 1968a, b; Chock, 1971; also references cited by
Gutfreund, 1971). Therefore, U, must also have a value typical of energy
differences between enzyme conformational states. Altogether then, the
available data are consistent with the physical interpretation of eqn. (11).

Time course of the cleft acetylcholine concentration

If the preceding analysis of the declining phase of end-plate conductance
change is accurate, eqn. (7) should describe the entire course of this con-
ductance change, not just its decaying phase. Specifically, # should depend
exponentially on voltage as does «, and this dependence, together with
that of a and the voltage-independent function
ye(t)v
K+c(t)
should predict the end-plate conductance change for all membrane
potentials.

Unfortunately, we have in the experiments reported here no method for
independently measuring or controlling the function W (t). The form of this
function can, however, be inferred from the end-plate currents by using

W) =
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eqn. (9¢) to find, for one particular voltage, S(V)W(t) = dg/dt+ag(t). The
result of multiplying currents by « and adding their derivative is shown in
Fig. 4; the W(t) functions determined in four preparations all decayed
approximately exponentially, although rather large departures from ex-
ponential decay might not have been detected, with time constants of
200 usec. Poisoning with prostigmine 1-5 yg/ml. raised this time constant
to 260 usec in one preparation and 280 usec in another. Note that W (f) can
be determined only up to an arbitrary multiplicative constant because the
value of #(V) is unknown.

Rate constant for opening channels

Because the product S(V)W(t) appears in eqn. (9¢), it is not possible to
find absolute values for f(V), as W(¢) is not under direct control in our
experiments. Relative values of # may be found, however, by making use
of the fact that, according to our theory, £ is a function of voltage, but
not of time, while W is a function of time but not voltage. Thus, £ can
be determined, up to a multiplicative constant, by finding the maximum

i .
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W(t)(arbitrary units)
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Fig. 4. Driving function W(t) for eqn. (9¢) as a function of time, obtained
as described in the text (filled circles). The continuous curve is the approxi-
mation used in solving eqn. (9¢) to yield the predictions shown in Fig. 6.

amplitude of the product #(V)W(t). This is most conveniently done by
solving eqn. (9¢) with the empirically determined (V) and adjusting the
amplitude of the driving function f(V) so that the calculated peak con-
ductance matches the observed peak conductance. Because eqn. (9¢) is a
linear differential equation, the peak amplitude of the solution g(¢) is pro-
portional to the peak amplitude of the driving function B(V)W(t); the
voltage dependence of f is thus established from the amplitude of the
product £(V)W(t) required to produce the observed peak g(¢). Fig. 5 pre-
sents semilogarithmic plots of # as a function of membrane potential
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determined in this way with the W(t) shown by the smooth curve in Fig. 4;
it is apparent that £ does indeed depend approximately exponentially on
membrane potential with the form

B(V) = be”. (12)
The value of a in the Figure is 0-00315 mV-1, which is equivalent to a

dipole moment difference between the transition state and closed state
of the receptor molecule of 19-2 D.
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Fig. 5. The rate constant £ plotted semilogarithmically as a function of
membrane potential. Values of # were estimated as described in the text,
and the straight line approximation to the data points was used in the
solution of eqn. (9¢) to yield the predicted end-plate currents shown in
Fig. 6 4. Experimental points were calculated from data on the same end-
plate that yielded the records shown in Fig. 6A4.

The theory accurately predicts end-plate currents

Eqns. (1), (12) and (9¢), together with the empirically determined
driving function W(¢) (Fig. 4), constitute a complete description of the
end-plate conductance change; these equations should thus predict the
observed end-plate currents for any voltage. We now wish to test the
accuracy of our description by using the equations and empirically deter-
mined constants 4, B (eqn. (1)) and a (eqn. (12)) to compare predicted and
observed end-plate currents.

The continuous curve in Fig. 2 is the predicted peak amplitude of end-
plate current as a function of membrane potential. This curve was com-
puted by solving the equations

a(V) = Be4?, (1)
B(V) = be, (12)
W0, vy = IO, (9¢)
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with the driving function shown by the smooth curve in Fig. 4,4 = 0-00582
mV-1. B = 1-57 msec™!, and f(V) as given by the straight line in Fig. 5
(@ = 0-00315 mV~1). The non-linear relationship between peak end-plate
current and membrane potential is thus adequately described by the theory
and can be viewed as arising from the different dipole moments of the

A

50nA

1 msec

200 nA

1 msec

Fig. 6. Comparison of observed and predicted end-plate currents for two
preparations. Predictions were made with eqns. (1), (12), and (9¢), the
driving function shown in Fig. 4 (continuous curve), and the constants
given in the text. Arrows indicate departures of observed currents from
simple exponential decay. A, peak current as a function of membrane poten-
tial for this end-plate appeared in Fig. 2, and estimates of £ as a function of
membrane potential in Fig. 5. The driving function estimated for this end-
plate appears in Fig. 4. Membrane potentials associated with the exhibited
end-plate currents (top to bottom) are + 32, +20, —30, —56, — 82, — 106
and — 161 mV. B, the end-plate current records shown here are the same as
those in Fig. 1 of Magleby & Stevens (1972), and the values of & obtained
from this end-plate appear in Fig. 3 of that paper. Associated membrane
potentials are + 38, +22, —40, —70, — 95, and — 120 mV.
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receptor molecule in its open and closed states relative to that of the
transition state.

That the entire time course of end-plate currents is also well described
by these relations is shown in Fig. 6, where predicted and observed
end-plate currents are superimposed. Because the amplitude of end-plate
current fluctuates from trial to trial, the predicted and observed ampli-
tudes do not agree perfectly on any one trial, as can be seen from Fig. 2.
In order to facilitate comparison between theory and experiment, the
predicted end-plate currents in Fig. 6 have been scaled to match the
amplitude of the observed end-plate current on the particular trial. The
curves in Fig. 64 were computed with the same constants which yielded
the smooth curve in Fig. 2, except that the driving function W(¢) shown in
Fig. 4 was adjusted in amplitude to appropriately scale the predicted peak
current. The predicted end-plate currents in Fig. 6 B were computed with
the driving function illustrated in Fig. 4, (V) as indicated by the straight
line in Fig. 3 of Magleby & Stevens (1972) (4 = 0-00626 mV-1; B = 1-43
msec~1), and @ = 0-00095 mV—! in eqn. (12). From Figs. 2 and 6 it is
apparent that the equations presented here give a satisfactory formal
description of end-plate currents for the range of membrane potentials
investigated.

DISCUSSION

The physical interpretation we have given the formal description
embodied in eqns. (9), (1) and (12) is not, of course, unique and any picture
with certain essential features would lead quite naturally to the same
equations. Any first-order process which determined by itself the time
course of conductance change could give an equation like (9), and if this
physical process were taking place in association with the post-synaptic
membrane, one might expect the energy barriers to depend, as in eqn. (11),
linearly on membrane potential. For example, if hydrolysis of acetylcholine
by cholinesterase did in fact determine the time course of end-plate con-
ductance, and if this cholinesterase were incorporated in the post-synaptic
membrane, arguments like those given previously might well predict the
rate-limiting step of hydrolysis to depend on membrane potential with a
rate constant of the type observed. Even though really plausible alter-
natives may not spring readily to mind, the point to be emphasized is
that, since we have made no direct observations of conformational changes
in receptors or any of other molecules, the theory presented here must
remain hypothetical until additional independent tests of it can be
devised.

A feature of our model which we find most disturbing is the necessity
for departing from the traditional view of anticholinesterase activity.
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Although it is well recognized (Koelle, 1970) that anticholinesterases can
exert effects other than through the inhibition of acetylcholine hydro-
lysis, the generally accepted view that the decreased rate of transmitter
destruction and prolonged transmitter action accounts for the increased
duration of end-plate currents is very attractive. According to our analysis,
however, diffusional and hydrolytic losses of acetylcholine from the
synaptic cleft are so rapid as to play virtually no role in the declining
phase of end-plate currents, and the prolongation of this phase by anti-
cholinesterases is mediated through effects on the receptor molecules: in
terms of our physical model, anticholinesterases would have to act either
through (see eqn. (11)) the vibration frequency v, the height of the energy
barrier U,, or perhaps by binding on or near receptors to alter the local
electrical field density. Anticholinesterases do of course decrease the rate
of acetylcholine loss from the synaptic cleft, and according to our cal-
culations, prostigmine 1-5 ug/ml. prolongs transmitter action by about
509, (see page 186). According to this view, then, the increased time to
peak end-plate current observed with anticholinesterase treatment
(Takeuchi & Takeuchi, 1959; Magleby & Stevens, 1972) is a reflexion of
the prolonged transmitter action.

We favour this non-traditional view of anticholinesterase mechanism
for the reasons discussed previously (Magleby & Stevens, 1972). Never-
theless, while we feel that, on balance, transmitter-receptor confor-
mational changes seem the most likely rate-limiting step, it is clear that
the role of cholinesterase in end-plate activity and the mechanisms through
which this activity is modified by anticholinesterases requires additional
study.

A number of assumptions have been made in developing the various
equations presented in the text, and it is important to indicate which of
these assumptions are essential for our argument and what effects might
result from violations of them. Eqn. (6) is an ordinary rather than partial
differential equation because we supposed that diffusional mixing through
the entire cleft region of interest was instantaneous on the experimental
time scale. Eccles & Jaeger (1958) made this same approximation in their
treatment of diffusional losses from synaptic cleft, and C. R. Anderson
(personal communication) has verified with computer solutions for the
problems that this is an accurate approximation. In our case, rather more
complicated equations would result if we did not make this assumption,
but it seems unlikely that diffusional mixing could be so slow as to produce
really important variations from eqn. (6). Enzymic hydrolysis, for sim-
plicity, has been considered to proceed by a first-order reaction in the
same equation, but we have made no essential use of this assumption.
Buffering of the cleft concentration by binding to receptors and other mole-
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cules has been assumed negligible, an assumption which receives some
support from the observation that curare does not alter the values of a(V)
(Magleby & Stevens, 1972). Altogether, none of these assumptions have
been of central importance, and their precise nature would become crucial
only if the step in question were considered rate-limiting for the processes
under investigation.

We have argued that cleft concentration should decline rapidly but a
rather prolonged small tail might be expected on several grounds. The
transmitter release function f(t) in eqn. (6) does indeed decay rapidly from
its peak, but residual transmitterrelease persists fora number of milliseconds
(Katz & Miledi, 1967;E.F. Barrett & C.F. Stevens, unpubl. obs.). Unless the
influence function G(¢) in eqn. (6) is a delta function, diffusional loss of trans-
mitter would be non-exponential and might have a prolonged tail. Finally,
buffering of cleft concentration by receptors or other molecules would also
be expected to prolong the final removal of transmitter from the cleft.
Slight departures from exponential decay of end-plate currents have been
observed (see Fig. 6 and Fig. 2B of Magleby & Stevens, 1972), and a pro-
longed tail of transmitter from the sources just noted might account for
at least a portion of these departures from simple exponential decay.

To arrive at eqns. (9), we have had to rely upon the analogy to the first
steps in enzyme catalysis, and the extent to which this analogy is valid is,
of course, not known. Other alternatives are possible, and a number of
variations on scheme (2) could lead to similar equations. For example, we
have assumed that acetylcholine cannot dissociate from the receptor when
the channel is in its open state, but viewing the transmitter-receptor inter-
action as a trigger for the conformational change, with the complex lasting
only long enough to produce the open state, can be formally identical.
Under some assumptions, the same formal description could also result
from treating the binding step as slow and the conformational change as
rapid. Until more is known about receptor properties and receptor-
transmitter interactions, however, it seems most natural to rely upon the
analogies with better studied systems.

To obtain equations (9) we have in addition supposed that neighbouring
receptors do not interact. Although several authors have suggested the
existence of co-operative interactions between acetylcholine receptors
(Changeux et al. 1967; Karlin, 1967), evidence on this point for the frog
neuromuscular junction is at present very scanty. Consistent with the
notion of co-operativity is the observation by Katz & Thesleff (1957) that
the graph (their Fig. 9) relating depolarization to acetylcholine concen-
tration has an unexplained positive curvature in the low concentration
region; this observation has been confirmed in an unpublished voltage—
clamp study cited by Rang (1971). On the other hand, two types of results

7 PHY 223
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seem to indicate the absence of strong co-operativity at the frog neuro-
muscular junction. First, if the data in Fig. 9 of Katz & Thesleff (1957)
are converted from depolarization to end-plate conductance change Ag,
the slope of the Hill plot (log [Ag/Agmax —Ag] vs. log (acetylcholine con-
centration)) differs from unity less than about 5 9,. Secondly, the observed
exponential decays of end-plate currents would not be expected were
there significant cooperativity, although weak channel-channel inter-
actions could produce the small deviations from exponential decay of end-
plate currents we have sometimes observed. Altogether, then, the small
amount of evidence currently available on the presence or absence of
co-operative interactions between receptors is inconclusive. Since our
treatment assumes independence of receptors, it would require modi-
fication if significant co-operative effects in fact exist at the frog end-plate.

The final assumption made in arriving at eqn. (9a) was that only a small
fraction of the receptors are complexed with acetylcholine at any time.
Had this assumption not been made, the equation

R 2 LA L
dt Brko+kic)”  B+E,+kc

would have resulted. The last terms on the right of this equation are more
complicated than those designated by W(t) in eqn. (9¢), but since we have
not measured cleft acetylcholine concentration directly, the difference
would not have been detected. Further, once the cleft concentration
became negligible, the expression multiplying  in the above equation
would reduce to that of eqn. (9a) On the other hand, if

[ =y e + ko + Ky c(?)]

were ever significant compared to « for actual values of c(t), the solutions
for the above equations would depart from those of eqn. (9¢), so that both
equations cannot simultaneously account for the observed end-plate
currents. Since eqn. (9¢) provides a good description of end-plate currents,
the assumption that only a small fraction of the receptors is complexed at
any one time becomes an important one, and the demonstration that this
assumption is false would be a strong argument against the interpretation
presented here. .

The development of a’s dependence on membrane potential (eqn. (11))
from our physical picture contained a number of assumptions, some of
which were implicit. For example, the dipole of our hypothetical gating
molecule was treated as though it were isolated and did not interact with
neighbouring molecules; also, the energy of the dipole was calculated as
though it were a point dipole when in fact the charge separations giving
rise to the dipole moment are almost certainly not small compared to
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distances over which considerable changes in field strength occur. Further,
field was taken as proportional to membrane potential which is equivalent
to assuming field strength within the membrane is constant, where it
doubtless varies dramatically over small distances. These difficulties are
avoided in a more detailed treatment which is too long and complicated to
present here, especially in view of the final results’ simplicity. This more
detailed treatment is carried out with a master equation (van Hove, 1957;
Zwanzig, 1964) of the same form as eqn. (9), and an analysis of molecular
interactions similar to that in the statistical mechanical theory of dielectrics
(Kirkwood, 1939). An equation like (11) appears in this development, but
quantities termed ‘effective dipole moments’ replace the free-solution
dipole moments of the treatment given here. Although we have been
unable to detect departures from eqn. (1), with large enough membrane
potentials the more refined treatment predicts that energy barriers should
depend on a term that increasesas the square of the voltage (see Debye, 1929).

As a formal description the theory presented here seems generally
adequate to account for the data we have obtained. Our theory is, how-
ever, an incomplete one in at least several regards, for we provide no
explanation for desensitization (Katz & Thesleff, 1957) or the effects of
procaine and similar local anaesthetics (Furukawa, 1957). It has already
been suggested (Steinbach, 1968) that the action of local anaesthetics
involves an altered state of the receptor molecule, and it may be possible to
extend the present description by including say, one or more additional
conformations. The existence of an additional (‘desensitized’) confor-
mational state of the receptor is, incidentally, another possible explanation
for the failure of some end-plate current tails to decay with a simple
exponential time course.

The physical processes considered here are inherently stochastic, and
the more detailed treatment referred to previously is an explicitly proba-
bilistic one. On this view, the length of time a channel remains open is a
random variable, with the mean time open given by a~!. Because the
opening and closing processes are random, the model presented here pre-
dicts the existence of fluctuations in conductance around the mean value,
and permits the statistical structure of these fluctuations to be calculated.
For example, with a constant acetylcholine concentration (and neglecting
the problem of desensitization), the spectrum of conductance fluctuations
should be given by (Stevens, 1972)

S(0)

8(f) = T+ @afla(V) (13)

where S(f) is the spectral density at frequency f, and a depends upon
membrane potential as described by eqn. (1).
7-2
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Katz & Miledi (1971) have presented noise spectra obtained by focal
recording which should be approximately proportional to the spectrum for
conductance fluctuations given above, and the data in their Fig. 2 seem
adequately fit by eqn. (13) with an a equal to about 0-6 msec—1. This value
of a is somewhat smaller than typical for membrane potentials near
—90 mV at 25° C, but not outside of the range of &’s we have encountered.
The a required for the data in Fig. 4 of Katz & Miledi would be about
0-9 msec™!, a value closer to what might be expected from our experience.

An obvious test of eqn. (13) is to investigate the dependence of spectrum
on membrane potential, anticholinesterases, and on other factors which
cause a to vary. Failure of eqn. (13) would of course be evidence against our
physical picture, but, unfortunately, the success of eqn. (13) would not be
a strong confirmation of our model. In fact, because we feel a fluctuation-
dissipation-like theorem (Kubo, 1957) should apply in this situation, the
spectrum of conductance fluctuations given by eqn. (13) should be pre-
dicted simply from the exponential relaxation of end-plate currents and
the empirical relation given by eqn. (1) for a variety of physical mechanisms.

Gage & Armstrong (1968) have proposed that the variation of end-plate
current time course with membrane potential reflects the different kinetics
of two separate sets of channels, one for sodium and one for potassium.
Kordas (1969) has offered a number of arguments against the two-channel
hypothesis, and our observations also do not support this two-channel
view. The two-channel hypothesis could not, unless the separate channels
were also voltage-sensitive, give a simple exponential decay at all voltages.
Furthermore, if the channels were insensitive to voltage, the duration of
end-plate currents should not be further prolonged once the membrane
potential was more negative than the potassium equilibrium potential,
whereas we find the most dramatic effects at the most hyperpolarized
voltages. Our observations do not bear directly on the question of whether
sodium and potassium ions pass through the same or separate channels at
the end-plate, but they do further confirm Korda$’s conclusion that two
voltage-insensitive channels cannot account for the dependence of end-
plate current time course on membrane potential.

Because the neuromuscular junction has proved to be a good model for
central synapses, it can be anticipated that voltage sensitivity of post-
synaptic mechanisms will be discovered in the central nervous system as
well. If central post-synaptic membranes were to exhibit pronounced
voltage sensitivity, this property could have implications for neuronal
information processing. For example, inhibitory post-synaptic potentials
(PSPs) could be self-re-inforcing, and inhibition time course could be
graded by the magnitude of the excitatory drive. The presence or absence
of voltage sensitivity for the long-lasting IPSPs characteristic of many



QUANTITATIVE THEORY OF END-PLATE CURRENTS 195

central neurones should not be particularly difficult to determine, and
these PSPs would seem to offer a good possibility for the use of such a
phenomenon in information processing.

If the interpretation we have given here were correct, it would be of
significance not only for synaptic physiology but also possibly for excitable
membranes, as we would have accounted for the voltage sensitivity of a
gating molecule. Indeed, a number of similarities between our treatment
and the Hodgkin-Huxley equations (Hodgkin & Huxley, 1952) are
apparent: our eqns. (9) describing the opening and closing of transmitter-
receptor complexes have the same form as the Hodgkin—Huxley rate
equations for their accessory variables m, n, and A, and the behaviour of
our o’s and #’s with membrane potential bears similarities to that of the
Hodgkin-Huxley rate constants. If one were to attempt a similar descrip-
tion of excitable membranes, however, the dipole moment changes would
have to be much larger, and they could no longer be independent of voltage.
Such a description could perhaps be made plausible, since alignment of
very high dipole moment molecules in the large field of the membrane
might well be expected.

Whatever the defects in the theory we have presented, it is specific and
in principle testable. Now that the isolation of receptor molecules is under-
way, transmitter-receptor interaction and subsequent possible confor-
mational changes may be subject to direct investigation.
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