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Herrnstein's equations are approximations of the multivariate rate equation at ordinary
rates of reinforcement and responding. The rate equation is the result of a linear system
analysis of variable-interval performance. Rate equation matching is more comprehensive
than ordinary matching because it predicts and specifies the nature of concurrent bias,
and predicts a tendency toward undermatching, which is sometimes observed in concurrent
situations. The rate equation contradicts one feature of Herrnstein's hyperbola, viz., the
theoretically required constancy of k. According to the rate equation, Herrnstein's k
should vary directly with parameters of reinforcement such as amount or immediacy. Be-
cause of this prediction, the rate equation asserts that the conceptual framework of
matching does not apply to single alternative responding. The issue of the constancy of k
provides empirical grounds for distinguishing between Herrnstein's account and a linear
system analysis of single alternative variable-interval responding.
Key words: matching, quantitative law of effect, linear systems, mathematics, bias, under-

matching, value, variable-interval schedules

In an earlier paper, McDowell and Kessel
(1979) showed that a linear system analysis
of variable-interval (VI) responding yields a
rate equation that is as accurate as Herrn-
stein's (1970) hyperbola in describing the re-
lationship between response and reinforcement
rates on VI schedules. The rate equation was
also shown to predict a form of Herrnstein's
hyperbola and to predict forms of matching in
concurrent situations. The purpose of the
present paper is to examine in more detail the
similarities and differences between Herrn-
stein's equations and the multivariate rate
equation.

THE LINEAR SYSTEM ANALYSIS
For a linear system analysis of VI respond-

ing, the organism is conceived of as a system
(describable in principle by a linear differen-
tial equation) that transforms a reinforcement
input into a response output. The reinforce-

The author would like to acknowledge with grati-
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tellectual debt to Brother K. Bernardine Kuzminski, an
inspiring teacher of mathematics and physics. Robert
Kessel, A. W. Logue, and Howard Rachlin made many
helpful comments on an earlier version of this paper.
Reprints may be obtained from J. J McDowell, Depart-
ment of Psychology, Emory University, Atlanta, Georgia
30322.

ment input is said to "drive" the system which
in response produces a behavioral output.'
The input function is designated R(t), or

reinforcement as a function of time, and the
output function is designated B(t), or behavior
(i.e., operant responding) as a function of time.
Each function is written mathematically as a
train of rectangular pulses spaced irregularly
along a time axis. The height of each rein-
forcement pulse is designated AR (reinforce-
ment pulse amplitude), and the width of each
reinforcement pulse is designated w. The
height of each response pulse is designated AB
(response pulse amplitude), and the width of
each response pulse is designated w*.
The linear system analysis produces an equa-

tion that describes the relationship between
the input and the output functions. This
"rate" equation expresses the average response
rate, Rout, on a VI schedule in terms of the
average reinforcement rate, Rj, and the am-
plitudes and widths of the reinforcement and
response pulses:

Rout= {ln [I + A(l e-w) (e
I/t

1)1]W W*-

1Although the expression, "linear system analysis,"
will be used here, it is worth noting that the approach
described in this paragraph is also applicable to non-
linear systems.
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The factor, y, is a scalar constant that is char-
acteristic of the system. A detailed derivation
of Equation 1 is given in McDowell and Kes-
sel (1979). The equation states that response
rate varies as a joint function of reinforce-
ment rate and reinforcement and response
pulse amplitudes and widths.
The amplitudes and widths of Equation 1

may be interpreted with reference to the ordi-
nate dimensions of R(t) and B(t). The ordi-
nates of these two functions are value-like
quantities. Anything that increases the value
of the reinforcer can be considered to increase
the size of AR. For example, the reinforcement
pulse that corresponds to the delivery of a
small amount of a .30 M sucrose solution can
be considered to have a higher amplitude than
the pulse that corresponds to the delivery of
the same amount of a .03 M sucrose solution.
In general, if increasing the size of a rein-
forcement parameter (other than rate) results
in higher response rates in a single alterna-
tive situation, then increases in that parameter
can be considered to increase the amplitude of
the pulses to which the reinforcer deliveries
correspond. Two obvious examples of this
type of parameter are amount and immediacy,
since increases in either parameter are known
to produce higher response rates in single al-
ternative situations (de Villiers, 1977; de Vil-
liers & Herrnstein, 1976). Response pulse am-
plitude, AB, can be interpreted in a similar
way, except that higher ampli-tude response
pulses may correspond to more highly aversive
responses. Increases in response parameters
such as the force requirement of a leverpress,
for example, can be expected to increase the
amplitude of the pulse to which the leverpress
corresponds.
The width parameters, w and w#, are the

durations of the reinforcement and response
pulses. These durations do not necessarily co-
incide with the durations of the reinforce-
ments and responses themselves (cf., e.g., Kil-
leen, 1975). In most operant conditioning
experiments, however, it seems reasonable to
suppose that since the durations of the actual
events are short, the durations of the pulses
will also be small.
The scalar constant, -y, is actually a repre-

sentation of the transfer function, G(s). The
product of G(s) and the Laplace transforma-
tion of the input is the Laplace transformation
of the output. The actual output (as a func-

tion of time) is obtained by finding the in-
verse Laplace transformation of this result. If
a differential equation describing an organism
exists, then the transfer function can be cal-
culated and must remain invariant for that
organism under all conditions where the differ-
ential equation holds. Since an appropriate
differential equation has not been written,
however, the transfer function cannot be ex-
pressed explicitly. This means that it can ap-
pear only as a factor (viz., 'y) in Equation 1.
Assuming that an organism can, in principle,
be described by a linear differential equation,
y must remain invariant under all conditions
where the differential equation is expected to
hold. In practice, this means that y must re-
main invariant across changes in the param-
eters of reinforcement and responding. On
the other hand, surgical or pharmacological
insult to the organism may cause the value of
y to change.

HERRNSTEIN'S EQUATIONS AS
APPROXIMATIONS OF THE

RATE EQUATION
Although several somewhat complicated

forms of Herrnstein's equations can be pro-
duced by rearranging Equation 1 (McDowell
& Kessel, 1979), the equations in their familiar
forms can be produced in a fairly straightfor-
ward manner.

Herrnstein's Hyperbola
Consider the following rearrangement of

Equation 1:
1/R l/3

e me "+b, (2)
where m= aeww, b = (1- a)e-w and a =

[AB( - e-w*)]/[yA(l- e-W)]. The complete
derivation of Equation 2 is given in Appen-
dix A.

Consider also the series expansion of ell$,
which is

el/= 1+l/x + 1/(21x2) +1/(31x) +...
+ 1/[(n - 1)!x"1] +....

Since the second and higher order terms of
this infinite series contribute relatively little
to the sum of the series (provided x is not too
small), the following approximation holds:

el/ 1 + I /x. (3)
Figure 1 shows that the discrepancy between
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also means that any ordinary data that can be
described by Herrnstein's hyperbola (e.g., de
Villiers, 1977; de Villiers & Herrnstein, 1976)
can be equally well described by the rate equa-
tion. Moreover, laborious comparisons of the
two equations' fits to data are not necessary
inasmuch as their equivalence can be demon-
strated analytically.

The Matching Equation
Familiar forms of the matching equation

can also be produced from the rate equation.
< The form of proportional ratio matching

(de Villiers, 1977) predicted by the rate equa-
24 6 8 ~~~10 tion is

x

Fig. 1. A plot of the difference between el1, or

e'- 1, and its series expansion approximation, as x

increases.

ell" and 1 +1 l/x rapidly approaches zero as x

increases. At x = 10, for example, the dis-
crepancy is on the order of 10-3. This means
that for rates of responding and reinforcement
that are typically studied in the laboratory,
the approximation given in Equation 3 (where
x is a rate of reinforcement or responding) is
quite accurate.

Substituting Equation 3 into both sides of
Equation 2 gives

I +l/Ro,,t=m(l +/R,)+(b+m-
l /ROf t= M(l /R4,) + (b +m-1

[l/(b+m-l)]R4,, (4RotR4,,+ m/ (b+m-1)'
Letting l/(b + m - 1) = k and m/(b + m -1)

= re, Equation 4 becomes

Rot= kR4 (5)

R4i + r'

which is Herrnstein's hyperbola. In other
words, Herrnstein's hyperbola is an approxi-
mation of the rate equation, obtained when
an approximation of the series expansion of
ell/ (as given in Equation 3) is substituted for
el/l in the rate equation. When 1 + /x ac-

curately approximates el/lx, i.e., at ordinary or

typical rates of reinforcement and responding,
the rate equation and Herrnstein's hyperbola
are nearly indistinguishable.2 It is not surpris-
ing, then, that the rate equation and Herrn-
stein's hyperbola provide equally good fits to
data. But the identity of the two equations

'Rates are assumed to be expressed in the customary
units of reinforcements/hour and responses/minute.

e lOUT-1 Fa,l e

e 20UT-1 - La2 e2,1N_
(6)

where a, = [AlB(I --e 1)]/[AR(1- e-w1)]
and a2 = [A2B(I - e 2)]I[A2R( -ee 2)].
The numerical subscripts refer to the two re-

sponse alternatives. The complete derivation
of Equation 6 is given in Appendix B.3 The
factor al /a2 is the concurrent bias (Baum,
1974). Evidently, when the response pulses are

identical for the two alternatives (A1B=A2B
and w*1 = w*2), and the reinforcement pulses
are also identical (AIR = A2R and wl = W2),
a,/a2 = 1, i.e., there is no bias and Equation 6
reduces to ordinary matching.
The approximation given in Equation 3 of

the series expansion of el/l is again applicable.
Subtracting 1 from both sides of Equation 3
gives

e1I- I I/x.
Figure 1 shows that the discrepancy between
elx- 1 and /x rapidly approaches zero as x

increases. This means that /x is a good ap-
proximation of el/l - 1 at rates of responding
and reinforcement that are typically studied
-in the laboratory. Substituting this approxima-
tion into both sides of Equation 6 gives

I/RlouT a,] l/RlIN
1/R20Ur a2 1 IR2N
R20DT_ a,l R2IN
R10UT La2 RltN

or

R -ur_ Fa2. R1lN
R20u La1 RvJN'

(7)

"As noted in Appendix B, the uppercase subscripts
on the rates in Equation 6 indicate that w and w# are

assumed to be negligible.

x

(L
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which is the familiar form of proportional
ratio matching. In other words, the familiar
forms of matching are approximations of the
forms predicted by the rate equation. Again,
it is not necessary to test the predicted forms
against data because their equivalence to fa-
miliar matching can be demonstrated analyti-
cally. Evidently, any ordinary data that can be
described by the matching law can be equally
well described by the forms of matching pre-
dicted by the rate equation.

DIFFERENCES BETWEEN
HERRNSTEIN'S EQUATIONS AND

THE RATE EQUATION
Although Herrnstein's equations and the

rate equation are nearly indistinguishable in
terms of their ability to describe data, they
differ structurally in several important re-
spects.

Herrnstein's Hyperbola
Herrnstein's hyperbola (Equation 5) is writ-

ten with two fitting parameters, k and re. The
parameter k is the y-asymptote of the hyper-
bola, i.e., the maximum possible rate of re-
sponding. This maximum rate is obtained
when re = 0. The parameter re governs the
rapidity with which the function approaches
its asymptote. When re is small, Ri,, dominates
the denominator on the right hand side of
Equation 5 and the function approaches its
asymptote quickly (i.e., response rate is nearly
asymptotic even at low rates of reinforce-
ment). For larger values of re, the function
approaches its asymptote more slowly.

In a theoretical paper, Herrnstein (1974)
argued that the value of k should depend only
on response form. That is, for a given response
(such as key pecking), k should remain invari-
ant across chances in the parameters (such as
amount) of reinforcement. This invariance is
required by the fact that k, in Herrnstein's

n
hyperbola, is equivalent to E Ri (where Ri is

the rate of responding on the ith response al-
ternative) in the matching law (Herrnstein,
1974). Because of this equivalence, k has been
described as the total amount of behavior that
the organism can exhibit, scaled in units com-
mensurate with those of the observed response.

It can be shown that the multivariate rate

equation entails a different interpretation of
Herrnstein's k, and that the theoretically re-
quired invariance of k is not in agreement
with predictions made by the rate equation.

Equations 4 and 5 show that Herrnstein's k
may be expressed in terms of the parameters
of the rate equation as follows:

k= 1/(b+m-1),

where m = aew--w, b =(l1-a)e-w', and a=
[AB( -e-ew)]/[yA(l- e-w)]. According to
the rate equation, then, the value of Herrn-
stein's k depends on characteristics of the re-
inforcer (AR and w) as well as on character-
istics of the response (AB and w*). Obviously,
the latter dependency is in agreement with
Herrnstein's interpretation of k while the for-
mer is not. With regard to reinforcement, the
rate equation predicts that k will vary with
reinforcement pulse amplitude and width as

k = [c(ew fAB) + d]-1, (8)

where c = e-w(AB/y)(l- e-w') and d = (e-w'
- 1), and both are held constant across vari-
ations in AR and w. The complete derivation
of Equation 8 is given in Appendix C.

Besides gamma, the constants c and d in-
clude only quantities that characterize the re-
sponse pulses. To say that c and d must be
held constant across variations in AR and w
means that the response form must not change.
Thus, under conditions where Herrnstein
would expect k to remain invariant, the rate
equation predicts that k will vary directly with
AR, and inversely with w. Since AR is a value-
like quantity that depends on parameters of
reinforcement such as amount or immediacy,
Equation 8 predicts that increases in the
amount or immediacy of reinforcement will
produce increases in the value of k (given a
constant or negligible w).
Data bearing on the empirical validity of

Equation 8 are scarce. However, de Villiers
(1977), in a review of the evidence for Herrn-
stein's equations, noted that data on the con-
stancy of k were equivocal. For example, he
cited three studies that reported a different
value of k for each of two levels of reinforce-
ment magnitude. In two of these three studies
(Campbell & Kraeling, 1953; Keesey, 1964;
the exception was Schrier, 1965), the change in
k was in the direction predicted by Equation
8, i.e., the higher magnitude of reinforcement
was associated with the higher value of k.
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In addition to these studies, Bradshaw, Sza-
badi, and Bevan (1978) recently reported clear
variations of k with changes in reinforcement
magnitude. These investigators studied lever-
pressing supported by VI reinforcement in
four rats. Reinforcement consisted of .083-
min access to a sucrose solution. Each rat was
exposed to a series of VI schedules using a .00
M sucrose solution as the reinforcer, a series
of schedules using a .05 M sucrose solution,
and a series using a .32 M sucrose solution.
Three values of k were obtained for each rat,
one for each level of sucrose concentration.
For all four rats, k was found to be a mono-
tonically increasing function of sucrose con-
centration, as predicted by Equation 8.
Although Equation 8 contradicts Herrn-

stein's theoretical requirement that k remain
invariant, data supporting the constancy of k
are not necessarily inconsistent with the equa-
tion. Equation 8 specifies at least two condi-
tions under which k will, or will appear to,
remain invariant across variations in parame-
ters of reinforcement such as amount or im-
mediacy.

Obviously, if the range of variation of AR
is small, obtained values of k can be expected
to be nearly equal. Equation 8 predicts that
a plot of I/k against ew/AR will be a straight
line. When the slope of this line is shallow,
even moderately large variations of AR will
produce nearly equal ks. To prevent misin-
terpreting a small positive slope as support-
ing the invariance of k, it would be necessary
to determine values of k for a fairly large
number of AR values (e.g., 5 or 6) so that the
small positive slope would appear as a clear
trend in the data. It is worth noting that, of
the five studies interpreted by de Villiers (1977)
as supporting the constancy of k, four involved
comparisons of only two k values and the
fifth compared only three. On the other hand,
in at least one of these studies (Kraeling, 1961),
k remained approximately invariant over a
fairly wide range of reinforcement magnitudes
(5 to 125 cc of a sucrose solution).
The second condition under which k should

remain approximately invariant is when
AB( -e-w')e-w0 <<«y. As can be seen from
Equation 8, when this inequality holds, the
slope of the plot of 1/k against ew/AR will be
nearly equal to zero. If gamma is a moderate
number (i.e., not small), w* is small (brief
duration response pulse), and AB corresponds

to the "effortfulness" or aversiveness of the re-
sponse, then one possible interpretation of this
inequality is that it specifies a situation where
responding requires little effort. That is, when
responding requires little effort, AB is small,
the inequality holds, and k would be expected
to remain invariant across changes in AR. For
example, k might be expected to remain ap-
proximately invariant across changes in AR
for pigeons pecking keys, but less so for rats
pressing levers (as in Bradshaw et al.'s 1978
experiment) and perhaps even less so for pi-
geons pressing treadles. Of the studies inter-
preted by de Villiers (1977) as supporting the
constancy of k, only one involved lever press-
ing in rats. Three involved rats running in
alleys. Since running is a naturally occurring
high frequency behavior in rats, it might be
considered less aversive than leverpressing and
hence more conducive to the stability of k.
The remaining study involved rats swimming
in a cold water tank, which is more difficult to
interpret. By contrast, of the four studies that
do not support the constancy of k (three re-
viewed by de Villiers, 1977, plus Bradshaw
et al., 1978), three involved lever pressing (2
in rats, 1 in monkeys) and one involved rats
running in alleys.
There are other conditions under which k

should remain invariant, e.g., when ef AR
or e {/AR = k' for all i, where i is a level of
reinforcement magnitude or immediacy and k'
is an arbitrary constant. However, these condi-
tions are difficult to interpret in real terms.

The Matching Equation
One important difference between the rate

equation and the matching law is that the
former predicts and specifies the nature of
concurrent bias, whereas the latter can ac-
count for bias only with the aid of post hoc
addenda (Baum, 1974; Baum & Rachlin, 1969;
Killeen, 1972; Rachlin, 1971). Equation 7
shows that the rate equation predicts that bias
will be given by

-10 -10*A,R (I -e 1) A..B(I -e 2

A2R (1-e 2) A1B(1-e l)
McDowell & Kessel (1979) suggested that rein-
forcement pulse amplitude and width be con-
solidated into a single quantity, PR, where
PR--AR(- e-w). The quantity PR (reinforcer
"power") corresponds to the value of the rein-
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forcer (apart from any value contributed by
reinforcement rate).4 A similar quantity, PB,
can be defined for the response pulses, viz.,
PB-AB(I - e-w'). The quantity PB corre-
sponds to the aversiveness of the response. Sub-
stituting these definitions into the above ex-
pression for bias gives

PS P2B

Consequently, the approximation of biased
matching predicted by the rate equation may
be written (from Equation 7)

[ PuB P2, R1 (9)
R2oUT LP2R 1B J R2IN

Equation 9 predicts that an increase in the
value of the first alternative's reinforcer will
produce a bias in favor of the first alternative,
and that an increase in the aversiveness of the
first alternative's response will produce a bias
in favor of the second alternative. Thus
Equation 9 accounts for three of the four
sources of bias documented by Baum (1974),
viz., response bias, a discrepancy between
scheduled and obtained reinforcement, and
qualitatively different reinforcers. The first
source of bias is reflected in different values of
PB; the latter two sources of bias are reflected
in different values of PR. Equation 9 cannot
account for bias produced by qualitatively
different schedules of reinforcement inasmuch
as the rate equation applies only to VI sched-
ules. It is interesting to note that Baum (1974)
produced a form of Equation 9 by argument.
Here, the equation is shown to be a formal
consequence of a linear system analysis of VI
responding.
A second difference between the rate equa-

tion and the matching law is that the former
predicts a tendency toward undermatching in
all concurrent situations. Baum (1974), de Vil-
liers (1977), and Myers and Myers (1977) have
noted this tendency in data from concurrent
schedules. The rate equation predicts ordinary
matching only when reinforcement pulse
width (w) is negligible (see Appendix B).
When w is not negligible, rate equation match-
ing should be written (from Appendix B)

4The term power was suggested by Herrnstein (1971).
It may ultimately prove to be a poor name for this
parameter, however. Power ordinarily refers to the time
rate at which work is done (joules/sec). This is ob-
viously not its meaning in the present context.

1/R +0
1/B + oR10tu e 2in -1

R20uT el/Blin -1 (10)

For simplicity, the series expansion approxi-
mation of el/l - 1 is used for the response
rates in this equation, the concurrent bias is
assumed to equal 1 (no bias), and reinforce-
ment pulse widths (w) are assumed to be equal
for the two alternatives. The quantity, 1 /Ri,, +
w, is the average time between the initiation
of adjacent reinforcement pulses (McDowell
& Kessel, 1979). When w is negligible, 1 /Rin is
a good estimate of this time. When w is not
negligible, however, l/Ri, underestimates the
average time between the initiation of adja-
cent reinforcement pulses by a constant
amount at all reinforcement rates. In the lat-
ter case, a plot of RIOUTIR20UT against R1IN!
R2IN will show undermatching.
The ability of Equation 10 to account for

undermatching is illustrated in Figure 2. The
data are from Trevett, Davison, and Williams'
1972 study of concurrent VI VI responding
in pigeons. This study was selected because,
according to de Villiers (1977), it provides the
strongest evidence for systematic undermatch-
ing on concurrent schedules. The left-hand
panels of the figure show Trevett et al.'s data
plotted in the customary logarithmic coordi-
nates (Baum & Rachlin, 1969). The dashed
lines were fitted by the method of least squares,
and the slope (m) of the fitted line is given
for each plot. Substantial undermatching was
observed in three of the four pigeons. The
right-hand panels show fits of Equation 10 (in
logarithmic coordinates) to these data. Values
of w were estimated by an iterative least-
squares program that incremented w from a
small value until the slope of the regression
line was 1 when rounded to two decimal places.
The estimated value of w (in hours), and the
slope (m) of the regression line are given for
each plot. Solid diagonals in each panel repre-
sent the locus of perfect unbiased matching.

Figure 2 shows that, although the behavior
of Trevett et al.'s pigeons does not conform
to ordinary matching, it does conform to the
form of matching predicted by the rate equa-
tion when w is taken into account in the man-
ner specified by Equation 10.5 Estimated val-

"In apparent agreement with de Villiers (1977), ordi-
nary or "true" matching is here understood to mean
proportional ratio matching, where bias is permitted
but under- and overmatching are not.
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Fig. 2. Ordinary matching (left-hand panels) and rate equation matching (right-hand panels), for Trevett et
al.'s (1972) four pigeons. Dashed lines were fitted by the method of least squares. The slope (m) of the fitted line
is given in each panel.
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ues of w ranged from 1.07 sec (P102) to 100.44
sec (P101) with a median value of 49.14 sec.
This fairly long median value of w should be
viewed with caution. The fits in Figure 2 show
that Equation 10 can account for undermatch-
ing when appropriate values for w are selected,
but these values are not necessarily accurate
estimates of w. Because statistical procedures
attribute all of the undermatching to a non-
zero w, undermatching that is also caused by
other factors (e.g., poor discriminability be-
tween the two schedules) will result in artifi-
cially inflated estimates of w. In the case of
Trevett et al.'s data, for example, de Villiers
(1977) argued that prior exposure to concur-
rent VI FI schedules may have contributed
to the observed undermatching. The fairly
lengthy values of w obtained here seem to sup-
port this argument. It is important to recog-
nize, however, that Equation 10 predicts a
tendency toward undermatching in all con-
current situations, whether or not the under-
matching is aggravated by other factors. This
is because w, although it may be very small,
can never equal zero.

DISCUSSION
Herrnstein's equations are approximations

of the equation produced by a linear system
analysis of VI responding. The rate equation
provides a more complete account of matching
on concurrent schedules because it predicts
and specifies the nature of concurrent bias,
and predicts a tendency toward undermatch-
ing, which is sometimes observed in concurrent
situations. Of course, Herrnstein's matching
law can be made to account for bias and un-
dermatching by inserting two parameters, c
and n, as follows:

Rlour (Rv) n

R2OUr R21,
n . .This power function version of match-
ing has been discussed by Baum (1974), de Vil-
liers (1977), and Staddon (1968, 1972), among
others. Rate equation matching (from Equa-
tions 7 and 10),

1/R +W
Rlour Fa2l e'2n -
R20ur La, e l"n 1

although not a power function, also involves
two parameters, viz., a2/a, and w and, as noted
in the previous section, accounts for bias and

predicts a tendency toward undermatching in
all concurrent situations. The advantage of
rate equation matching is that the parameters
it entails are not post hoc addenda, as are c
and n in the power function version of match-
ing, but are formal consequences of the linear
system analysis.

Clearly, the rate equation does not contra-
dict the matching law; it is merely more com-
prehensive than ordinary matching. The rate
equation does, however, contradict one feature
of Herrnstein's hyperbola, viz., the theoreti-
cally required constancy of k. This contradic-
tion has important consequences for the con-
ceptual framework of matching in single
alternative responding. The relevant feature
of this framework is the idea, implied by
Herrnstein's hyperbola, that single alternative
response rates are determined by relative, not
absolute, rates of reinforcement. According to
the rate equation, however, the idea of rein-
forcement relativity in single alternative re-
sponding is both unnecessary (in order to de-
scribe the data) and incorrect.

In order to understand why this is so, it may
be helpful to examine the apparent reasoning
in Herrnstein's 1970 paper where his hyper-
bola is developed and discussed at some length.
According to Herrnstein (and others), it
would be convenient if the relationship be-
tween response and reinforcement rates were a
direct proportionality given by

RouT= kRIN. (l1)

This is of course a straight line with 0 inter-
cept. It permits response rates to increase
without bound as reinforcement rates get
large. Unfortunately, the data show that re-
sponse rates are bounded by a y-asymptote >
0. As far as describing the data is concerned,
then, the problem is to make Equation 11
bend downward. Herrnstein accomplishes this
by borrowing a property from concurrent
schedules and rewriting Equation 11 as

RouT- kR,I
RIN + re

The property borrowed from concurrent
schedules is that response rate in one compo-
nent varies inversely with reinforcement rate
obtained in the other. Herrnstein accordingly
speculates that there may be an additional
source of reinforcement in the single alterna-
tive situation, viz., re, with which response rate

404



HERRNSTEIN'S EQUATIONS AND THE RATE EQUATION

varies inversely. With regard to describing the
data, the only importance of this speculation
is that it makes Equation 11 bend downward.
Conceptually, however, it introduces the
framework of matching into the single alterna-
tive situation. That is, according to the hyper-
bola, single alternative responding depends on
a relative, not an absolute, reinforcement rate.
But the rate equation also bends downward

in such a way as to provide a good description
of the data, and without involving any sources
of reinforcement other than the one in direct
contact with the behavior. Evidently, then,
the conceptual framework of matching is not
necessary in order to describe the data. In
addition, however, the rate equation asserts
that the conceptual framework of matching
in single alternative responding is incorrect.
Herrnstein (1974) showed that the matching
principle formally requires k to remain in-
variant across changes in parameters of rein-
forcement such as amount or immediacy. His
argument can be summarized as follows.

Consider this rearrangement of the hyper-
bola:

Ro+rRzN (12)

Equation 12 entails the matching principle
only if k is the total amount of behavior that
the organism can exhibit, viz., ROUT + Re,
where Re is the responding associated with the
extraneous reinforcement, re. That is, if k =
ROUT + Re, then Equation 12 becomes

ROUT+R RzN+Nr' (13)

which is matching. Now, given matching, the
denominator of the response proportion can-
not change, no matter what happens to rein-
forcement because, by definition, it exhausts
the plenum of responses (see, in addition to
Herrnstein, 1974, de Villiers & Herrnstein,
1976). As one example, if ROUT decreases be-
cause of an increase in re, the difference in
the denominator on the left is made up for by
an increase in Re.

If k is found to vary with changes in the
parameters of reinforcement, however, when
k cannot be equal to the total amount of be-
havior. But if k is not equal to the total
amount of behavior, then Equation 13 does
not follow from Equation 12, and if this is
true, then Equation 12 (Herrnstein's hyper-
bola) does not entail matching.

Since the rate equation predicts that k will
vary with AR according to Equation 8, it as-
serts that k is not equal to the total amount
of behavior. In other words, the rate equation
says that the conceptual framework of match-
ing does not apply to single alternative re-
sponding.
The issue of the constancy of k obviously

provides clear empirical grounds for distin-
guishing between Herrnstein's account and a
linear system analysis of single alternative VI
responding. It is worth noting that both ac-
counts have attractive and unattractive fea-
tures. The major advantages of Herrnstein's
account are its simplicity, and its appealing
conceptual treatment of all behavior as choice
behavior (Herrnstein, 1970; Rachlin, 1976).
In a linear system analysis, the conceptual
unity of Herrnstein's account is lost (although
a form of matching is retained for concurrent
VI VI performance), and the result of the
analysis, viz., Equation 1, is cumbersome. The
major advantages of the linear system analysis,
however, are its comprehensiveness and its
promise of generality. Since the analysis in-
volves a purely formal method, it may be
applicable to a variety of situations where
equilibrium or steady state behavior is sup-
ported by reinforcement.

SOME GENERAL REMARKS ON THE
LINEAR SYSTEM ANALYSIS

Interpreting the Parameters
of the Rate Equation
The conceptual interpretation of the param-

eters of Equation 1 that is used here will be
satisfactory for many purposes. Ultimately,
however, the parameters of the equation will
require physical definition. This may be a
problem in the case of pulse amplitudes and
widths. Consider, as an example, a situation
in which the amount of reinforcement for
pigeons' keypecking is increased by increasing
the duration of access to grain. It is not clear
whether this increase should be reflected in a
larger pulse amplitude or in a larger pulse
width. Another difficulty arises in attempting
to specify how various reinforcer character-
istics (such as amount and immediacy) com-
bine to determine AR.
McDowell and Kessel (1979) suggested one

possible solution to these and similar prob-
lems. They chose to leave the amplitudes and
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widths of Equation 1 physically undefined and
to define new "power" parameters in terms of
the original parameters. These power param-
eters and their definitions are discussed above
(see also footnote 4). The conceptual advan-
tage of this approach is that responding and
reinforcement are completely described by
only two quantities each, namely, rate of oc-
currence and power. The power parameters
subsume all reinforcer and response character-
istics that, when considered separately, would
make physical definition difficult. An impor-
tant practical advantage of the approach is
that it is easy to specify the measurement
operations whereby the actual values of the
power parameters are determined. As sug-
gested by McDowell and Kessel, measurement
may be accomplished by matching-based rein-
forcer and response scaling (cf. Baum, 1974;
Herrnstein, 1971; Miller, 1976). The units
on power may simply be defined, as in the case
of force (newtons), work (joules), heat (kilo-
calories), and so on.

Consider Equation 1 where the original
parameters are replaced by power parameters:

Ro0r= {ln[ I + (P,IyPR)(elIRI 1) ]} . (14)
The uppercase subscripts on the rates indicate
that reinforcement and response pulse widths
are assumed small in this equation, as seems
reasonable for most operant conditioning ex-
periments. Say that PR, expressed perhaps in
thorndikes, has been determined for three dif-
ferent reinforcers, and that PB, expressed per-
haps in watsons, has been determined for three
different responses. Note that these values
would be determined in concurrent situations
with equal VI schedules on the two operanda.
The value of 'y would be assessed by picking
one of the responses, one of the reinforcers
and an arbitrary VI.6 Once these quantities
are known, the rate of responding that would
be produced by any VI input rate, and for any
combination of reinforcer and response, can
be calculated from Equation 14.

Restriction of the Rate
Equation to VI Performance
With regard to possible further applications

of the mathematics, it may be worthwhile to

Although, in principle, 'y can be determined by us-
ing only one VI, a statistical estimate of 'y using several
VIs and curve fitting procedures would undoubtedly
be more accurate.

clarify the sense in which Equation 1 is re-
stricted to VI performance and to indicate
some of the features of other types of behavior
that must be taken into account if the analysis
is to be extended to other cases.
Whenever the differential equation that de-

scribes the system is not known, one must be-
gin the analysis by writing appropriate ex-
pressions for R(t), the input or reinforcement
function, and B(t), the output or response
function. Once these functions have been
written, the rest of the analysis follows rou-
tinely (assuming that the system is linear). To
the extent that R(t) and B(t) accurately de-
scribe the reinforcement input and the re-
sponse output, the analysis can be expected
to yield an equation that accurately describes
the relationship among characteristics of the
original functions. If R(t) and B(t) describe
the input and output only poorly, however,
then it is unlikely that the resulting equation
will be successful. One important inadequacy
in R(t) or B(t) occurs when some feature of
the actual input or output is ignored when the
functions are written. If periodicity in the in-
put, for example, is not taken into account in
R(t), then the final equation may fail to de-
scribe input-output relationships accurately.
The VI case is especially simple because the

reinforcement input and response output have
only one identifiable characteristic each, viz.,
the constant average time between (reinforcing
or response) events. Since the events are spaced
irregularly in time in both cases, there is no
periodicity, and no other identifiable feature
of reinforcement or responding that needs to
be taken into account. In other words, R(t)
and B(t), as written by McDowell and Kessel
(1979) for the VI case, constitute good descrip-
tions of the actual VI reinforcement input
and response output. Equation 1 is limited to
the VI case because these functions describe no
other input and output accurately. Consider,
for example, variable-ratio (VR) responding.
Although the VR and VI cases are similar
(both have irregularly spaced pulses and "sta-
tionary" mean interpulse intervals in their
inputs and outputs), the former is complicated
by the addition of a positive feedback loop
that operates at all output rates.7 It is neces-

7Although there is also some positive feedback in the
VI case, it occurs over a small range of low output
rates and is minor in comparison to the positive feed-
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sary to take this loop into account when cal-
culating a VR transfer function. One possible
approach to the VR case is to treat it as VI
responding, but with the addition of this feed-
back loop. A preliminary analysis of the
VR case along these lines can be found in
McDowell (1979).

For fixed-interval (FI) responding, neither
R(t) nor B(t) for the VI case are good descrip-
tions of the actual reinforcement input or re-
sponse output. Although an FI input has a
stationary interreinforcement interval, it ex-
hibits clear periodicity, as does the FI output.
The fixed-ratio case is even further removed
from the VI, since it is similar to FI respond-
ing but with the addition of a feedback loop.
These extra features must be taken into ac-
count when calculating transfer functions for
these cases. McDowell (1979) has discussed the
problems involved in the analysis of the Fl
case, and in the analysis of some unusual in-
terval schedules that exhibit more compli-
cated periodicity.
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APPENDICES

APPENDIX A
Inverting, adding w# to, and exponentiating

both sides of Equation 1 produces
1/it +so* 1/it +1so

e out +=I +a(e *n -1),
where a = [AB(l- e-w)]/[yAR(l - e-w)]. Re-
arranging this expression,

1/iRt +,o* 1/iR
e Out =aewe "+(I-a),

and multiplying through by e-w gives
1/itF 1/it +

e
1

out =ae10100*e £n+(1in a)e-w*,
or

o/it 1/tn+b
e @"t =me + b,

where m = aew-w' and b = (1 - a)e-w'.

APPENDIX B
Inverting, adding w* to, exponentiating,

and subtracting 1 from both sides of Equation
1 produces

1/iR +W* 1/it + so
e lout -1=(a1fy)(e 10* -1)

and
1/i +10

e 2+0* -1= (af1y)(e 24n-
where a, = [A1B(l - e-*w)]I[AlR(1- e-w)] and
a2 = [A2B(l - e-W*)]/[A2R(- e-w)]. The nu-

merical subscripts (1 and 2) refer to each of
two concurrently available response alterna-
tives. For simplicity, reinforcement pulse
widths (w) are assumed to be equal for the
two alternatives, and response pulse widths
(W#) are also assumed to be equal. Dividing

these two equations gives a form of propor-
tional ratio matching:

1/R +10* 1/i +1
e lout -1 [a1 e ln-
1/it +10* a 1/R +10

e 2ut -1 LatJe2/ 2in 1

When w and w# are negligible (cf. McDowell
& Kessel, 1979), this expression becomes

e -1_[a:l e -1
e 2OUT_1 a21J e 2tN-1

This is Equation 6. The uppercase subscripts
on the rates indicate that w and w# are as-
sumed to be negligible.

APPENDIX C
From Equations 4 and 5,

k = 1/(b + m- 1)

where m = aew-w', b = (1 - a)e-wO, and a =
[AB(l - e-w*)]/[yAR(l - e-w)]. Thus,

k = [(1- a)e-w* + aewe-w* -1]-
= [e-* - ae-w* + aew0e-w* -]-'
= [e-0*-ae-w*(l - e)-]-

or

k = [(e10*-1)- A(1 -;e*)ew*(l - e)-

{[ y ][A]

Letting c = e-tu(AB/y)(l - e-w') and d=
(e-w -1), this expression becomes

k = [c(e1/Ajt) + d]-1.
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