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Several theories in the learning literature describe decision rules for performance utilizing ratios and
differences. The present paper analyzes rules for choice based on either delays to food, immediacies
(the inverse of delays), or rates of food, combined factorially with a ratio or difference comparator.
An experiment using the time-left procedure (Gibbon & Church, 1981) is reported with motivational
differentials induced by unequal reinforcement durations. The preference results were compatible
with a ratio-comparator decision rule, but not with decision rules based on differences. Differential
reinforcement amounts were functionally equivalent to changes in delays to food. Under biased
reinforcement, overall food rate was increased, but variance in preference was increased or decreased
depending on which alternative was favored. This is a Weber law finding that is compatible with
multiplicative, scalar sources of variance but incompatible with pacemaker rate changes proportional
to food presentation rate.
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A rich literature from animal learning and
discrimination paradigms shows that choices
are often made on a relativistic basis. For ex-
ample, a long tradition in operant reinforce-
ment-schedule research has shown that ratios
of choice responses approximately match ratios
of reinforcement rates when subjects are faced
with two or more intermittent schedule alter-
natives (matching law; de Villiers, 1977;
Herrnstein, 1961, 1970). A similar relativistic
principle is implicitly embodied in theories of
choice that specify the guiding variables as
ratios, for example, Killeen's (1968) early
identification of relative immediacy, the in-
verse of delay; the delay-reduction hypothesis
(Fantino, 1969, 1981); incentive theory (Kil-
leen, 1982a, 1982b); economic maximization
theory (Rachlin, Battalio, Kagel, & Green,
1981); and our own scalar expectancy theory
(SET, Gibbon, 1977; Gibbon, Church, Fair-
hurst, & Kacelnik, 1988).

Theories of associative conditioning also
sometimes use ratios as the basis for assessing
conditioning power (e.g., Gibbon & Balsam,
1981). More frequently, however, these the-
ories use differences as the critical variable
affecting the strength of conditioning (e.g.,
Mackintosh, 1975; Pearce & Hall, 1980; Res-
corla & Wagner, 1972). At least one measure
of contingency or correlation between the con-
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ditional stimulus (CS) and the unconditional
stimulus (US) in classical conditioning, the AP
index, also reflects differences (Rescorla, 1968).

Difference rules are common in discrimi-
nation theories in the signal-detection theory
tradition (Green & Swets, 1966), and also oc-
cur in theories of instrumental choice behavior
(e.g., melioration theory; Herrnstein &
Vaughan, 1980). Differences feature as part
of relativistic rules in a number of other set-
tings; for example, Fantino's delay-reduction
formulation requires that a difference be taken
before the ratio expressing the relativistic fea-
ture is assessed. Killeen and Fetterman's be-
havioral theory of timing (BeT; Killeen & Fet-
terman, 1988) has occasionally used implied
ratios (likelihood ratios of Poisson processes)
and sometimes differences (of Poisson counts)
in discrimination performances. Similarly,
SET, applied to the time-left procedure (Gib-
bon & Church, 1981) or to the temporal gen-
eralization or "peak" procedure (Church &
Gibbon, 1982; Roberts, 1981), assumes that
subjects estimate the difference between a cur-
rent time and a target time before comparison
with an alternative delay via a ratio. McCar-
thy and Davison (1980; see also Davison &
Tustin, 1978), in an interesting adaptation of
signal-detection theory to an operant temporal
discrimination paradigm, found a relative
proximity rule using differences in a ratio,
AT/T, to be the best discriminability index.
An important exception is some recent work

by Mazur and his colleagues (Mazur, 1992;
Mazur & Ratti, 1991) looking at the devel-
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opment of new preference levels in a concur-
rent choice situation. They have found that
equal differences between reinforcement prob-
ability schedules do not result in equally rapid
adjustment of preference; rather, preference
adjustment is primarily a function of the ratio
of reinforcement probabilities.

Given this variety of comparison rules in
animal choice behavior, it is perhaps surpris-
ing that little experimental attention has been
devoted to discriminating between ratio and
difference comparisons. In part this reflects the
proclivity of molar theories to deal with overall
performance measures rather than with mo-
ment-to-moment comparison rules. Scalar ex-
pectancy theory, in contrast, has been explicit
in specifying ratio comparisons as the mech-
anism underlying choice. To date, however,
that mechanism has been only indirectly sup-
ported (as we describe below), and direct ev-
idence on ratio versus difference comparisons
is lacking.

Weber's Law
An indirect line of evidence bearing on a

distinction between ratio and difference com-
parison mechanisms is Weber's law for time
(Gibbon, 1977). If discriminations are made
by comparing absolute differences, then equal
absolute differences might be expected to result
in equal discrimination performance. Con-
versely, if choices are made by a ratio com-
parison, then discrimination performance
might be expected to be constant at constant
ratios of a short (S) to a long (L) interval when
the time values, S and L, are changed, but kept
in the same ratio. Gibbon and Church (1981),
Gibbon, Church, and Meck (1984), and Gib-
bon et al. (1988) showed that for the time-left
procedure, preference functions do approxi-
mately superpose when plotted at constant ra-
tios, thus supporting a ratio comparator in-
terpretation of discrimination performance.

That evidence, however, is not direct, be-
cause it depends both on variance properties
of the time sense and the discrimination mech-
anism leading to partial preference. If a short
interval and a long interval, S and L, were
both appreciated with the same level of vari-
ability, then intuitively the amount of confu-
sion generated between subjective exemplars
of these time values should depend on the de-
gree of proximity between them-their abso-
lute difference. If both values were then, for

example, doubled without a proportionate in-
crease in variability, the precision of the dis-
crimination ought to improve dramatically. In
contrast, Weber's law says that variability in
our subjective appreciation of the size of time
intervals increases proportionally with the size
of the interval, and hence discriminability re-
mains constant at constant ratios of the time
values being discriminated.

Caveat. In describing the accounts for dis-
crimination and choice that follow, we use lan-
guage that is somewhat unfamiliar and per-
haps in some cases unwarranted in describing
and distinguishing between processes sup-
posed to underlie choice performance. For ex-
ample, "subjective" time is argued to be a lin-
ear function of real time. One might equally
posit that the kind of functional relations ob-
tained from choices based on time are well
described by linearity in the time dimension
as opposed to curvilinearity (e.g., logarithmic
transformations). Similarly, subjects are hy-
pothesized to utilize a "comparator" mecha-
nism for contrasting their "memories" for dif-
ferential values of the outcomes of choice. One
might describe such processes less cognitively
by arguing that the mechanisms underlying
choice behavior obey the formal properties of
a decision rule of a particular type as opposed
to another, quite independently of whether
these "decisions" are actually made with an
active comparison process located within the
animal "sampling" from "memory." Partly
because the historical development of SET uti-
lized such cognitive locutions and partly for
ease of communication, we continue this tra-
dition in the present report even though such
language is certainly not traditional here (al-
though not unprecedented, cf. Gibbon &
Church, 1992).

Subjective Time
Log timing. It is important to note that We-

ber's law favors a ratio comparator only in
case there is not a logarithmic transformation
in the perceptual system appreciating these
time values before the comparison is made.
Because logs of ratios are equivalent to differ-
ences, it is moot whether comparisons are made
by subjective ratios or subjective differences if
a prior logarithmic transformation in the per-
ceptual system is permitted.
On the other hand, the difference between

linear and logarithmic systems is quite ex-
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treme. For example, one may approximate a
logarithmic transformation with a power law
transform, but the approximation is quite poor
until the exponent becomes very low. Weber's
law for differences is not approximated for a
perceptual system with a power law represen-
tation until the exponent is below about 0.2.

Linear timing. Gibbon and Church (1981)
and Church and Gibbon (1982) have provided
evidence that the subjective time sense is not
seriously curved in real time. The strongest
evidence was obtained with the time-left pro-
cedure (Gibbon & Church, 1981), a paradigm
that is utilized in an illustrative experiment
presented below. The baseline condition in this
experiment provides additional evidence fa-
voring a linear subjective time sense. The dis-
crimination between logarithmic and linear
timing does not depend on the variance prop-
erties of the time sense as does Weber's law.
We will recapitulate this argument briefly be-
cause the present experiment replicates and
extends the finding, and because linearity (or
near linearity) of subjective time is important
to the theoretical distinctions we will draw.
The critical comparison is the subject'sjudg-

ment of the shorter of two times: the remaining
time (the "time left") in an elapsing, remem-
bered comparison interval, C, and a fixed,
standard time interval, S, set at half C (S =
C/2). If these intervals are appreciated via a
logarithmic transformation, two features of the
discrimination should appear. First, because
the logarithmic translation stretches the short
values relative to the long values, the time re-
maining halfway through an elapsing interval
should appear considerably smaller than the
time from the beginning of the interval to the
midpoint. This would correspond to a strong
tendency towards judging the time left in the
elapsing interval as shorter. Indeed, we will
see that the data frequently show some intrin-
sic bias in favor of the elapsing interval.
A stronger difference between log and linear

timing, however, derives from the point of in-
difference, the point in the elapsing interval at
which the subject judges the remaining time
there to be equal to the fixed standard. If both
the standard and the comparison are multi-
plied by a constant, log timing requires that
the indifference point remain unchanged in
absolute time. That is, whatever the value of
the indifference time for one 5, C pair, when
both times are doubled, for a log system this

amounts to adding one log unit (base 2) to the
standard side and one log unit (base 2) to the
comparison side. Hence the time at which the
judgment of indifference should occur ought
to remain constant, because a constant amount
of subjective time has been added to both sides
(see Figure 7, Gibbon & Church, 1981, for a
graphic demonstration of this principle).

Conversely, if the time sense is linear, then
the point at which the remaining times are
judged to be equal should increase linearly
with increases in S and C. The time-left pro-
cedure described below, and utilized by Gib-
bon and Church (1981), effects just such a
comparison between an elapsing interval and
a fixed standard. Gibbon and Church were
able to show that the point of subjective equal-
ity increases proportionally with the size of the
increase in standard and comparison. In the
experiment described below, the baseline con-
dition replicates this finding, and the experi-
mental conditions extend it to certain kinds of
bias.

Choice criteria and comparison rules. The
conceptual basis for the present report is a
contrast between the kind of choice behavior
expected when a comparison between the time
remaining and the standard is made using one
of three different kinds of criteria for the com-
parison, and when that comparison is imple-
mented using either a subjective ratio or a sub-
jective difference. The three different criteria
we will consider are (a) simple delay to food,
(b) the inverse of delay to food or "immediacy"
(Chung & Herrnstein, 1967; Killeen, 1968),
and (c) expectancy, which is subjective food
amount divided by subjective delay to food
(Gibbon, 1977; see also Mazur, 1984, 1987).
Expectancy may be thought of as subjective
immediacy weighted by subjective food amount.
Each of these three criteria will be considered
in ratio or as differences. The experiment we
report influences (i.e., biases) the choice by
introducing differential reinforcement for one
or the other alternative. We will see that mo-
tivational bias produced by different amounts
of reinforcement discriminates between mech-
anisms in some, but not all, of the six possible
cases.
Our strategy in what follows will be to first

describe the time-left procedure and present
baseline data illustrating the linearity of the
time sense with real time as described above.
Next, a theoretical exposition of these three
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S=C/2
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Fig. 1. The time-left procedure. Responses at time T
produce one of two mutually exclusve outcomes: reinforce-
ment availability after a fixed standard interval, S, or after
an interval L, the time remaining in the fixed interval, C.

criteria for preference and the two different
rules for deciding among them are presented.
The six combinations of two rules and three
criteria provide, we will see, four (not six)
discriminable models for choice that might un-

derlie preference. Finally, we describe and dis-
cuss an illustrative experiment in which mo-

tivational bias is introduced by differential
reinforcement.
The approach we take is fundamentally the-

oretical because the data we present are not
extensive enough to establish definitively the
correctness of one of the four discriminable
models for choice. However, they are certainly
strongly suggestive, as we will see below, and
instantiate a classical application of functional
measurement theory (see, e.g., Anderson, 1974,
1981, for reviews). Linearity of the time scale
is first established and then bias manipulations
are factorially manipulated to determine choice
criteria as multiplicative or additive. We will
pursue this analogy more extensively below
when the six cases are described in detail.

TIME LEFT
In this paradigm, subjects choose between

a continuously elapsing delay to food on one

side and a fixed, known standard delay to food
on the other. The reference procedure is dia-
grammed in Figure 1. Pigeons are trained to
peck at two concurrently available, differently
colored choice keys at the beginning (initial
link) of each trial; say, white (stippling) and
green (diagonal hatching). After a period of
time, T, that varies from trial to trial, the next
response to a choice key determines the selec-
tion of one of two mutually exclusive outcomes
(terminal links). If the response is to the white
time-left key, the green key is darkened, the
white key remains illuminated for a length of
time, L = C - T, which is the remaining time
on the comparison (C-s) delay, counted from
the beginning of the trial. At the end of this
delay, reinforcement is available for the next
response. If, after T, the next response is to
the green key, the white key is darkened, the
green key changes color, say to red (reverse
hatching), and subjects may respond on the
red key for a standard (S-s) delay to food.
The delay until the effective choice point,

T, is chosen randomly from among six posi-
tions equally spaced within the comparison (C)
interval. Thus entry into a terminal link is
equally likely at any point during a trial. The
standard delay, S, is fixed at one half the total
comparison delay (S = C/2). Under this ar-
rangement, a subject that accurately appreci-
ated the standard and comparison delays would
respond on the S side of the choice early in the
trial, because then reinforcement would be
available S seconds later, but would switch
over to responding in favor of the time-left
comparison side halfway through the trial, as
this elapsing delay becomes shorter than the
standard. A datum of primary interest is the
function describing changes in preference for
the time-left side of the choice as time in the
trial elapses.
An example of preference, indexed by the

proportion of responding to the time-left side
in the choice period within successive, short
time intervals as the trial progresses, is shown
in the top panel of Figure 2. These data are
from a subject in the present experiment, with
S = 15 s and C = 30 s. They are typical of
preference data from the time-left procedure
(cf. Gibbon et al., 1988). Choice behavior early
in the trial shows a strong preference for S,
and as time in the trial elapses, preference
switches over to the C side. Note the rather
steep ogival form of the function. This form
is typical, and rules out an analysis from a
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Fig. 2. Preference function for 1 subject in the S = 15 s, C = 30 s condition (top panel). The proportion of

responding in favor of the elapsing C interval rises as C elapses. The indifference point, T½, is indicated by the dashed
lines. In the bottom panel, the indifference points for each of three determinations at each of three time intervals are
shown.

traditional generalized matching framework,
which has a long history in the preference
literature (e.g., see Baum & Rachlin, 1969;
Logue & Peina-Correal, 1984; Rachlin et al.,
1981; Ten Eyck, 1970). The matching law
version of preference does not capture the
individual preference function forms well
because partial preference is invariably more
extreme (overmatching) than expected by a
matching law account. Gibbon et al. (1988)

examined the deviations from a matching pref-
erence function in detail. We do not treat this
alternative further here.
The point of subjective indifference, T%, is

the time into the trial at which subjects are
indifferent between the two choices. This is
indicated in the figure with the dashed lines.
If subjects' perception of the time remaining
on the time-left side and the standard were
veridical, one might expect this crossover to
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occur at 15 s, because this is the point at which
the two remaining delays are in fact equal.
Often T½h is found to be somewhat less than S
(as here), possibly reflecting an intrinsic bias
in favor of the elapsing C interval.

Linearity of TIA in S
In the bottom panel of Figure 2, T½ data

from this subject are shown from three rep-
lications of three baseline conditions in which
S = C/2 = 7.5, 15, and 30 s. The function
shown is the linear regression for these data.
Even with only three baseline S values, this
subject is a particularly good illustration of the
finding of Gibbon and Church (1981) noted
above, that this function is linear in the value
of the standard interval. T½ increases l1nearly
(approximately proportionally) with the size
of the standard. It does not stay constant, as
would be expected were the subjective time
sense logarithmic in real time. Data like those
in Figure 2 will receive more analysis later
when they are contrasted with T½ points ob-
tained with the introduction of reinforcement
differentials. They are presented here to il-
lustrate the linearity of the T½ function and to
motivate a theoretical description of the time
sense entailing such linearity.

According to scalar expectancy theory (SET;
Gibbon, 1977, 1991), linearity is entailed in
the T½ versus S function in the following way:
We assume that after long training subjects
have built up a memory for the standard and
comparison delays, and that at any given time
(7) during the choice period, a comparison is
made between the remembered delay to food
on the standard side, say ,u(S), and the sub-
jective time remaining on the comparison side,
g(C) - A(n 1
The prediction of linearity of the T½ func-

tion is obtained assuming a linear time sense.
For any time, T, the subjective value of T,
Is(T) is

A(T) = K(T - TO). (1)

An explication of the fullest version of the account (see
Gibbon et al., 1988) posits variability in the memory for
these times, and it is this feature that produces an ogival
form in the preference function rather than a discrete jump
between 0 and 1. For the present purposes, we use the
mean of these remembered times, ji(j), to make the point
that the linearity of T, is independent of assumptions about
the form of the distribution of remembered times.

To is a (small) constant representing a latency
to begin timing.2

At indifference, T1/2, the two subjective val-
ues of S and L are equal:

A(C) - A(T112) = A(S)) (2a)

where ,B represents a possible bias (,B = 1 in
an unbiased comparison).

Substituting 2S for C in Equation 2a and
applying the linear definition of subjective time
(Equation 1) yields

T112 = (2 - O)S + 3TO. (2b)
The indifference point is linear in the standard
interval when the standard is varied but kept
in constant ratio to the comparison. The data
in Figure 2 confirm the findings of Gibbon
and Church (1981), who showed linearity over
a four-fold range. We report later some ad-
ditional baseline data supporting linearity.

SIX MODELS:
THREE CRITERIA AND

TWO RULES
The above derivation of linearity of the in-

difference point is but one of several alternative
conceptualizations of how subjects might de-
cide between the two alternatives. We now
present in a more formal way six different
alternatives for the indifference point as a
function of S. In three of these, the decision is
made on the basis of a ratio of two criteria,
and in the other three, a difference between
two criteria is used.

Ratio Comparators
Consider first the ratio comparison oper-

ating on delays to food, shown in the upper
left panel of Figure 3 (Cell 1). The ratio rule
contrasts the subjective time left to food, ,u(C)
-,4T), with the time left to food on the stan-
dard alternative, I,(S), were that alternative to
deliver its terminal link "now," at time T.
These two delays are taken in ratio, and pref-
erence for the time-left alternative occurs
whenever this ratio is less than a potentially
biased value, f. = 1 in an unbiased condition.
In general, 0 ' , 2. Indifference occurs at

2 The particular form of the linear function is unim-
portant for our later analysis here. Note that a slope,
intercept form of Equation 1 has intercept = -KTo.
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Hs-THs
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Fig. 3. Decision rules and indifference functions.

the time, T½, at which the criterion just equals
,B. This is precisely the derivation just de-
scribed, and using Equation 1 the indifference
point is given by Equation 2b as shown in the
lower half of Cell 1 in Figure 3. Thus for this
model, T½ is linear in S.
We assume that the bias parameter, ,B, is

sensitive to changes in reinforcement associ-
ated with each alternative. For example, were
C made more favorable by delivering more
food for that alternative, we would expect T,
to shorten (1 < ,B < 2). From Equation 2b

we would expect this shortening to be ap-
proximately proportional to S. That is, the
slope of the T½ versus S function would de-
crease.

Consider next Cell 3. Here the criteria are
the relative immediacies, or instantaneous rates
on the two sides, and the comparison is again
made by a ratio of these. With the interpre-
tation of the bias parameter as 1/1l, it is clear
that Cells 1 and 3 do not differ. That is, a
mechanism that uses as criteria delays to food
and decides between them on the basis of a

Delay

Immediacy

Expectancy
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ratio is formally identical to one that uses im-
mediacies, the inverse of the delays, and again
decides between them on the basis of a ratio.
The prediction for the indifference point in
both cases requires that it be nearly propor-
tional to the standard when the standard is
varied but kept in a 1-to-2 ratio to the com-
parison. The slope of this function equals 1.0
when the discrimination is unbiased. Moti-
vational changes in ,B should primarily change
the slope of the relation with small changes in
the intercept.

Finally the third row in Column 1 (Cell 5)
describes a very similar rule based on expec-
tancy, or subjective food rate. The comparison
here is again made with a ratio, and respond-
ing is expected to favor time left whenever the
expectancy on that side exceeds, by a poten-
tially biased factor, B, expectancy on the stan-
dard. Expectancies in turn are the ratio of
subjective amount, H1, to subjective time, u(J),
(Gibbon, 1977). That is, responding should
favor time left whenever

HC
M(C)- (T)
- ~>B. (3)

HS
A(S)

It is important to realize that the expectancy
formulation HT/,.(T) (and subjective time in
the immediacy case, Cell 3) is equivalent to a
hyperbolic discount of subjective amount. A
common form of hyperbolic discount has
amount divided by 1 + kT; this, of course, is
just what the linear subjective time definition
(Equation 1) requires. The difference is that
in the usual discounting case the time unit
represented by 1 is here represented by -KTO,
whereas the sensitivity parameter in the usual
hyperbolic discount equation is simply the slope
of the accumulation of subjective time (K).
Thus, the differences between mean subjective
expectancy in SET and hyperbolic discounting
are different interpretations of the time unit
and the sensitivity parameter. They do not
differ in formal properties.

For the expectancy comparator rule, the bias
parameter, B, is now interpreted as an intrinsic
bias favoring one or the other side. That is,
changes in food amount, which we have argued
might "bias" subjects one way or the other,
are now incorporated into the rule itself; thus,
the bias parameter reflects only intrinsic dif-

ferences that favor one or the other side in-
dependently of changes in expectancy due to
amount of food.

Equation 3 is formally equivalent to the
decision rules in Cells 1 and 3 (Figure 3) if
we interpret (Hc/Hs)B = f,. That is, if the
biases in the two ratio comparisons above for
immediacy and delay are interpreted as pro-
portional to the subjective food-amount ratio,
then the expectancy rule is the same as the
other two, and the indifference point again is
expected to be linear in the standard, as shown
in the bottom of Cell 5 (Figure 3). Thus, ratio
comparator rules operating on either delay,
immediacy, or expectancy are formally iden-
tical and entail linearity of T½ in S. They differ
somewhat in the interpretation of the bias pa-
rameters. We consider later special cases in
which the ratio of subjective amount of food
is equal (or not) to the ratio of the actual
amount of food.

DifJerence Comparators
The pattern for the difference comparator

mechanisms is quite different. In Cell 2 (Fig-
ure 3), subjective time left minus the subjective
standard delay is taken as the criterion differ-
ence that, when it is less than a bias value, f,',
favors the time-left side. Indifference on this
account occurs when the difference between
time left and the standard equals the bias. Ap-
plying Equation 1 for subjective time results
in the linear function below the preference rule
in Cell 2. This function has a slope of 1.0 in
the standard; that is, increasing the standard
and comparison by a given factor does not
change the degree to which it must exceed a
bias to be preferred. Note that for no bias (,B'
= 0 in Cell 2), T½ = S + To, just as for the
ratio comparator (,B = 1.0 in Cell 1). Hence,
a difference between the indifference point
functions for delay to food will be seen only if
a bias is introduced favoring one or the other
side. Both require a slope of 1.0 when there
is no bias. When a bias is introduced, the dif-
ference comparator favors one or the other side
by a constant vertical displacement of the lin-
ear relation, whereas the ratio comparator fa-
vors one or the other side by a slope displace-
ment in the linear relation.

This is just the application of functional
measurement theory referred to earlier. Once
the linearity of the measurement scale has been
established, manipulation of the motivational
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parameter should produce a fan-shaped slope
differential in the T½ versus S function if the
bias is multiplicative, but a parallel linear dis-
placement if the bias is additive. We will see
below explicit forms of this difference.

Next consider the immediacy difference rule,
Cell 4 (Figure 3). Here the immediacy of the
remaining time minus the immediacy of the
standard must exceed a bias value, ,B', before
subjects choose the time-left side. Again in-
difference should occur when the difference
between these immediacies equals ,B". Apply-
ing Equation 1 for subjective time, this results
in the nonlinear indifference-point function
shown in the bottom of Cell 4. Note again that
the difference rule is equivalent to the ratio
rule for no bias (a" = 0 and ,3 = 1). However,
with bias introduced, the difference compa-
rator using immediacies shows asymmetrical
nonlinearity depending on which alternative
the bias favors. These differences will be de-
scribed graphically in more detail below.

Finally, the expectancy difference compa-
rator, Cell 6 (Figure 3), in which the subjective
food rates are compared, results in a form sim-
ilar to that in Cell 4, but with effects expected
from differential amounts of food. The expec-
tancy difference rule is

Hc H,-
> B', (4a)

Mi(C) - ti(T) ai(S)
with B' an intrinsic bias unrelated to food, like
B in Cell 5. Now applying Equation 1 for
subjective time, we have

H

T112= 2S
BK

1. (4b)
B'K 1

-Hs S+ ToJ

The ratio of subjective food amounts now en-
ters as a parameter, as in the ratio comparator
for expectancy.
As with the bias parameters for delay and

immediacy, the ratio comparators require that
bias vary around 1.0 and the difference com-
parators require that bias vary around 0. And
again, equal food amounts (Hs= Hc), and no
intrinsic bias, B = 1.0 and B' = 0, produce
the same rule as in the other cases, T½ = S +
TO.

Several of the features of these differing ac-
counts may be seen more easily in Figure 4,

where we plot T½ functions expected under
three of the six cases. In the top panel, the
ratio comparator function is shown, the single
rule that results from a ratio comparison for
any of the three criteria. The difference com-
parator operating on delays (Cell 2) is shown
in the center panel, and the difference com-
parator operating on immediacies (Cell 4) is
shown in the bottom panel. For all of these
cases To is set at a small value (To = 0.5 s)
typical of previous data fits in the literature
(Gibbon & Church, 1981; Gibbon et al., 1988).
For purposes of the present account, we may
ignore To or set it equal to 0 in these functions
and the qualitative differences that we describe
will be unaffected.

In each panel, the unbiased condition (, =
1.0 in the top panel, ,3' = 0 in the center, and
,B = 0 in the bottom) is shown with a heavy
diagonal line. In each case no bias requires a
slope of 1.0 and an intercept of To, T½ = S +
To. What differs in these plots is the effect of
changes in bias. In the top panel for the ratio
comparator, changes in bias are reflected in
the speed with which T½ changes as a function
of S. Data for different biasing conditions
should fan out with differing slopes from (ap-
proximately) a common intercept (the func-
tions intersect at S = To). Data with strong
opposite biases will show the greatest differ-
ences in slope.
The middle panel shows the difference com-

parator operating on delays. Here changes in
bias produce a change in intercept while leav-
ing the slope constant at 1.0. Data with strong
opposite biases will show the greatest differ-
ences in level. The contrast between these top
two panels is the fundamental discrimination
of functional measurement theories described
above.
The difference comparator based on im-

mediacies behaves very differently when bias
is introduced. A slope of 1.0 occurs again with
no bias (,B"= 0). But with a motivational dif-
ferential changing bias, the indifference point
is not linear in S, and positive and negative
values of ,B have asymmetrical effects. For
positive ,B (favoring the standard), Th is nearly
linear in S, but with slope increasing slightly
as S increases. For negative A" (favoring time
left), T½ rises and then falls, reaching 0 as S
approaches -1 /a"'. Intuitively, as S ap-
proaches -1/, - 1/,u(S) approaches 13", and
thus for S values larger than this, preference
for time left is guaranteed-the left side of the
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preference-rule equation always exceeds fl. For
any standards longer than this, preference
should begin at or above 50%, so that T½ re-
mains at 0.

EXPECTANCY CRITERIA
AND SUBJECTIVE AMOUNT

The expectancy criteria cases are more com-
plex than the preceding analyses because they
permit consideration of two kinds of bias-
intrinsic bias unrelated to food, and what we
have called the motivational bias induced by
differing food amounts on either side of the
choice. We describe here extreme cases ex-
pected under particular assignments of intrin-
sic bias (or no intrinsic bias) and subjective
food amounts, H1, proportional to real food
amounts (or not). In the experiment to follow
we will use just two values of these, food access
either doubled on the S side or doubled on the
C side, and these conditions are the ones ex-
amined here. Doubling the amount of food on
one or the other side of the choice has a special
interest here, because if subjective amounts
parallel real amounts, then the bias in favor
of C ought to equal either 2 or 1/2 in the two
conditions. Looking at the equations for in-
difference in Cells 5 and 6 in Figure 3 we see
that for these particular cases if there is no
intrinsic bias, B = 1 or B' = 0, a clear asym-
metry in the effects of the two reinforcement
differential operations should be seen.

In Figure 5, these are graphically depicted
with the heavy lines. Note that when there is
no intrinsic bias, Cell 6 is the same as Cell 5.
The ratio comparator case is shown in the top
panel of Figure 5. The heavy lines indicate
the cases for which there is no intrinsic bias
and the subjective amount is proportional to
real amount. Then the subjective amount ratio,
Hc/Hs, equals /2, 1, or 2 when food amount
on Hs is twice that on C, equal that on C, and
half that on C, respectively. Doubling the
amount of food on S would produce a slope
change up to 1.5 in the T½ versus S function.
However, doubling the amount on C would

produce a slope of 0 in the Th versus S function.
That is, preference should begin at or above
50% for all S values, as long as S = C/2.
Amount and time are perfectly interchange-
able on this assumption, so doubling the amount
is equivalent to halving the time. Hence, in-
difference should occur right from the begin-
ning of all trials independently of the size of S.
The light lines in the top panel represent

less extreme cases, comparable to those in the
top panel of Figure 4, in which bias for S
equals 0.67 and bias for C equals 1.5. In the
ratio comparator for expectancies, these cases
do not distinguish between whether this bias
is intrinsic or related to food as noted above,
as intrinsic bias multiplies the subjective
amount ratio. However, we will see below that
data relevant to intrinsic bias may be obtained
from baseline conditions when food amounts
are equal (HC = Hs).

In the bottom panel of Figure 5, we show
the difference comparator for expectancy cri-
teria. First note that the heavy line functions
in the top panel describe the difference com-
parator in the bottom panel equally well, as
long as there is no intrinsic bias (B' = 0); thus,
the two cases are not distinguishable unless
there is intrinsic bias. The heavy line functions
are shown again in the lower panel for ref-
erence. When intrinsic bias is present, how-
ever, the difference comparator shows curva-
ture. Two cases are shown with the light line
functions.3 The function showing a slight con-
cave down curvature is one for which food
amount is doubled on S, but intrinsic bias fa-
vors C (Hc/Hs= 0.5, B' = -0.03). The lower
concave up, light line function is that induced
by an intrinsic S bias when food amount is
doubled on C.

Thus, the difference comparator with no
intrinsic bias is identical to the ratio compa-
rator cases with or without intrinsic bias. As

I Absolute values of H, are required for the difference
comparator function (Cell 6). We use Hj = 3.5 or 7,
comparable to the baseline or doubled duration food access
in the experiment reported below.

Fig. 4. Bias changes the relationship between the indifference point, T.*, and S. The ratio comparator operating
on either delay to reinforcement or immediacy of reinforcement is shown in the top panel. A difference comparator
operating on delay to reinforcement is shown in the middle panel, and one operating on immediacy of reinforcement
is shown in the bottom panel.
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would be expected to characterize the expec-
tancy difference comparator.
The indifference-point analyses described

above permit several clear distinctions. First,
the difference comparators for delay and im-
mediacy may be readily distinguished from the
ratio comparator case by the difference in slope
and linearity (Figure 4). Second, the expec-
tancy difference comparator is potentially dis-
criminable from the expectancy ratio compa-
rator, but the differences may be subtle. They
depend on the degree of intrinsic bias. Third,
both expectancy comparators require consid-
erable asymmetry in the degree of change as-
sociated with increasing reinforcement differ-
ential for one or the other side. Increasing
reinforcement on the C side produces a larger
effect on indifference points. We will analyze
data from our illustrative experiment to follow
in the light of these considerations.

METHOD

Subjects. Subjects were 4 White Carneau
pigeons maintained at 80% of ad lib body
weights. Subjects were housed in a separate
colony room in individual cages with water
available at all times. Lights in the colony room
were switched on at 7:00 a.m. and off at 7:00
p.m.

Apparatus. Subjects were trained in a two-
key pigeon chamber enclosed in a sound-at-
tenuating box. Further acoustical isolation was
provided by low-volume white noise broadcast
through a speaker in the chamber. Each key
was located 21.5 cm above the chamber floor
and was transilluminated by an IEE projector.
An aperture (5 cm by 5 cm) centered 10 cm
above the floor and located symmetrically be-
tween the two keys provided access to a sole-
noid-operated grain hopper. A dim houselight
provided general illumination, except during
reinforcement, when it was replaced by a light
over the hopper. The procedure was imple-
mented and data collected with a PDP® 1134
computer.

Procedure
Pretraining. Two subjects had previous ex-

perience in the time-left task. The other 2 were
trained to key peck, by autoshaping, in a dif-
ferent single-key chamber with a red keylight.

Testing. The baseline time-left procedure

was conducted as described earlier in Figure
1. Choice points, T, were chosen randomly at
the beginning of each trial from six equally
spaced positions within the comparison inter-
val. Key-color assignments were counterbal-
anced across birds. Right-left color assignment
was randomized across trials. The interval be-
tween trial starts was 3C, thus ensuring that
overall reinforcement rate was constant, in-
dependent of choice behavior within a trial.

At the start of each session there were, in
random order, four warm-up trials; two in
which only the S key was illuminated, followed
by the S terminal link, and two in which only
the C key was illuminated. Each session then
continued with time-left trials until 48 more
reinforcements were delivered. For the unbi-
ased, baseline condition, reinforcement at the
end of either the S or C interval consisted of
3.5-s access to the food hopper. Sessions were
conducted 5 days per week at approximately
the same time of day.

Three determinations were made at each of
the following S, C pairs: 7.5, 15; 15, 30; and
30, 60 s. Each determination consisted of eight
sessions, of which the data from the last four
are presented. The determinations were made
in a quasi-random order. (Our experience is
that reliable preference is more readily ob-
tained from multiple determinations with a
small number of sessions than from fewer de-
terminations with a large number of sessions.)
Following these baseline determinations, the
biased conditions were studied, in which re-
inforcement after one of the intervals was in-
creased to 7 s of hopper access. For 2 birds
reinforcement on S was increased, and for the
other 2 reinforcement on C was increased.
Eight-session determinations of the bias con-
ditions were made at S, C pairs in the following
order: 30, 60; 15, 30; 7.5, 15; 30, 60; 15, 30;
7.5, 15; and 30, 60. Data from the last 4 days
of each condition were analyzed.
The subjects chosen for the C bias condition

were the 2 with the largest baseline T½ values,
indicating some intrinsic preference for S.
Conversely, those chosen for the S bias con-
dition had baseline T½ values slightly favoring
time left. This choice was made to permit ob-
servation of a maximal effect of reinforcement
bias and to minimize the possibilities of ab-
sorption on the alternative that was already
favored under unbiased conditions. This choice
also provides a potential discrimination be-
tween the expectancy models (Figure 5).
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RESULTS
Typical data from a 4-day block for 1 subject

are shown in Figure 6 (the same subject as
shown in Figure 2). The standard was 15 s
for these data, and the comparison was 30 s.
In the top panel, absolute rates of responding
on the choice keys during the initial link of
the chain are shown. Responding begins high
on the standard choice key (S) and low on the
comparison (C), and gradually the rate on the
standard drops and the comparison increases
as time in the trial progresses. In the middle
panel, the proportion of responses in favor of
the time-left alternative as time elapses is
shown. The preference function crosses indif-
ference close to halfway through the trial, when
the subject switches over to preferring time left,
as this delay becomes more favorable. In the
bottom panel, the absolute rates of responding
in the terminal links are shown, with the func-
tion for the S terminal link offset (ending at
30 s). The standard, once the terminal link is
entered, may be viewed as a discrete-trial fixed-
interval schedule. Responding increases some-
what as time elapses toward reinforcement,
although a pronounced positive acceleration
(scallop) is not typically seen.

Preference Function
Our primary interest lies in the effect of

motivational bias on the preference functions.
Preference functions pooled over the last 4 days
of each determination at each of three S, C
values for each subject are shown in-Figure 7.
The 2 birds for which reinforcement was in-
creased on the standard side (S bias condition)
are shown on the left, and the C bias birds are
shown on the right. The biasing manipulation
lowers and moves the preference function to
the right for the S bias condition and raises
and moves the preference function to the left
for the C bias condition. Data pooled within
groups are shown in the bottom row. In all
cases the indifference points occur later for S
bias and earlier for C bias, as we would expect.
Note also that the size of the preference dif-

ference is larger for the C bias than for the S
bias condition; this is what would be expected
if the criterion on which the decisions are based
is expectancy (Figure 5).

Individual preference functions from each
subject taken from the last 4 days of each de-
termination were analyzed in two ways: total
preference for C, and indifference points, T½.
Total preference for the time-left side was cal-
culated as the area under the preference func-
tion. The maximum possible area is 1.0, which
would represent exclusive preference for C
throughout the trial. A step function located
just halfway through the C interval would re-
flect a .5 total preference, because the first half
of the interval would reflect perfect preference
for S and the second half would reflect perfect
preference for C. Of course, a .5 preference
could also be obtained with a symmetric ogive,
a positive diagonal, or a horizontal line set at
indifference throughout the trial. Thus, this
measure collapses over the accuracy feature of
the preference functions and reflects only over-
all choice preference.

Total Preference
The total preference measure serves to re-

veal the size of the motivational bias effects.
The top panel of Figure 8 shows data from
the 2 birds with the S bias, and in the bottom
panel are the corresponding data for the C bias.
Notice first that there is little difference in
overall preference for C at each of the three
time values for the unbiased data (open bars).
Biasing (hatched bars) produces a decrease (top
panel) or an increase (bottom panel) in this
preference in the appropriate direction. Note
also that the size of the preference difference
is greater when C is doubled than when S is
doubled, as noted earlier in Figure 7.
The total preference data were subjected to

an analysis of variance for the two motivational
biasing conditions. For both manipulations
*there is a very large effect of bias, F(1, 12) =
241, 100 for S, C bias, respectively;ps < .001.
There was a subject effect (a difference in level)

Fig. 6. Results pooled over a 4-day block for 1 bird. In the initial choice link (top panel), the rate of pecking in
favor of the fixed S interval declines, while the rate of pecking in favor of the elapsing C interval increases. The
preference function (middle panel) shows the proportion of responses in favor of C during the initial link, with the
indifference point, T,., indicated. In the terminal links (bottom panel), response rates increase somewhat throughout
the interval.
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for the 2 birds for which S reward was in-
creased, F(1, 12) = 17.2, p < .01, but there
was no such effect for the other pair. There
was in both cases an interaction between bias
and size of S = C/2. There was a systematic
increase in the size of the differential produced
by the motivational bias at the shorter time
intervals. This was marginally significant, F(2,
12) = 5.13, p = .025, in the analysis of vari-
ance, and it is similar to the more extreme
preference effects we have seen in other con-
ditions at short time intervals. All other inter-
actions were not statistically reliable.

Indifference Point, T½

Preference functions from each determina-
tion for each subject were fitted with a fifth-
order polynomial, and the indifference point,
TA, was extracted. The polynomial yields re-
liable estimates when the data span the 50%
range, but is unreliable where it is not con-
strained by the data. Five points out of 64 lay
outside the range of the data. Doubling the
reward on the C side, for example, sometimes
produced preference functions that began above
50%. Similarly, when S was favored, occa-

1.00 S Bias

.

.

0.75

0.50

0.25

4-.J
'I-
ci)

cL)
E

0

C-)

0~

1.00-

0.75 -

0.50

0.25-

0.00-

+F
S
U

-Ua

7.5

/

15

425



JOHN GIBBON and STEPHEN FAIRHURST

1.0

0.8

0.6

0.4

0.2

0.0

a

R2=0.91 0 0 369
A 371
0 685
A 1380

0.0 0.2 0.4 0.6 0.8 1.0

Total Preference for Time Left
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sionally the preference function did not rise to
the 50% point before the trial ended at C s.

Those five points lying outside the range of
the data were estimated from a subject's total
preference, as explained below.

There was a strong linear relation between
a subject's total preference and its indifference
points. In Figure 9 the proportion of the total
comparison interval elapsed at indifference
(T½/C) for all subjects is plotted against total
preference. As overall preference for C in-
creases, the proportion of the time elapsed at
indifference decreases, as would be expected
from a visual inspection of the preference func-
tions (Figure 7). The linear relationship is
very strong (r2 = .91, p < .001). Total pref-
erence is highly correlated with the T½ mea-

sure. In the five cases in which T½ values were
not available, we estimated them from the re-

gression in Figure 9 for the analysis described
below.

Indifference points from each determination
for each subject were regressed against S, and
the slope, intercept, variance accounted for,
and p values are shown in Table 1. In all cases

the regressions were highly statistically sig-
nificant. Data for indifference points for the
two groups are shown in Figure 10 with re-

gression lines (ps < .001 in all cases). The
points shown are the averages of the deter-
minations at each value for each subject. The
S bias data are shown in the top panel, and C
bias data are shown in the bottom panel, along
with the unbiased baselines (filled points). It
is clear that the main effect of biasing was a

change in slope for both groups, and the change
was more extreme for the C bias group.,

Multiple regression analysis confirmed a

large slope effect for the bias manipulation.
Both biasing conditions produced statistically
significant slope differences, t(36) = 3.7 and
4.4 for S bias and C bias, respectively (p < .001
in both cases), but there were no significant
intercept differences. The slope effect is to in-
crease the time at indifference when the re-
ward for the standard side was increased,
whereas a decrease in indifference times is seen
when reward was increased on the time-left
side. The intercepts go in the same direction
as the slopes but do not reliably differ. A (mar-
ginally) significant subject x condition inter-
action emerged in the C bias group, t(17) =

2.68, p = .016, because 1 subject showed an

unusually high slope in the unbiased condition.
Although C bias reduced the slope of the

indifference point function more dramatically
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Table 1

Regressions on T½ functions.

Slope Intercept R2 F p

S bias group
369 unbiased 0.88804 1.6403 .940 109.82 .0001
371 unbiased 0.80233 -0.51100 .940 109.06 .0001
Group unbiased 0.84518 0.5650 .945 68.51 .0012
369 biased 1.1558 3.6401 .849 28.17 .0032
371 biased 1.1815 0.79499 .995 957.58 .0001
Group biased 1.1732 2.1695 .985 259.16 .0001

C bias group
685 unbiased 0.84618 1.1293 .742 20.12 .0028
1380 unbiased 1.16662 -2.8188 .928 89.99 .0001
Group unbiased 1.0062 -0.84975 .951 78.35 .0009
685 biased 0.56301 -2.7482 .680 10.61 .0225
1380 biased 0.56163 -3.7865 .803 20.33 .0063
Group biased 0.56453 -3.2905 .987 293.72 .0001

than S bias increased it, in neither case is the
slope of the biased data as extreme as would
be expected from the expectancy comparator
models, were there no intrinsic bias and sub-
jective reinforcement differentials proportional
to their actual durations. Recall that in Figure
5, doubling reinforcement on S in this case
would produce a slope of 1.5, whereas dou-
bling reinforcement on C would produce a slope
of 0. The real slope changes are not as extreme
(see Table 1).

Variance: Weber's Law
The changes in indifference points seen

above might have been produced by equally
sharp discriminations that were simply located
at the longer or shorter T7 values. In fact, as
the functions in Figure 7 attest, there is an
associated change in the spread, or slope, of
the preference functions when the indifference
point changes. Previously published analyses
of unbiased baseline conditions (Gibbon et al.,
1988) have shown that superposition, or We-
ber's law, may be revealed by plotting the en-
tire preference function relative to obtained T½
values. The increase in spread that we see in
preference at long times is matched by a similar
increase at large food amounts for S. When
twice as much food is delivered for the S choice
as for C, subjects favor the S side longer into
the trial and show more variability in the time
at which the switch to the C side occurs. In
contrast, when the value of C is enhanced,
subjects switch over to preference for C at an

earlier time, and
in the function.

they do so with less spread

The degree to which subjects increase or
decrease their spread is scalar in T.. This
Weber's law finding for amount and delay is
illustrated in Figure 11. Here all six prefer-
ence functions for each subject are replotted as
a function of time in the trial divided by the
obtained T½ value. Again S bias subjects are
on the left, and C bias subjects are on the right.
Near superposition is shown for this trans-
form, indicating multiplicative variance prop-
erties underlying the preference function forms.
More importantly, the motivationally bi-

ased conditions share the same property as the
time-based functions; that is, superposition oc-
curs for these functions as well as for those
collected at different S, C time values. When
plotted as a proportion of T., the reinforce-
ment differential is seen to operate multipli-
catively, just as the time values operate mul-
tiplicatively. Indeed, one might argue that time
and motivational bias are strictly interchange-
able here, because the slope of the preference
function is a direct function of both S and the
bias parameter.

It can be shown that under a strictly scalar
timing model, in which there is scalar noise in
the memory for S and C, the ratio comparator
results in a multiplicative shift in the prefer-
ence function with changes in reinforcement
differential, just as for the slope change in the
T½ function. Thus, the degree by which T½ is
lengthened or shortened at indifference is the
same degree by which any other percentile
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Fig. 10. Regression of the indifference point, TA, as a function of the length of the S interval for subjects in the S
bias condition (upper panel) and the C bias condition (lower panel). The means of the determinations for each subject
at each pair of 5, C values are shown as filled points for the unbiased condition and open points for the biased condition.
The means across subjects are shown as x and + for the biased and unbiased conditions, respectively.

point on the function is lengthened or short-
ened. This scalar property in the data allows
a validation of the indifference-point analyses
by showing the same effects at different per-
centile points.
We noted earlier that a few of the T½, values

needed to be estimated from the data, because
when reward was doubled on S, preference
functions occasionally did not quite rise to 50%,
and when reward was doubled on C, prefer-
ence functions in a few cases began above 50%.
However, for all S bias preference functions,
a 25% point is always available (Tv,) and for
the C bias conditions, a 75% point is always

available (Ty). In Figure 12, near superpo-
sition is again observed when the preference
functions are plotted against time in the trial
normalized by the 25th percentile point for the
S bias condition and normalized by the 75th
percentile point for the C bias condition. Thus
the same scalar process operates at all levels
of the preference function, not just at the in-
difference point.

DISCUSSION

The present results implicate a comparison
mechanism that operates on ratios of the rel-
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evant criterial variables in the time-left pro-
cedure, not differences. The major evidence in
favor of a ratio comparator mechanism evolves
from the large effects on slope with changes
in reinforcement differential. We summarize
this evidence for the difference and ratio com-
parator mechanisms separately below.

Difference Comparators
The difference rules based on delay criteria

or immediacy criteria are clearly ruled out by
the kind of slope changes we see in the T½
functions (Figure 10). The indifference func-
tions are highly linear and have large slope

changes associated with reinforcement differ-
ential. This kind of effect is compatible with
any of the three ratio comparator rules and is
not compatible with the difference rules. The
only preference function that is linear and based
on differences is that for delay to food, and
this requires a substantial change in intercept
with motivational bias but no change in slope.
Just the reverse is seen in the data.
The difference rule operating on immedi-

acies (Figure 4) is also clearly ruled out. Al-
though the S bias function might be difficult
to discriminate from a linear form, the pre-
dicted C bias function is surely not linear, con-

trary to the clear linearity in the C bias data.
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Fig. 12. Preference functions for individual subjects, pooled across determinations, plotted against time relative to

the 25th percentile point, T1,, for the S bias group in the left column, and against the 75th percentile point, T1,, for
the C bias group in the right column.

Ratio Comparators

The three ratio comparator rules are all
compatible at some level with the kind of find-
ings we present (Figure 10). The data require
a slope change of the order of about 0.33 for
the S bias data and a slope change of about
0.5 for the C bias data. Along with the total
preference data indicating a greater change in
preference for the C bias case, these results
implicate a more dramatic change when re-
ward is doubled on the C alternative than when
it is doubled on the S alternative. This favors
the expectancy ratio comparator, which spec-
ifies just such an asymmetry in the effects of

changing motivational parameters on the two
alternatives. On the other hand, the changes
certainly are not of the order of magnitude
expected if there were no intrinsic bias present
and if subjective amounts were proportional
to duration of access. Of course, intrinsic bias
may be seen reliably in all of the baseline data.
Indeed we selected subjects with the greatest
intrinsic bias in favor of S for the C bias group
and those with intrinsic bias favoring C for the
S bias group. The results of the biasing ma-

nipulation then are in the right direction. The
effects are not as extreme as ratios of reward
durations would anticipate, and this suggests
an important feature of subjective amounts.
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Evidently, doubling the amount of reward on
either side does not result in doubling the sub-
jective ratio of those amounts; otherwise, the
C bias function would have a slope reduction
down to 0 and the S bias function would have
a slope increment up to 1.5 (Figure 5). Rather,
as we see in Figure 10, the slope changes are
appropriate to a subjective amount ratio of
about 2:3 when the actual durations of access
are 1:2. This is probably not due to nonlinear
consumption with duration of access with the
feeder design used here (Epstein, 1981, 1985),
but rather negatively accelerated value with
increasing access (e.g., Killeen, 1982). This
suggests a sort of marginal value account of
subjective amount, with decreasing increments
in value for larger amounts of food.
We have analyzed this issue in the following

way: Under the baseline conditions, the sub-
jective amount ratios, Hc/Hs are perforce 1.0;
that is, subjective amounts should be equal
when the actual amounts are equal. From the
baseline slopes we may calculate the intrinsic
bias present in the baseline data via the T½
equation (Cell 5 in Figure 3). Then, using this
intrinsic bias, we may calculate the subjective
amount ratio, H(A)/H(2A), for the biasing
manipulation. Assuming the same intrinsic bias
as in the baseline condition, we see that the
subjective amount ratio for the doubled rein-
forcement on S produces a subjective ratio of
about 2:3, not 1:2. We then may use this
amount ratio in inverse form for predicting
data from the C bias group. Here we again
calculate B, the intrinsic bias from the baseline
condition, but we now may use H(2A)/H(A)
= 1/[H(A)/H(2A)] as a predicted value for
the slope under the biasing condition when
food duration is doubled on C. The slope ob-
tained from regression is in fact smaller than
predicted (predicted slope = 0.61, obtained =
0.56). Using the C bias data in the same way
to predict the S bias slopes, we obtain a pre-
dicted slope for S bias birds based on the ob-
tained intrinsic bias for C bias birds of 1.20,
although in fact the actual regression is 1.17.
The above analyses argue that the amount

ratios of about 2:3 rather than 1:2 seem, to a
first approximation, common to the 4 birds.
Of course, there are only 4 birds in this illus-
trative experiment, and it is important to notice
(Table 1) that intrinsic bias varied rather
widely, especially for the 2 birds in the C bias
group. Thus the small number of subjects in

this study is certainly not definitive for a con-
stancy of the predicted inverse of subjective-
amount value ratios. It remains suggestive,
however, that subjective amounts increase
about as rapidly for the 1:2 ratio in both groups.

Expectancy Difference Comparators
Finally, we have explored fits to the cur-

vilinear relationships required by the expec-
tancy difference comparator for both S and C
in a similar analysis. That is, we estimated B'
from the unbiased functions for the difference
comparator and asked whether the data con-
form to the curvilinear character of the pre-
dictions for this level of intrinsic bias when
motivational differential is introduced. We do
not attempt predictions of the subjective ratios
here, because the absolute subjective amounts,
as well as K (Equation 1), enter into the in-
difference-point function predictions. Rather,
we conducted an exhaustive least squares fit
of the data using the baseline B' values to
predict the form (although not the level) of the
indifference-point functions under the as-
sumption of the difference expectancy com-
parator (curvilinear) form. The variance ac-
counted for in these fits was in all cases inferior
to that obtained with the expectancy ratio com-
parator, as might be expected from examina-
tion of the forms in Figure 5. To summarize,
the data are too linear to be well fit by the
expectancy difference comparator forms, even
when intrinsic bias is only slightly different
from no bias.
We conclude, therefore, that the linearity in

the data with slope changes under motivational
bias strongly argues against difference com-
parator mechanisms and in favor of ratio com-
parator mechanisms operating on any of the
three criteria. Although it is not formally pos-
sible to discriminate between ratio compara-
tors operating on each of the three criteria, the
data suggest that an expectancy account has
the qualitative asymmetry expected when
equivalent motivational changes are intro-
duced on either side. The other two criteria,
delay and immediacy, suggest no a priori rea-
son for asymmetry in the power of the moti-
vational manipulation.

Variance
The ratio comparison analysis detailed above

has a parallel in the variance analysis, which
suggests that the particular value on the pref-
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erence function that we have used-indiffer-
ence-may not have a special status. The vari-
ance of the preference function is multiplicative
both in amount and in time. These two vari-
ables seem to operate equivalently in shifting
both the precision and the location of the pref-
erence function. It is not clear on these grounds
alone, however, where variability in prefer-
ence is introduced. That is, it matters little
whether variability is primarily in time esti-
mates and is multiplied by a reinforcement
differential parameter or whether variability
is induced in appreciation of subjective rein-
forcement amount ratios and this variability is
multiplied (or divided) by constant time esti-
mates.

It seems most likely to us, however, that
noise is introduced primarily by timing rather
than by subjective amounts. This implication
depends on our analysis of Weber's law for
time. Because Weber's law is seen in psycho-
physical data as well as delayed reinforcement
tasks, it seems likely that at least one of the
mechanisms introducing variability does so at
the level of time. Psychophysical evidence in
this direction is supplied by studies in which
the time intervals being discriminated do not
end in food. Temporal generalization data and,
more particularly, temporal discrimination
data, in which discriminating long from short
intervals is paid, cannot reflect a food rate
discrimination but do reflect the scalar prop-
erty for time (e.g., Gibbon et al., 1984).
One source of variance introduction, how-

ever, is ruled out. Variability increases when
the standard is favored and T½2 is lengthened
(Figure 7) but not when reward amount is
increased for the C alternative. Here, the pref-
erence functions become steeper, along with
an associated reduction in T½. This means that
the reward amount is not the feature that in-
duces variability in these preference functions;
otherwise, preference would be equally vari-
able when increasing reward shortened T½ as
when it lengthened it. We conclude that a ma-
jor source of variance must lie in the time-
keeping and temporal memory system.

Although a major source of scalar variance
probably lies in the time-keeping system, com-
parison variability is also likely to be present.
This is most easily accommodated in the ratio
comparator for expectancies (Cell 5, Figure
3). Some variability in the intrinsic bias pa-
rameter, B, or in the subjective amount ratio,

HclHs, seems to be a likely candidate. Vari-
ability here would act multiplicatively on the
relevant time values and induce the scalar
property evident in Figures 11 and 12. It is
important to note that the slopes of individual
preference functions in Figure 11 show idio-
syncratic levels of precision; for example, Bird
369's function is considerably sharper (steeper
slope) than the others and conforms more pre-
cisely to the scalar property. This would be
consonant, for example, with different sensi-
tivity to time of individual subjects and is not
consonant with the kind of broad variability
expected, for example, by a matching descrip-
tion.

Behavioral Theory of Timing
The scalar property in Figure 11 has im-

portant implications for an alternative ac-
count, the behavioral theory of timing (Killeen
& Fetterman, 1988). In that theory, when food
rate is increased, the pacemaker governing un-
derlying timing increases its rate proportion-
ally. This means that the resolution of the
system is improved for high rates of food rel-
ative to lower rates of food. In our manipu-
lation, when reward on the C alternative was
doubled, subjects received a higher overall rate
of food and hence would be expected to have
a higher pacemaker rate. This would result in
steeper slopes in the preference functions for
the C bias alternative, as indeed the data show
(Figure 7). Moreover, a proportional increase
in pacemaker speed might produce the We-
ber's law finding for this condition, as shown
in the right column of Figure 11.

However, the increase in food for the stan-
dard alternative should likewise produce an
increase in slope for the data in the left columns
of Figures 1 1 and 12, which it manifestly does
not do. Indeed, the slope changes are in the
opposite direction and yet these preference
functions continue to show the proportionality
or superposition finding, the scalar property.
These data, then, are not easily accommodated
by a theory in which pacemaker rates change
with overall food rates. We thus conclude that
(a) the major sources of variance are in the
time-keeping and comparison system, but (b)
changes in overall food rates act multiplica-
tively on these sources of variance. It is this
feature, in conjunction with a ratio compa-
rator, that induces the scalar property.

This is not to say, of course, that the ratio
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comparator operating on delays does not as-
sociate them differentially with food value, as
in a rate. A given amount of food engenders
some value, which, in SET, is spread over the
delay before its receipt. Expectancy, the ratio
of a subjective value to a subjective time, may
represent the primitive criterion for choice. The
present results do not tell us whether the prim-
itives are times or expectancies, as long as these
are compared by a ratio. But they do place the
sources of variability in timing and decision
mechanisms, not in motivational differences.
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