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ABSTRACT The screened Coulomb interaction between polyelectrolyte cylinders
immersed in an ionic bath is examined. The electrostatic force and torque acting
between a pair of unlike rods is formulated for all separations in which the
electrostatic potential on some dividing surface between rods can be written as a
linear superposition of isolated cylinder potentials. (The surface potential on the
rods themselves may be much higher than that permitted by a superposition ap-
proximation.) The mutual energy in the case of skewed rods is found to be expo-
nential in separation and proportional to 1/sin § where 6 is the twist angle of one
rod relative to the other. Rods with similar charge repel each other with a torque
acting to make the rods perpendicular while rods of opposite charge attract with
the parallel arrangement preferred.

INTRODUCTION

In this paper we derive several formulae for the electrostatic interaction between
very long cylindrical particles in a salt solution. The mutual orientation of the rods
may be parallel (as has been the case in previous analyses [1, 2]) or skewed at
any angle (3). The particles themselves may be of differing charge and thickness.

For skewed rods the electrostatic force per interaction is purely exponential
in separation and goes as 1/sin 4 in their mutual angle (Fig. 1), Eqs. 19 and 20.

In order to find these results we have devised a method that avoids the approxi-
mation of treating cylinder interactions as a modification of that between planes
(3, 4). It also obviates the mathematical problems of integrating over the elements
of a stress tensor (5) or over the states of a charging process (6). The method is
actually an observation on the exact physical equivalence of several pictures of the
interacting particles. It permits one to write down formulae almost directly for
electrostatic interactions in other than cylindrical geometry. Physically the method
is limited by the same restrictions inherent in the ““linear superposition approxima-
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FIGURE 1 (a) Rods are separated by a minimum center-to-center distance R and make
an angle § when viewed along R. (b) The distance r is the perpendicular distance from
the axis of rod 2 to some point along the axis of rod 1. The distance along rod 1 is measured
by y where y = 0 is chosen at r = R. These distances and angle are related by r* = R® +
(y sin 6)2.

tion” of Bell et al. (5) (which of course holds well beyond the weak surface po-
tentials usually associated with superposition of potentials in salt solution).

The breadth of situations allowed by the present formulation for rod-like particles
should allow application to phenomena of phase separation and array formation.
For example, tobacco mosaic virus, suspended in salt water, will divide into two
phases, one a dilute solution of randomly oriented rods, the second an array of
parallel viruses (7). Accurate theoretical expressions for attractive and repulsive
forces between particles are necessary for understanding the distribution and
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spacings of particles in these phases (3, 8—13). The structures of other systems such
as collagen fibrils in corneal deposition (14-17), aggregation and orientation of
sickle-cell hemoglobin (18), and the formation and mutual juxtaposition of muscle
proteins (19-21) may also depend on electrostatic torques and forces.

In the following we first give a physical argument for reducing the mathematical
problem of formulating electrostatic forces between rods. This method will apply
when rod radii are much less than their separation or when the nearest rod-rod
distance is not less than the Debye length of the salt medium. We then write down
expressions for the force per unit length between dissimilar parallel rods, and the
force, torque, and energy per interaction between skewed rods. These particular
results hold when the skewed rods are effectively of infinite length although the
general method may in principle be applied to particles of any length.

METHOD

The electrostatic force on a charged body in a salt solution is most generally conceived as
the total electric and osmotic stress integrated over any closed surface that includes the
charged body but excludes other bodies acting on it. The magnitude of the electro-osmotic
stress tensor depends on the electrostatic potential and potential gradient at each point
on the enclosing surface. Unhappily integration of the stress over any surface set up for the
interaction of two cylinders can be a mathematically arduous procedure (5). We therefore
make the following observation:

The same electrostatic potential giving the stress between two charged rods of finite thick-
ness can often be rewritten identically as a potential arising from two hypothetical rods of
infinitessimal thickness. But now rather than using a stress tensor to formulate the mutual
force exerted between these thin rods, one may in many cases write the force as the product
of the field set up by one rod times the charge on the other thin rod.

That is, there are then three equivalent ways to visualize the force between two rods of
finite thickness: (a) integration over a stress surface, (b) integrating over the same surface
where the same electrostatic potential and potential gradient is expressed as emanating from
two hypothetical but equivalent thin rods, or (¢) multiplying the charge on one thin rod by
the local electric field emanating from the other thin rod. When permitted, use of (c) relieves
one of tedious spatial integrations required by (a) or (b). (Analogous reasoning for the inter-
action of spherical particles leads to the results derived by Bell et al. (5) by a single multipli-
cation rather than integration (a).)

In order to follow procedure (c) it is sufficient that (I) the total potential on the stress
surface be the superposition of potential fields due to the individual rods; (2) the component
potential fields can be expressed as those occurring in the vicinity of the isolated rods. The
first condition is implicit in any solution of a linearized potential equation (which need hold
only on some surface between the interacting particles); the second condition is met when
the minimum surface-to-surface distance of the two bodies is not less than the Debye length
1/k of the salt water medium (6) (see Eq. 3 below).

Between the rods we are interested in the formal solution of a linearized Poisson-Boltzmann
equation for the electrostatic potential ¥. The full PB equation,

4re —zse
Vo = —2° 3 plze VT, (1)

€ T
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is expanded in the exponentials to become

Vi = 2P, (2)

When superposition holds the use of the linearized Poisson-Boltzmann equation is valid on
the stress surface because the potential there is small (e¥ <« kT) due to screening of the field
emanating at the rod surfaces by the intervening salt solution. Here we define

k2 = 8mne?/ekT, (3)

where ¢ is the (uniform) dielectric constant of the bathing medium, —e is the electronic
charge, k is the Boltzmann constant, 7" the absolute temperature, and # is given by

n=%{z;}nng. (4)

The set {n}} designates the concentrations of the ionic species in the reference solution
far from the charged bodies (where the potential is taken to be zero) with ions of valence
z; having concentrations n? (ions per cubic centimeter).

For a single cylindrical rod of radius a the potential is radially symmetric varying only
as the distance r from the rod axis. The solution of Eq. 2 is

V() = AKy(xr) (5)

where K, is the zero order modified Bessel function of the second kind (22).

If we imagine that the single cylinder potential Eq. 5 arises from a hypothetical line charge
of density v, charge per unit length then coefficient A4 is 2v;/¢. The potential sufficiently far
from the rod axis is

¥ = 2ui/e)Ko(xr). (6)

the derivative electric field at those long distances is

E = —6‘1’/&7’ = (211;,/6) KKl(Kr). (7)

Several available methods (1, 23, 24) may be used for determining the effective charge »5
in particular applications. Alamov (25) and Philip and Wooding (26) describe techniques
for matching solutions for potentials near a charged cylindrical body with the limiting large
xr form of Eq. 5. The variational method of Brenner and Roberts (27) may be readily adapted
to cylinders for a closed-form analytic expression for the potential. Finally, direct iterative
numerical solution of the full Eq. 1 is practical.

For the special case of cylinders of known radius a and low surface potential, Eq. 6 holds
at all distances r > a. In that weak potential limit we have

w = 2no/kKi(xa), (8)

where ¢ is the actual charge per unit area of the cylinder and KX is a Bessel function. In the
additional limit where (xa) > 1, »; becomes

v — (20/x) \/2mka €. 9)

Brenner and McQuarrie (6) have shown that to good approximation the total electrostatic
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potential from two identical parallel rods of interaxial distance R is simply the sum of two
solutions having the form of Eq. 5. They demonstrated that this will hold as long as the
minimum distance (R — 2a) is not less than 1/, the Debye length of the medium.

RESULTS
Parallel Rods

The electrostatic force per unit length between two parallel rods “1”’ and “2” sepa-
rated by intraxial distance R is the product of the electric field Ey(R) on rod 1 and
the effective linear charge density v, on rod 2 (or vice versa)

f ] (R) = 2(11).1!/;;2/ G)KKl(KR), ( 10)

while the mutual energy of interaction (relative to infinite separation) is

Wu (.R) = 2(Vh1Vh2/e)Ko(KR). ( 11 )

The functions Ky(xR) and K;(xR) may be expanded in asymptotic series for large
kR (22)

K(R) = /a2 (e_“”/\/—)( +2(82R)2 ) (12)

Ki(kR) = V772 (e"*/V/kR) (1 + m 2(8 KR)2 +. ) (13)

For the limiting case of cylinders of known radii a, , a. , and low surface poten-
tial, the coefficients »i and vs. for the hypothetical linear charge densities in Eqs.
10 and 11 are related to the actual charge per unit area by the relations in Eqgs. 8
or 9.

Whenever the distance R — (a; + a) is much greater than the Debye length 1/«,
Eq. 13 may be used for a limiting force law

fi(R) — ‘/_"""""(“‘*/\/.I)(l+ T(sL_xs;z)z"') (14)

This agrees with a result of Brenner and McQuarrie who used a lengthier method to
find the leading term in the force between two like rods,

fi(R) = £(€™*/v/kR), (15)

where ¢ = £(x, a) for a given charge density and dielectric constant.

Skewed Rods

For two skewed infinitely long rods of minimum interaxial separation R and mutual
angle (of rotation from parallel configuration) 6, it is convenient to write first the
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energy of electrostatic interaction Wy,(R, 6) (Fig. 1). This energy is the integral of
line charge on one rod times the potential of the second thin rod exerted at each
point on rod no. 1.

If we let y measure this distance along rod no. 1 (where y = 0 is the point of
minimum distance from rod no. 2) the required integral is

4o
Wi = m ¥, dy, (16)

—x

as shown in Fig. 1. From Eq. 9 we must integrate
W, 2onne [©
2= Y b Ko(xr) dy

= 2o [ g («R cosh B) cosh § dB. (17)
esin 6 Jo

Here the variable of integration r is the perpendicular distance from each point

y on rod no. 1 to the axis of rod no. 2. Since r and y are related by

7 = R + (ysino),

we have defined a new variable of integration 8 such that » = R cosh 8. Eq. 17 may
be integrated in closed form using a technique due to Nicolson (28) to give

Wi = (wvmvas/ex)(e % /sin 6). (18)

The electrostatic force per interaction f(R, 6) and the torque (R, 6) are:

f(R,0) = —(@W15/dR)y = (mvawas/e)(e " /sin 0), (19)
T(R, 0) = - (3 W12/30)R = (m/uv;.z/ex) (COS 0/Sill2 0)e_'R. (20)

These electrostatic forces are purely exponential in separation and decrease with
increasing mutual angle. The forces seem to diverge as 8 goes to zero because they
are forces per interaction and we have assumed rods have infinite length; in fact
the interaction of parallel rods is finite but is properly expressed as a force per unit
length (Eq. 10).

As should be expected, the torque acts to twist rods of like charge sign away from
the parallel orientation toward a perpendicular configuration. The electrostatic
attraction or rods of unlike charge sign acts to align the particles (similar to the
torque created by the electrodynamic or van der Waals attraction between thin
rods [29]). Obviously, attraction tends to align rods while repulsion tends to mini-
mize contact between them.

An expression similar to Eq. 18 was derived by Onsager (3) using an approximate
method due to Derjaguin (4). The difference from our Eq. 18 is in the coefficient
mvavie/ex. It had not been apparent on the basis of the earlier work that the spatial
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and angular dependence, ¢ **/sin 6, was the result of a certain approximate treat-
ment or in fact a general property of rod interactions.

DISCUSSION

How widely can the present formulae be used to compute the electrostatic interac-
tion of two cylindrical particles? As long as the potential on some surface between
the particles be a sum of unperturbed potentials from the two rods, the underlying
assumptions will be satisfied. Should those individual unperturbed potentials very
near the rods be a solution of the full nonlinear equation (Eq. 1), one only requires
suitable definition of the coefficient », to match the assumed form Eq. 6 far from
the rod surface. (A similar modification has already been suggested for the case of
spheres [5].) Rods of differing radii and charge density may be treated within this
framework.

Qualitatively, as long as interaxial separation R is much greater than cylindrical
radii or as long as the minimum surface-to-surface distance is not less than the
Debye length, the computations of Brenner and McQuarrie (6) would suggest that
it is appropriate to treat the interacting cylinders as if they were equivalent thin
rods. The present expressions reduce rigorously to give the correct result for the
interaction of two thin charged rods in a salt-free dielectric.

For rods bearing weak potentials (such that e¥/kT << 1) or in media having
high salt concentrations (such that xR >> 1), the simultaneous interaction of several
charged rods will be the pairwise sum of individual rod-rod interactions. For low
salt concentrations and high charge densities on the rods, one must solve for the
electrostatic potential in a way that accounts for the simultaneous position of
several rods (30, 31); the electrostatic energy in the array is not then the pairwise
sum of rod-rod interactions.

The one major restriction in the application of these formulae is the assumption
that rod length L be much greater than the interaxial distance R. It is clear that for
finite rods of length L (at any angle) separated by R >> L the resultant equations
will be essentially those characterizing point charges of magnitude »L. For rods
whose length L > R and whose ends are far from the position of closest approach
of the rods, we have the case considered in this paper. For R ~ L the analysis is
difficult but we expect a smooth transition from infinite rod to point particle be-
havior. _

We are currently studying implications for the present results for the packing
of tobacco mosaic virus particles in gels and for the orientation of linear poly-
electrolytes in ordered arrays.
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